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Classical buckling theory has been researched extensively to determine the in-

plane buckling behavior of parabolic, circular and catenary arches. To simplify the 

analyses, several assumptions are made. However, these simplified assumptions 

are not valid for shallow arches under significant vertical load which are 

characterized by their high geometric non-linearity. Prebuckling displacements 

should be accounted for for accurate in-plane buckling analysis of shallow arches.  

In reality, the supports of arches are not necessarily pin- or fixed-connections. An 

arch may be supported by elastic foundations or other structural elements that 

provide elastic restraint at the supports. In this work, elastic foundations are 

represented by horizontal and rotational springs. These support restraints may have 

a significant influence on the in-plane buckling behavior. 

In-plane non-linear stability analysis of shallow arches is performed in this 

thesis. Energy equations are derived by considering the total potential energy of the 
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arch structure. The vanishing of first variation of total potential energy 

characterizes the equilibrium state, while the second variation of total potential 

energy falling to zero represents the transition from a stable state to an unstable 

state, from which the critical condition may be obtained. 

Finally, this thesis discusses the effects of horizontal and rotational restraints in 

calculation of in-plane buckling strength of shallow arches. Several examples are 

considered to illustrate the application of the theory, presented in this research for 

general practice. 
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NOMENCLATURE 

 

 

       A   area of the arch cross section 

       b   width of cross section 

       E   modulus of elasticity 

      f   rise of the arch 

      h   depth of cross section 

      xI   moment of inertia about x axis 

      L   span of the arch 

      θk  stiffness of rotational springs 

      zk   stiffness of horizontal springs 

      N  actual compression force 

      *N  actual compression force in the buckled configuration 

      p   focal parameter 

      P  arbitrary point 

      eP  critical load for prismatic arch 

      q  external distributed load 

      [ ]R  rotation matrix 

      xr   radius of gyration 

      s   length of the arch 

      S   half the length in arch axis 



 

xi 

 

      U  strain energy 

      v   displacement in the horizontal direction 

      bv  vertical displacement during buckling 

      cv   displacement at the crown 

      w   displacement in the horizontal direction 

      bw   horizontal displacement during buckling 

      α    horizontal stiffness ratio 

      θβ   rotational stiffness ratio 

      γ     simplification coefficient 

      ε     longitudinal normal strain 

      mε   membrane strain 

      
*
mε   membrane strain in the buckled configuration 

      mbε  membrane strain during buckling 

      bε   bending strain 

      mεδ  first variation of membrane strain 

      θ     axial force coefficient 

      λ    modified slenderness ratio 

      µ    stability parameter 

      Π    total potential energy 

      *Π   potential energy at buckled configuration 

      Πδ  first variation of total potential energy 

      
*Πδ  first variation of potential energy at buckled configuration 



 

xii 

 

      ω    dimensionless load 

      Ω    potential energy of external load 
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1.0 INTRODUCTION 

Arches as structural components or systems are extensively used in civil 

infrastructure due to their geometry that resolves external forces into compressive 

stresses. It is a very useful structural form since it takes advantage of tension-weak 

materials such as stone, cast iron and concrete which are able to resist compressive 

rather than tension, shear, or torsional forces. However, the in-plane structural 

behavior becomes non-linear as the external load increases, and when external load 

reaches a limit, the arch may buckle in a snap-through or bifurcation mode from 

the primary equilibrium path to a secondary equilibrium path.  

The in-plane buckling of parabolic or circular arches were studied by early 

researchers (Timoshenko and Gere 1961, Gjelsvik and Bodner 1962, Schreyer and 

Masur 1966, Simitses 1976).  The author of these early investigations made several 

simplified assumptions for buckling analysis: first, the prebuckling behavior is 

assumed to be linear, so stress and strain resultants could be linearized; second, the 

effects of pre-buckling displacements are neglected; third, the effects of post-

buckling deformations on the displacements and geometric stiffness are also 

disregarded. Classic buckling theory is often utilized to dertermine the elastic 

buckling load of arches (Timoshenko and Gere 1961, Simitses 1976), however, 

several simplifications have to be made as discussed in the Introduction. 

Austin (1971) summerrizd the work presented by Timoshenko and Gere (1961) 

and the work of Dinnik (1955), and stuied the behavior of elastic buckling for 

fixed, two hinged and three hinged arches subject to unifrom load on horizontal 
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projection. He suggested that for prismatic arches under pure compression, the 

critical axial load can be expresed in an identical form to those used for straight 

compression members as  

2
2

2 )( Sk
IE

S
IEPe πη ==                                                                                               

where eP  is the critical axial compressive force at the quarter points of the span; E  

is the Young’s modulus; I is the moment of inertia; S is one half of the length of 

arch axis; k  is the effective length factor; η  is a coefficient. The parameters η and 

k  are generated from the work of Timoshenko and Gere 1961 and Dinnik 1955, 

where buckling differential equations are assumed to be linear.  This differential 

equation is characterized by the inextensionality of the centroidal axis and 

neglecting the squares and products of small increments in the displacement which  

is small enough. The values of η and k given by Austin (1971) are listed in the 

Table 1. 

 

Table 1. Values of η  and k  in classic buckling theory 

 

L
f  Pin-ended Arch Fixed Arch 

η  k  η  k  

0.1 9.56 1.02 20.4 0.7 

0.2 9.21 1.04 20.5 0.69 

0.3 8.19 1.10 20.3 0.7 

0.4 7.81 1.12 19.7 0.71 

0.5 7.42 1.15 18.8 0.72 
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The following obervations can be made: first, the critical load at quarter points is a 

function of the arch types and and arch rise–span ratio; second, the effective length 

factor for arches are extremely similar to the straight column with the same support 

conditions, i.e. 0.65 for fixed column and 1.00 for pin-pin column.  

However, these simplifications in classical buckling theory are not valid for 

shallow arches under significant vertical load. In-plane displacements of these 

arches are large and non-linear, therefore, the prebuckling displacements should be 

accounted for in the calculation of the buckling load. 

Timoshenko and Gere (1961) and Gjelsvik and Bodner (1962) obtained 

approximate solutions for various shallow arch buckling problems. Schreyer and 

Masur (1966) performed an analytical study for shallow circular arches subject to 

radial pressure, however, the analysis was limited to fixed supports and a 

rectangular solid section and they may not represent reality. Dickie and Broughton 

(1971) used a series method to study shallow circular pin-ended and fixed arches 

subjected to a central concentrated load, a radial pressure, or a linearly varying 

radial load. Reasonable numerical solutions are given; however, their study was 

also confined again to rectangular solid cross sections. Power and Kyriakides 

(1994) studied the behavior of long shallow elastic panels under uniform pressure 

loading and demonstrated that shallow arches are characterized by nonlinearity and 

instability. In addition to rectangular sections, other shapes such as I-section, 

hollow-sections are extensively used for arches.  

More recently, Pi et al. (2002) investigated in-plane buckling behavior of fixed 

and pin-ended shallow circular arches with arbitrary cross sections that are subject 

to uniform radial load around the arch axis; they obtained the close form solutions 

for their cases. Bradford et al. (2002) generated the analytical solution for a central 

concentrated load with fixed and pin-ended support. Bradford, Pi and Gilbert 
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(2004) extended the previous study and investigated the limit of modified 

slenderness ratio which determines the threshold of symmetric and anti-symmetric 

buckling. 

The considerable compression force in the shallow arch leads to high reaction 

forces at the supports. In a typical engineering structure where supports are 

embedded in bedrock or on piles of stiff concrete, some relative horizontal and 

rotational movements due to the high reaction forces is expected. Therefore, the 

supports of a shallow arch may realistically be modeled with combinations of 

horizontal and rotational springs, as shown in Figure 1.  

There is plenty of research papers on the topic of stability analysis of shallow 

arches, however, those authors only considered arches to be supported by ideal 

conditions, such as pin, fixed or lateral restraint support. The motivation of this 

thesis research is to have a better understanding of stability of shallow arches 

which are supported by both horizontal and rotational restraints. 

The purpose of this thesis is to extend the work of Bradford, Pi and Gilbert 

(2004) to the investigation of the in-plane buckling of shallow parabolic arches 

under uniform distributed load, with supports that are modeled with horizontal and 

rotational springs. The variation of total potential energy is used to establish the 

nonlinear equilibrium equations and to obtain analytical solutions of the buckling 

loads for both symmetric and anti-symmetric buckling modes. 
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Figure 1. Geometry and loading of the parabolic arch 
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2.0 DIFFERENTIAL EQUILIBRIUM EQUATIONS 

The parabolic arch shown in Figure 1 is subjected to a vertical uniformly 

distributed load q per unit length. A fixed coordinate system yz is defined to 

describe the geometry and the deformation of the arch, as shown in Figure. 1. The 

origin of the axis system is at the center between the two supports of the arch, with 

the positive direction of the axis y being vertically downward and the positive 

direction of the axis z being toward the right end of the arch. With this axis system, 

the profile of the parabolic arch centerline can be expressed as       

 ])
2

([
2
1 22 Lz
p

y −=             ]
2

,
2

[ LLz −
∈                                                                      (1) 

where L is the span of the arch, and the focal parameter p of the parabola is defined 

by (Bradford et al. 2004) 

f
Lp
8

2

=                                                                                                                      (2) 

where f is the rise of the arch. 

An axes system y*z* is also defined in Figure 1, where the axis z* runs around 

the arch, tangent to the locus of the centroids of the arch cross sections and the axis 

y* corresponds to the centroidal axis of each cross section in the plane of the arch 

perpendicular to the z* axis. 

The arch is supported vertically by rollers, and has horizontal and rotational 

springs with stiffness of  kz and kθ , respectively, as shown in Figure 1. Vertical 

displacements at the supports of the arch are fully restrained by the rigid 

foundation. 
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In this study, the stiffness of the two pairs horizontal springs and rotational 

springs of an arch are assumed to be equal to each other, so that the arch is 

supported symmetrically. 

The basic assumptions used in this thesis are: (1) the arch, its elastic springs at 

the  supports, and the vertical load form a conservative system, so that energy 

methods may be used in the investigation;  (2) the arches are assumed to be 

shallow so that  

(dy /dz)2 <<1, and thus dz
dz
dydzds ≅+= 2)(1 ;  (3) the material from which the arch 

is fabricated is linear elastic. 

After deformation, the origin *o  moves to *O , and axes system **zy  rotates to a 

new position **ZY . 

The rotation matrix which describe the relationship between axes coordinates 
*** zyo  and *** ZYO  are shown as following 



















−
=

1

1
*

*

ds
dv

ds
dv

R                                                                                                        (3) 

where *v  is the normal displacement in the *y  direction, and ds is the small 

increment of the arch length, tangent to the arch centerline. As shown in Figure 2. 
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Figure 2. Axes and rotations of parabolic arch 

 

The relation between normal displacement *v  in the *y -direction and v  in the y -

direction may be expressed as   

θcos*vv =                                                                                                                  (4) 

where θ  is the angle between moving axis *y  and fixed axis y . 

According to the previous basic assumptions, it can be shown
dz
dv

ds
dv

=
*

, and 

therefore, the rotation matrix may be rewritten as (Torkmani 1998) 









′−

′
=

1
1
v

v
R                                                                                                               (5) 

in which dzd /)()( ≡′ . 

An arbitrary point ）0,,( ** yxP  on the cross section of the arch after deformation 

moves to ),,( **** wvyxP +′ . Therefore, the displacements of an arbitrary point P in 
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y- and z -directions may be expressed in term of centroidal displacements by Eq. (6) 

(Torkamani et al. 2009). 









−








+








=








00

** yy
R

w
v

w
v

p

p                                                                                           (6) 

The first term on the right hand side of Eq. (6) represents the translation of point P , 

and the second and third terms represent the rotation of point P . 

Substituting rotation matrix, Eq. (5) into Eq. (6) gives  

 








′−
=









vyw
v

w
v

p

p
*                                                                                                                                                (7) 

The longitudinal normal strain ε may be obtained using Lagrangian strain 

expression 

2

22*

)(
)()(

2
1

ds
dsds −

=ε                                                                                                      (8) 

where ds and *ds  are the length of infinitesimal element at point P before and after 

the deformation  

( )222 )()( dzdyds +=                                                                                                      (9) 

and   

( ) 222* )()( pp dwdzdvdyds +++=                                                                                  (10) 

Substituting for pv  and pw  from Eq. (7) into Eq. (10) yields 
2*22* )()()( vdydwdzdvdyds ′−+++=                                                                           (11) 

Substituting Eqs. (9) and (11) into Eq. (8), using assumption (dy /dz)2 <<1 and 

neglecting higher order terms )(,)(
2
1,)(

2
1 *2*2 vwyvyw ′′′−′′′ , produces, the non-linear 

strain-displacement relationships on the cross section for point P   

vyv
p
zvw ′′−′+
′

+′= *2)(
2
1ε                                                                                           (12) 

where the total strain consist of membrane and bending strain which are given by 
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bm εεε +=                                                                                                                (13) 

where  

2)(
2
1 v

p
zvwm ′+
′

+′=ε                                                                                                 (14) 

and       

vyb ′′−= *ε                                                                                                                 (15) 

w and v  are displacements in the z and y directions, respectively. The term 2)(
2
1 v′  is 

the source of the geometric nonlinearity. 

A variational method based on the first variation of total potential energy is 

used here to investigate the in-plane elastic buckling of shallow arches by 

considering the effects of the prebuckling deformations and geometric 

nonlinearity, which classical buckling theory does not account for. The total 

potential energy Π  of a shallow arch subject to uniform distributed load with 

elastic supports may be written as 

Ω+=Π U                                                                                                                 (16) 

in which strain energy U  and potential energy of external forces Ω  are expressed 

as following 

2

2/

2

2/

2 )(
2
1

2
1

2
1

i
Li

iz
VOL Li

vkwkdvolEU ′++= ∑∫ ∑
±=±=

θε  and    ∫
−

−=Ω
2/

2/

L

L

qvdz                              (17) 

The nonlinear in-plane equilibrium equations for the arch can be derived from the 

first variation of total potential energy, which requires  

∑ ∑∫∫
±= ±=−

=′′++−=Π
2/ 2/

2/

2/

0
Li Li

iiiiz

L

LVOL

vvkwwkvdzqoldvE δδδεεδδ θ                                              (18) 

For an arch with a constant cross section 

dsAdvol =                                                                                                               (19) 
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Based on the assumption that dzds ≅ , Eq. (19) can be rewritten as 

dzAdvol =                                                                                                               (20) 

Using Eq. (20), and substituting Eq. (12) into Eq. (18), leads to 

∫ ∑∑
− ±=±=

=′′++−′′′′+=Π
2/

2/ 2/2/
0)(

L

L Li
ii

Li
iizxmm vvkwwkdzvqvvEIEA δδδδεδεδ θ                         (21) 

where  

vv
p
vzwm ′′+
′

+′= δδδεδ . 

The first variation of total potential energy, Eq. (21), contains two parts 

∑∫
±=−

=+′
2/

2/

2/

0
Li

iiz

L

L
m wwkdzwEA δδε                                                                                                                     (22) 

and 

∑∫
±=−

=′′+−′′′′+′′+′
2/

2/

2/

0][
Li

iixm

L

L
m vvkdzvqvvEIvvEAv

p
zEA δδδδεδε θ                                               (23) 

for the horizontal and vertical directions,  respectively. 

Consider Eq. (22) and integrate by part leads to 

∫ ∑
− ±=

− =+−
2/

2/ 2/

2/
2/ 0)(

L

L Li
iizm

L
Lm wwkwdzEA

dz
dwEA δδεδε                                                                           (24) 

Since wδ  is a virtual displacement that varies arbitrarily, therefore, is not equal to 

zero, 0)( =mEA
dz
d ε , for constant EA  

0=′mEAε                                                                                                                                                                (25) 

Therefore, mEAε  is constant and the boundary conditions are obtained from Eq. 
(24) as  

02/ =+ Lzm wkEAε                                                                                                                 (26)   
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02/ =− −Lzm wkEAε                                                                                                                                               (27)  

Consider Eq. (23) and integrate by part gives: 

∑∫

∫∫

±=
−−

− −−−−

=′′++′′′

−′′′+′′−′+−

2/

2/

2/

IV2/

2/

2/

2/

2/

2/

2/

2/

2/

2/

2/

2/

0
Li

ii

L

L x
L

Lx

L

L

L

Lxm
L

Lm

L

L
mL

Lm

vvkvdzvEIvvEI

vvEIvdzvEAvvEAvdz
p

EAv
p
zEA

δδδ

δδεδεδ
ε

δε

θ

         (28)    

For all sets of kinematically admissible virtual displacements vδ , Eq. (28) leads to 

0=−′′−− qvEA
p

EAvEI mm
IV

x εε                                                                                                                  (29) 

And the boundary conditions are also obtained as  

0)( 2/ =′+′′ Lx vkvEI θ                                                                                                                                           (30) 

0)( 2/ =′−′′ −Lx vkvEI θ                                                                                                  (31) 

From Eq. (25), the membrane strain mε  is known to be constant and can be 

rewritten as 

EA
N

m =−ε                                                                                                                (32) 

where N is the actual compression force in the arch. Introducing the stability 

parameter μ and the dimensionless load ω defined by 

xEI
N

=µ                                                                                                                (33) 

and 

N
Nqp −

=ω                                                                                                               (34) 

then substituting Eq. (32) to (34) into Eq. (29) leads to the differential equilibrium 

equation for the vertical displacement as 

p
vv IV ωµµ

2
2 =′′+                                                                                                      (35) 
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3.0 NON-LINEAR EQUATION OF EQUILIBRIUM 

The vertical displacement v  can be calculated from the solution of Eq. (35). The 

geometric boundary conditions are 0=v  at 
2
Lz ±=  and force boundary conditions 

are given by Eqs. (30) and (31). 

Integrate Eq. (35) twice gives 

21
2

2
2

2
EzEz

p
vv ++=+′′

µωµ                                                                                         (36) 

The solution to this second order differential equation is the sum of a homogenous 

and particular solution in the following form 

)sin()cos(H zBzAv µµ +=                                                                                           (37) 

54
2

3P EzEzEv ++=                                                                                                    (38) 

Substitute pv  and ( pv ′′ ) into Eq. (36) gives the coefficients 43 , EE  and 5E  in terms of 

1E  and 2E . 

Therefore, the general solution to Eq. (35) becomes 

)(1
2

)sin()cos( 222
12

p
EzEz

p
zBzAv ω

µµ
ωµµ −++++=                                                   (39) 

Coefficients 1,, EBA  and 2E  in Eq. (39) are calculated using boundary conditions 

0=v  at 
2
Lz ±=  and Eqs. (30) to (31). 

Applying 0=v  at 
2
Lz ±=   to Eq. (33) gives 

0)(1
28

)
2

sin()
2

cos( 222
1

2

=−++++
p
wELE

p
wLLBLA

µµ
µµ                                                  (40) 
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and  

0)(1
28

)
2

sin()
2

cos( 222
1

2

=−+−+−
p
wELE

p
wLLBLA

µµ
µµ                                                  (41) 

Similarly, applying boundary conditions of Eqs. (30) and (31) gives 

0)
2

cossin()sincos( 2
122 =+++−++−−

µ
θµθµθµθµ θ

E
p

wLBAk
p
wBAEI x                         (42) 

and 

0)
2

cossin()sincos( 2
122 =−+−−+++−

µ
θµθµθµθµ θ

E
p

wLBAk
p
wBAEI x                                   (43) 

Solving Eqs. (40) to (43) together gives the coefficients as following 

）θµ
ωγ

cos(2 p
A =                                                                                                          (44) 

0=B                                                                                                                        (45) 

01 =E                                                                                                                       (46) 

)
2

1(
2

2
θγω

−−=
p

E                                                                                                      (47) 

Therefore, Eq. (39) becomes: 

p
z

p
zv 2

222

2 2
)(

cos
]cos)[cos(

µ
θµω

θµ
θµωγ −

+
−

=                                                                       (48) 

where 
2
Lµθ =

                                                                                                                                                   
(49) 

is the axial force coefficient (Cai et al. 2010) and the coefficient  γ  is defined as  

 

θ
θβ

β
γ

θ

θ

tan2

2

+

+
=                                                                                                       (50) 

and 

xEI
Lkθ

θβ =                                                                                                                    (51) 

is the stiffness ratio of the rotational spring and the arch.  
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Because the ends of the arch are support by horizontal springs, 02/ ≠−Lwδ  and 

02/ ≠Lwδ . Hence, from Eq. (26) and (27), horizontal displacement at 2/Lz ±=  can 

be obtained as 

z

m
L k

EAw ε
=− 2/     and      

z

m
L k

EAw ε−
=2/                                                                      (52) 

Substituting  Eqs. (32), (33), and (49) into Eq. (52), the horizontal displacement at 

the support may be rewritten as  

2

2

2/
4

Lk
EIw

z

x
L

θ−
=−   and    2

2

2/
4

Lk
EIw

z

x
L

θ
=                                                                       (53) 

The nonlinear equilibrium conditions for shallow arches may be derived by 

reasoning that the constant membrane strain given by Eq. (32) is equal to the 

average membrane strain over the arch span L calculated from Eq. (14) 

dzv
p
zvw

LEA
N L

L
∫

−

′+
′

+′=−
2/

2/

2 ])(
2
1[1                                                                               (54) 

Considering Eq. (33), the left side of Eq. (54) may be rewritten as  

22
x

x

x

r
A
I

EI
N

EA
N µ−=−=−                                                                                            (55) 

where xr is the radius of gyration of the cross section about the major principal x -

axis given by 

A
Ir x

x =                                                                                                                  (56) 

Considering Eq. (53) and substituting Eqs. (48) and (55) into Eq. (54), leads to the 

nonlinear equilibrium condition for a shallow parabolic elastic arch with horizontal 

spring supports,  given by 

011
2

1 =++ CBA ωω                                                                                                   (57) 

where   
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]tantan
3
2tan44[

4
1 22223

31 θγθθγθγθθγθγ
θ

−+++−=A                                            (58) 

]
3

tan[1 2

21
θ

θ
θγγ

θ
+−=B                                                                                            (59) 

]21[)(]21[)( 22
1 α

λ
θ

λ
θ

+=+=
zkL

EAC                                                                              (60) 

in which λ and α are the modified slenderness ratio and stiffness ratio, and they are 

defined as 

)(2
4

2

xx r
f

pr
L

==λ                                                                                                       (61) 

zkL
AE

=α                                                                                                                 (62) 

For an arch supported by pin and rotational springs only, zk  becomes infinite and 

α equals to zero, 1A  and 1B remain the same given by Eqs. (58) and (59).                       

Coefficient 1C  changes to 

2*
1 )(

λ
θ

=C                                                                                                               (60a) 

The coefficients 1A , 1B  and *
1C  are consistent with those obtained by Cai (Cai J. et 

al. 2010) without considering the temperature gradient.  

For a pin-supported arch, the stiffness zk  approaches infinity, while 

θk approaches zero, therefore, from Eqs. (50), (51) and (62), one may have 

0=θβ                                                                                                                      (63) 

1=γ                                                                                                                        (64) 

0=α                                                                                                                       (65) 

Then coefficients ,, 11 BA and 1C  given by Eq. (58) to (60) reduce to 
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)
3
2tantan55(

4
1 32

3
*
1 θθθθθ

θ
++−=A                                                                                                      (66) 

)
3

tan1(1 2

2
*
1

θ
θ
θ

θ
+−=B                                                                                              (67) 

2*
1 )(

λ
θ

=C                                                                                                                 (68) 

which are the same as those obtained by Bradford (Bradford et al. 2004, 2007) for 

a pin-ended parabolic arch. 
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4.0 BUCKLING ANALYSIS 

4.1 BUCKLING EQUATIONS 

The arch may buckle from a prebuckled equilibrium configuration defined by 

),( wv  to a buckled equilibrium configuration defined by ),( **
bb wwwvvv +=+= , 

where bv and bw  are the additional buckling displacements in the vertical and 

horizontal directions, respectively. The total potential energy at the buckled 

configuration is 

∫∑∫ ∑
−±=±=

−′++=Π
2/

2/

*2*

2/

2*

2/

2** )(
2
1)(

2
1)(

2
1 L

L
i

Li
iz

VOL Li
dzqvvkwkdvolE θε                                   (69) 

Consider dzAdvol = , the variation of total potential energy of Eq. (69) can be 

calculated as 

∑∑∫∫
±=±=−−

′′+++−′′′′+=Π
2/

**

2/

**
2/

2/

*****
2/

2/

* )()()(])()([
Li

ii
Li

iiz

L

L
xmm

L

L

vvkwwkdzvqdzvvEIEA δδδδδεεδ θ   (70) 

where )()()()( **
*

** ′′+
′

+′= vv
p

zvwm δδδε  

In the buckled configuration, the first variation of total potential energy may 

also be used for equilibrium, which requires 

∫ ∫
− −

−′′′′+′′+′+′=Π
2/

2/

2/

2/

********* })()(])()()()({[
L

L

L

L
xm dzvqdzvvEIvv

p
zvwEA δδεδδδδ                                                                                                     

              0)()()(
2/

**

2/

** =′′++ ∑∑
±=±= Li

ii
Li

iiz vvkwwk δδ θ                                                                                        (71) 

Integrating Eq. (71) by parts leads to 
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∫ ∑
− ±=

− =+−
2/

2/ 2/

****2/
2/

** 0)(
L

L Li
iizm

L
Lm wwkdzwEA

dz
dwEA δδεδε                                                                       (72) 

for the horizontal buckled deformation and  

0)()( **** =−′′−− qvEA
p

EAvEI mm
IV

x εε                                                                          (73) 

for the vertical buckled deformation of the arch.  

In Eq. (72), *wδ is a horizontal virtual displacement in the bucked configuration 

which is not equal to zero, 0)( * =mEA
dz
d ε . For arch with uniform cross section, EA is 

constant and  

0)( * =′mEA ε                                                                                                                                                            (74) 

Since 2/
*

Lw ±δ  and 2/
* )'( Lv ±δ  have virtual values and are not equal to zero, the 

boundary conditions are obtained as 

0)( 2/
** =+ Lzm wkEAε                                                                                                 (75)   

0)( 2/
** =− −Lzm wkEAε                                                                                                  (76) 

for the horizontal direction and  

0])()([ 2/
** =′+′′ Lx vkvEI θ                                                                                           (77)                                                                                  

0])()([ 2/
** =′−′′ −Lx vkvEI θ                                                                                            (78)     

for the vertical direction. 

From Eq. (74), the membrane strain in the buckled configuration is known to be a 

constant and can be written as       

EA
N

m

*
* =−ε                                                                                                             (79)     

where *N  is actual axial compressive force in the arch in the buckled 

configuration.  Also in the buckled configuration 
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xEI
N *

2* )( =µ                                                                                                             (80) 

Subtracting Eq. (29) from Eq. (73) and considering 

bvvv +=*                                                                                                                 (83) 

and the increment of membrane strain during buckling  

mmmb εεε −= *                                                                                                            (84)        

gives  

p
EAvEAvEAvEI mb

mbbm
IV

bx
ε

εε +′′=′′− )()( *                                                                   (85) 

Eq. (85) may be rearranged in the following form 

)1()( 2
2*

p
v

r
vv

x

mb
b

IV
b +′′=′′+

εµ                                                                                       (86) 

4.2 BIFURCATION BUCKLING 

An arch that is subject to uniform distributed load may buckle in an anti-symmetric 

bifurcation mode. Bifurcation is an intermediate stage which is characterized by 

the fact that as the load passes the critical value, the arch passes from its 

prebuckled equilibrium configuration to an infinitesimally close buckled 

equilibrium configuration. Therefore, axial compressive force in the arch during 

bifurcation buckling is infinitesimally close to N , that is 

NN =*                                                                                                                    (87) 

The constant membrane *mε given by Eq. (79) can then be written as 

EA
N

m
−

=*ε                                                                                                                (88) 

Thus  

µµ =*                                                                                                                       
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As a result, the membrane strain mbε  during bifurcation buckling can be obtained 

by substituting Eqs. (32) and (88) into Eq.(84) as 

0* =
−

−
−

=−=
EA

N
EA

N
mmmb εεε                                                                                                                     (89) 

Substituting 0=mbε  and µµ =*  into Eq. (86) leads to the differential equation for 

anti-symmetric bifurcation buckling given by 

02 =′′+ b
IV

b vv µ                                                                                                         (90) 

Boundary conditions in bifurcation buckling can be obtained by subtracting Eqs. 

(77) and (78) from Eqs. (30) and (31)  

0])'(')'([ 2/ =+ Lbbx vkvEI θ                                                                                            (91)                                                                                  

0])'(')'([ 2/ =− −Lbbx vkvEI θ                                                                                           (92) 

The general solution of Eq. (90) has the form  

4321 )sin()cos( GzGzGzGvb +++= µµ                                                                        (93) 

Using the boundary condition 0=bv  at 2/Lz ±=  and Eqs. (91) and (92) leads to 

four linear homogenous algebraic equations with respect to 1G  to 4G .These four 

equations may be written in a matrix form as 

{ }0

0
0
12/
12/

4

3

2

1

22

22 =







































+−−−
−−−

−−

G
G
G
G

kSEICkSEICk
kSEICkCEISk
LSC

LSC

xx

xx

θθθ

θθθ

µµµµ
µµµµ

                                      (94)           

where )sin(θ=S  and )cos(θ=C . 

For the existence of non-trivial solutions for 1G  to 4G , the determinant of the 

coefficient matrix of the four linear algebraic equations must vanish, which yields  

0)]
2

)cos((sin
2

)sin(][
2

)sin()[cos( 2 =−++
θ
θβ

θθ
θβ

θ
θβ

θ θθθ                                               (95) 
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For the sake of simplicity, assume the first term of Eq. (95) to be called )(θf and the 

second term to be )(θg , thus 

θ
θβ

θθ θ

2
)sin()cos()( +=f                                                                                           (96) 

and  

)
2

)cos((sin
2

)sin()( 2

θ
θβ

θθ
θβ

θ θθ −+=g                                                                        (97) 

One may observe that )(θf is an even function, )()( θθ ff =− , and )(θg is an odd 

function, )()( θθ gg −=− . 

When Eq. (96) is set to zero, the axial force coefficient symθθ = , and the 

corresponding buckling shape is symmetric, which will not induce anti-symmetric 

bifurcation buckling. When Eq. (97) is set to zero, the coefficient antθθ = , the 

corresponding buckling shape is anti-symmetric. Then the anti-symmetric buckling 

shape can be obtained by calculating coefficients 1G  to 4G . The value of 1G to 4G  

are  

041 == GG                                                                                                              (98) 

L
GG θsin2 2

3
−

=                                                                                                        (99) 

Substituting Eqs. (98) and (99) into bv  gives the anti-symmetric buckling shape as  

])sin()[sin(2 θ
θµµ zzGvbant −=                                                                                   (100) 

where 2G is an amplifier parameter. 

For anti-symmetric buckling, the solution of Eq. (97) may be expressed as  

θβ
θ

θθ 221
)tan(

+
=                                                                                                      (101) 

from which the solution for θ  is obtained   
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πθ antant n=                                                                                                              (102) 

where antn  is a constant dependent on the value of θβ . 

Substitute Eq. (102) forθ  in 
2
Lµθ = , and using Eq. (33), gives 

E
xant

ant N
L

EInN == 2

2

)2/(
)( π                                                                                           (103) 

where EN  is the second mode flexural buckling load of rotationally restraint pin-

ended column.  

It can be seen from the transcendental Eq. (101) that when supports are pin-

ended ( 0=θβ ), the fundamental solution to 0tan =θ  is πθ = . When supports are 

fixed ( ∞=θβ ), the fundamental solution to θθ =tan  is πθ 4303.1= . Therefore, as 

rotational stiffness varies from zero to infinity, the corresponding antn obtained in 

Eq. (101) has the range of: 

4303.11 ≤≤ antn                                                                                                        (104) 

The anti-symmetric buckling load pqant may be obtained by solving Eq. (57). Note 

that 1−=
N

pqantω  

1
2

4

1

11
2

11 +
−±−

=
A

CABB
N

pqant                                                                                   (105) 

For pin-supported shallow arches, 0tan =θ , πθ =  and 1=γ . If one substitute these 

data in Eqs. (58) to (60), the solution of Eq. (105) that indicates anti-symmetric 

buckling is real when 83.7≥antλ . This result is consistent with that obtained by 

Bradford et al. (2004). 

For a fix-supported shallow arches, the threshold of modified slenderness ratio 

for anti-symmetric buckling can be obtained by either substituting θθ =tan , 
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πθ 4303.1=  and 1=γ  into Eq.(105) or πθ 4303.1= into Eq.(I-4) to (I-6) in Appendix I. 

The solutions are real when 40.17≥antλ . 

The symmetric bucked shape can be obtained by setting Eq. (96) equals to zero, 

gives 

θβ
θθ 2tan −

=                                                                                                             (106) 

The solution of transcendental equation (106) can be written as 

πθ symsym n=                                                                                                              (107) 

where symn  is a constant. Therefore, the symmetric buckling mode shape may be 

calculated by substituting Eq. (106) into four linear algebraic Eq. (94), giving 

]cos)[cos(4 θµ −= zGvbsym                                                                                         (108) 

Using Eq. (33), the corresponding axial compressive force is 

22

2

)2/(
)(

)2/( L
EIn

L
EIN xsymx

sym

πµ
==                                                                                       (109) 

It can be seen from Eq. (106) when 0=θβ (pin-supported arches), ∞=θtan , 

therefore 
2
πθ = .For fixed-supported arches ∞=θβ and πθ = . 

Hence, as rotational stiffness varies from 0 to infinite, symn has a range of: 

1
2
1

≤≤ symn                                                                                                               (110) 

If one substituting ∞=θtan , 
2
πθ =  and 

2
1

=γ  into Eq. (105) (pin-supported arches), 

it yields 88.3=symλ , while substituting 0tan =θ , πθ =  and ∞=γ  gives 69.7=symλ . 

These values of symλ defines the smallest modified slenderness ratio that permits 

any kind of buckling. Therefore, one may conclude when symλλ < , in-plane buckling 

will not occur. 
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4.3 SNAP-THROUGH BUCKLING 

In addition to bifurcation buckling, an elastically supported arch may also buckle 

in a snap-through mode. This mode is characterized by a sudden visible jump from 

an equilibrium state to another equilibrium state where displacements are larger 

than those of the prebuckling state. In this circumstance, axial compressive force in 

the buckled configuration *N  is different from N in the prebuckling configuration, 

therefore, membrane strain mbε  during buckling does not vanish. 

For symmetric snap-through buckling of an arch, the buckling displacement bv  

is symmetric. Substituting Eq. (48) into (86) leads to the buckling differential 

equilibrium equation for the symmetric buckling of a shallow arch as 

)]
cos

)cos(1(1[)()( 2
2*

θ
µγω

ε
µ z

pr
vv

x

mb
b

IV
b −+=′′+                                                                  (111) 

The solution to Eq. (111), must satisfies the boundary conditions 0=bv  at 2/Lz ±=  

and  

0])'(')'([ 2/ =+ =Lzbbx vkvEI θ                                                                                          (112)                                                                                

0])'(')'([ 2/ =− −= Lzbbx vkvEI θ                                                                                         (113) 

Integrating Eq. (111) twice gives 

2122
2

2
2*

cos2
)1()( FzF

pr
z

pr
vv

x

mb

x

mb
bb +++

+
=+′′

θµ
ωγεωε

µ                                                       (114) 

For the sake of simplicity, asterisk may be disregarded. 

The solution to this second order differential equation is the sum of a 

homogenous and a particular solution in the following form 

)sin()cos(H zDzCv µµ +=                                                                                         (115) 

)sin(654
2

3P zzFFzFzFv µ+++=                                                                                (116)                   
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Substituting pv  and ( pv ′′ ) into Eq. (114) gives the coefficients 543 ,, FFF  and 6F  in 

terms of 1F  and 2F .  

Therefore, the general solution to Eq. (114) becomes 

)sin(
2

)1(
2

)1()sin()cos( 32422
2

2
12

2 zz
prpr

FzFz
pr

zDzCv
x

mb

x

mb

x

mb
b µ

µ
ωγε

µ
ωε

µµ
ωε

µµ +
+

−++
+

++=      (117)                                              

Coefficients 1,, FDC  and 2F  in Eq. (117) are calculated using boundary conditions 

0=v  at 
2
Lz ±=  and Eqs. (112) and (113). 

These coefficients are calculated and are 

]
2

tan)
2

2(tan)2)(1[(
)sin2cos2( 222 θ

θγωββ
γωθγωθβω

θµβ
θµµ

ε θθ
θ

θ
+++−++

+
=

L
pr

C
x

mb (118)                                                                                                         

0=D                                                                                                                      (119) 

01 =F                                                                                                                     (120) 

]
2

)1(
2
tan1[

2

222
θωθγωθω

µ
ε +

−−+=
pr

F
x

mb    

]
2

tan)
2

2(tan)2)(1[(
)tan2(22 θ

θγωββ
γωθγωθβω

θ
θβ

µ

ε θθ
θ

θ
+++−++

+
−

prx

mb            (121)                                                        

Substituting Eq. (118) to (121) into Eq. (117) and rearranging, gives  

θ
β
γθωγ

θ
θµωγωγ

θβ
θµθγ

θ
µµωγθµω

µ
ε

θ

θ

tan)1
2

2(
2

]}
cos

cos)cos(][
22

)32([

]
cos)2(

sin)cos(2
cos

)sin()([
2

])[(
2

)1({

2

2
22

24

−
+

+
−

+
+

+

+
−+−

+
=

z

zzzz
pr

v
x

mb
b

                              (122)      

It is noteworthy that the buckled displacements are identical in cases where 

shallow arches are horizontal spring supported and pin supported. If one substitutes 

0=θβ  and 1=γ (pin-supported arch) into Eq. (122), gives 
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]}
cos

cos)cos([
2

]
cos

sin)cos(
cos

)sin()([
2

])[(
2

)1({ 2
22

24

θ
θµω

θ
θµθ

θ
µµωθµω

µ
ε

−
+

−+−
+

=

z

zzzz
pr

v
x

mb
b

                                         

which is consistent with the solution proposed by Bradford et al. (2004 and 2007). 

Therefore, it may be concluded that the buckled displacements are independent 

of horizontal stiffness.                                                                                                                                                                                                                                                                                                                                                                                                                                                

The total membrane strain in the buckled configuration can be calculated by 

substituting bb wwwvvv +=+= ** ,  into Eq. (14) as 

22* )(
2
1)(

2
1)(

bb
b

bm vvvv
p

zvvww ′+′+′′+
′+′

+′+′=ε                                                            (123) 

Hence, the increment of membrane strain during symmetric snap-through buckling 

can be obtained by subtracting Eq. (14) from Eq. (123)  

b
b

bmmmb vv
p
zvw ′′+
′

+′=−= εεε *                                                                                   (124) 

where the small second-order term 2)(
2
1

bv of the buckling deformation bv is ignored.                   

Subtracting Eqs. (26) and (27) from Eqs. (75) and (76) respectively, leads to 

0)(
2/
=+

Lbzmb wkEAε                                                                                                (125) 

0)( 2/ =− −Lbzmb wkEAε                                                                                                  (126) 

Therefore, horizontal displacements at the support after buckling are given as 

z

mb
b k

EAw
L

ε−
=

2/
)(  and  

z

mb
Lb k

EAw ε
=− 2/)(                                                                                              (127) 

According to Eqs. (48) and (122), the second and third parts of Eq. (114) are 

calculated as follows 
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]
cos)2(

)sin(sin2
cos

)cos()sin([
2

)1{('
2

2
2

22 θµβ
µθθγ

θµ
µµµγωω

µ
ε

θ+
+

+
++=

zzzzzzz
prp

zv

x

mbb                           

}
cos2

)sin()32(
θµ

µωγωγ zz++
−                                                                                                           (128) 

]
cos)2(

)sin(sin2
cos

)cos()sin([
2

)1({'' 2

22
2

22 θµβ
µθθγ

θµ
µµµγωωω

µ
ε

θ+
+

+
++=

zzzzzzz
pr

vv
x

mb
b          

θµ
µωγωωγ

θµ
µωωγ

θµ
µγωωωγ

22

22

cos2
)(sin)32(

cos
)sin()1(

cos2
)sin()32( zzzzz ++

+
+

−
++

−         (129)          

]}
cos)2(

)(sinsin2
cos

)cos()sin()(sin[
2 32

2

2

222

θµβ
µθθγ

θµ
µµµµωγ

θ+
+

+
−

zzzzz  

 

The average incremental buckling membrane strain of Eq. (124) over the arch span 

L is equal to the constant buckling membrane strain mbε  during buckling  

dzvv
p

zvw
L b

L

L
b

bmb )'''(1 2/

2/

' ++= ∫−ε                                                                                 (130) 

Applying Eq. (127) and integrating Eqs. (128) and (129) over the length 



−

2
,

2
LL  

leads to an equation between the dimensionless load ω  and axial force coefficient 

2
Lµθ = during symmetric snap-through buckling given by 

022
2

2 =++ CBA ωω                                                                                                 (131) 

in which 
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]
)2(

tan
)2(

tan
2
tan

2
tan

2
tan[12

2222222

3112
θθ β
θθγ

β
θθγθγθθγθγθγγθ

θ +
−

+
++−+−++= BAB            (133) 

 

]
3

tan[1]21[)(
2

2
2

112
θ

θ
θγγ

θλ
θ

+−++−=−=
zkL

EACBC                                                  (134) 

For a pair of given spring stiffness values (i.e. zk and θk ), the corresponding limit of 

modified slenderness ratio λ  may be calculated by equating pqpq antsmy = at πθ = , 

where π is the fundamental solution to anti-symmetric buckling. 

In a simple case where supports are pin-connected (i.e. =zk infinity, 0=θk ), λ  

equals to 9.38, which defines a switching point of snap-through buckling modes 

from symmetric to anti-symmetric buckling. This value is the same as that reported 

by Bradford et al. (2004), and Pi et al. (2007). 

For a fix-supported arches, threshold for antisymmetric buckling mode may be 

obtained in the same method for pin-supported arches, which gives 60.18=antλ . The 

Buckling load of the symmetric mode and corresponding value of λ can be 

obtained by solving Eq. (57) and (131) if stability parameter µ that is known. 

However, in the design or stability checking process, it is the value of λ rather 

than µ is known for a shallow arch, which means an iteration process is required to 

obtain the symmetric buckling load. As suggested by Bradford et al. (2004), an 

approximation solution for pin-ended support arch is given as 

psym Npq )0063.015.0( 2λ+≈                                                                                       (135) 

where pN is the second mode buckling load of a pin-ended column: 2

2

)2/(L
EIN x

p
π

= . 

Considering Eq. (48), the central vertical displacement cv at the crown of the 

arch is 
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vc                                                                                        (136) 

where ω  can be found by solving the quadratic Eq. (131) as 
2

22
2
22

2
4

A
CABB −±−

=ω . 

Substituting ω  into Eq. (136) and calculating the limit of cv when 
2
πθ = (since 

2
π  is the fundamental solution to symmetric buckling) leads to: 

)
64

)1(11()4(lim 2

6

3

2

2
λ
απ

π
βθ

π
θ

+
−±

+
=

→ p
Lvc                                                                        (137) 

It’s easy to show from Eq. (137) that if the arch is pin-supported, vertical 

displacement at the crown is real only when 88.3≥λ ; while whenλ is below this 

limit, buckling of the shallow arch doesn’t occur. 

The hierarchy of buckling modes associated with different support conditions 

are summarized in the Table 2. 
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Table 2. Summary of buckling modes for various arches 

 
 

Buckling mode 

Pin-supported 

arches 

Fix-supported 

arches 

Horizontally restrained 

arches( 0=θk ) 

Rotationally 

restrained 

arches( 0=zk ) 

No buckle likely 88.3<λ  69.7<λ  αλ +< 188.3  Buckling modes 

depend on 

stiffness ratio 

( θβ ). 

Symmetric 

buckling 

38.788.3 <≤ λ
 

40.1769.7 <≤ λ
 

αλα +<≤+ 138.7188.3
 

Sym. or antisym. 

buckling 

38.938.7 <≤ λ
 

60.1840.17 <≤ λ
 

αλα +<≤+ 138.9138.7
 

Antisymmetric  

buckling 

38.9≥λ  60.18≥λ  αλ +≥ 138.9  

 Note: xrf /2=λ , xEILk /θθβ = and LkEA z/=α  

 

The modified slenderness ratio of an arch is an important parameter that governs 

the non-linear behavior of the arch. When modified slenderness ratio λ  becomes 

sufficiently small (as indicated in the second row), the shallow arch will not snap-

through and its behavior is similar to a beam curved in elevation (Pi et al. 2008). 
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5 .0 EFFECTS OF HORIZONTAL SPRINGS ON BUCKLING LOAD 

The effects of the stiffness of horizontal restraints are analyzed in the case where 

rotational flexibilities are zero. By setting 0=θβ and 1=γ  in Eqs. (57) and (131), 

the corresponding thresholds of modified slenderness ratio λ are obtained as the 

following 

(1) when αλ 2188.3 +< , the buckling of the shallow arch doesn’t occur; 

(2) when αλα 2183.72188.3 +<≤+ , only symmetric buckling is possible; 

(3) when αλα 2138.92183.7 +<≤+ , either symmetric or anti-symmetric       

buckling may occur; 

(4) when αλ 2138.9 +≥ , only anti-symmetric buckling is possible. 

Therefore, the thresholds of different buckling modes are amplified by the 

coefficient α21+ compared to the pin-supported arches. For arches with the same 

modified slenderness ratio, horizontally spring-supported arches are more likely to 

buckle in a symmetric mode or just simply stay unbuckled. 

      Substituting 0=θβ and 1=γ  into Eq. (105) for horizontally spring-supported 

shallow arches and varying parameters α  andλ  from 0 to 8 and 8 to 110, 

respectively, gives Figure 3. Figure 3 displays the variation of dimensionless 

buckling load Nqp /  verses modified slenderness ratio λ  at the stiffness 

ratio 4,2,0=α and 8 . This shows the buckling load approaches 1 as λ increases i.e. 

as f increases, see Eq. (61). However, the rate of increasing buckling load Nqp is 
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dropping as λ  increases. It’s noteworthy to observe that buckling loads increase 

rapidly when arches are shallower. 
 

 

 

Figure 3. Buckling load for horizontally spring supported arch versus modified 

slenderness ratio 

 

Figure 4 is generated using the same method as Figure 3, with horizontal axis 

representing the stiffness ratioα . Figure 4 illustrates the relationship between 

buckling load Nqp /  and stiffness ratio α with various modified slenderness 

ratiosλ . It may be noted that the buckling load decrease with the increase of the 

stiffness ratio α  (i.e. with a decrease of the horizontal stiffness zk ). It is also worth 

noting that buckling loads barely changes for non-shallow arches ( 50>λ ) with 

varying stiffness ratio. 

Lk
AE

z

=α
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Figure 4. Effects of stiffness of horizontal restraint on buckling load 
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6.0 EFFECTS OF ROTATIONAL SPRINGS ON BUCKLING LOAD 

Recall from Section 4.2, as stiffness of rotational spring varies from zero to 

infinity, antn  and symn  have ranges of 

4303.11 ≤≤ antn  and 1
2
1

≤≤ symn
 

For a specific value of antn  in the range of 1.0 to 1.4303, the corresponding 

values of γβθ , and θ  can be calculated using Eqs. (51) and (101). Substituting 

θγβθ ,,  and 0=α into Eq. (105) gives Figure 5 which describes the nonlinear 

relationships between the constant antn  and dimensionless buckling load Nqp / , and 

consequently between  Nqp / and rotational stiffness θk .  

Figure 5 shows that buckling load decrease with the increase of antn (i.e. the 

increase of rotational stiffness θk ). It may be concluded that with stronger rotational 

springs, arches are more likely to buckle. It is also worth noting that the buckling 

load for shallow arches tend to decrease more rapidly compared to less shallow 

arches when rotational stiffness increases. This is characterized by the significance 

of non-linearity of the shallow arches.  

When the stiffness of rotational restraint vanishes, the solution of Eq. (105) 

leads to buckling loads for pin-supported arches, and when the rotational stiffness 

becomes infinite, the solution leads to the buckling loads for fully fixed arches that 

have been reported in Pi et al. (2007). 

For symmetric bifurcation buckling, Eq. (106) may be written in an alternative 

form  
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2)tan(
−=

θ
θβθ                                                                                                        (138) 

It is interesting to notice that when substituting Eq. (138) into Eq. (51), the 

coefficient γ  becomes infinite and there’s no real solution of Eq. (57). Therefore, 

symmetric mode does not exist in the bifurcation buckling.  
 

 

 
 

Figure 5. Effect of rotational springs on anti-s.ymmetric buckling load 

 

 

 

 

 

 

xr
f2

=λ

antn



 

37 

 

 

 

7.0  EXAMPLES 

In the following examples, the bahavior of shallow arches are investigated in three 

scenarios 

(1) shallow arches that are supported by roller and horizontal springs only; 

(2) shallow arches that are supported by pin and rotational springs only; 

(3) shallow arches that are supported by roller, horizonal and rotational springs. 

7.1 EXAMPLE 1 

A shallow arch with solid rectangular section of depth mmh 45= , width mmb 400= , 

Young’s modulus of 960,30=E MPa and span mL 1.5= is considered in Example 1 

to 3. The data used is taken from Bradford et al. (2007), so that the results reported 

from their study can be compared in this thesis. 

 

Table 3. Geometric properties for Examples 

 

h  mm45  

b  mm400  

L  mm5100  

A  218000 mm  

xI  43037500 mm  

xr  mm99.12  
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In order to study the non-linear behavior of the arch, the rise-span ratio is set to 

a realitively low level 

11.001.0 << Lf                                                                                                    (140) 

Thus, the rise f has a range of 

mmfmm 56151 <<                                                                                                (141) 

From Eq. (141),  considering the absense of rotational springs, i.e 0=θβ , 

substituting ,69.1,16.1,0,1,0 === αγβθ and 98.3 into Eq. (105) , provides data for 

Figure 6.  

Figure 6 shows the variation of dimensionless buckling load Nqp / versus 

modified slenderness ratio λ  at different stiffness ratioα  without rotational 

springs, these data are more conservative than those obtained by Bradford et al. 

(2007). 

 

 

Figure 6.  Buckling load versus Lf /  for Example 1 

Lk
AE

z

=α
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7.2  EXAMPLE 2 

In this example shallow arches supported by pin and rotational springs are 

investigated. Three sets of rotational springs, which have same numerical valus as 

horizontal springs of Example 1 are used. Corresponding values are summerized in 

Table 4. 

 

Table 4. Values of α  and θβ with respect to various spring stiffness  

 

Set No. Rotational Spring 

Stiffness(KN ⋅mm/rad) 
Horizontal Spring 

Stiffness(KN/mm) 
α  θβ  

1 94.20 94.20 1.16 5.11 

2 54.91 54.91 1.69 2.98 

3 27.45 27.45 3.98 1.49 

 

Typical variation of dimensionless buckling load versus rise-span ratio Lf  at 

,98.2,11.5=θβ and 49.1  are showed in Figure 7.  

Figure 7 shows that buckling load almost tripled in very shallow arches 

( 02.0≤Lf ) compared to Example 1. Therefore it is reasonable to conclude that 

rotational springs are more efficient in increasing buckling load compared to 

horizontal springs.  

It is also noteworthy that buckling loads Nqp / suffer less fluctuations even if 

stiffness of rotational springs are more than tripled i.e. θβ  varies from 1.49 to 5.11. 

Thus, the buckling load of shallow arches are more affected by horizontal springs 

rather than rotational springs. 
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Figure 7. Buckling load versus Lf  for Example 2 

7.3 EXAMPLE 3 

shallow arches supported by roller, horizontal and rotational springs are studied in 

Example 3.  

In this example, the combination of springs falls into 3 cases where stiffness of 

horizontal and rotational springs are numerically identical, see Table 3.  

Substituting the values of α and θβ from Table 3 and their corresponding values of 

,,θγ  and θtan  into Eq. (105) gives Figure 8, which demonstrates the relationship 

between demensionless load Nqp / and rise-span ratio Lf .  

Figure 8 shows that buckling load for case 1 and case 2 are almost coincided 

with each other, while case 3 is a few distance away. It may be inferred from 

xIE
Lkθ

θβ =
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Figure 8 that buckling load are more affected by horizontal springs instead of 

rotation springs. Since buckling load remain almost the same as θβ  decrease for 

half in case 1 and 2 from 5.11 to 2.98, while the buckling load decreases with the 

increase of stiffness ratio α for case 3. 

 

 

 
 

Figure 8. Buckling load versus Lf  for Example 3 

7.4 EXAMPLE 4 

Equation of equilibrium for shallow arches with flexible support that are defined 

by zk and θk is derived in Chapter 3 and is given by Eq. (57).  Coefficients 1A , 1B , 

and 1C  are defined by Eqs. (58) to (60).  If supports of the arch are pin connected, 

49.1
98.3:3
98.2
69.1:2
11.5
16.1:1

=
=
=
=
=
=

θ

θ

θ

β
α
β
α
β
α

case

case

case
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the general form of the Eq. (57) remains the same, however, coefficients 1A  to 1C  

will be simplified and are given by Eqs. (66) to (68) in Chapter 3. 

Steel Construction Manual of the American Institute of Steel Construction is 

extensively used in the design of steel structures (AISC, 2011).  Experience 

indicates vast majority of design equations in this manual are stability based 

equations.  If one follows the same premise, stability equations derived in this 

thesis may be suitable for design of shallow arches.    

To avoid long and tidies design process, starting from scratch, an existing 

shallow bridge that was designed in metric systems in Croatia is redesigned in US 

customary system in this example.  First, a few words about the bridge itself is 

desirable. 

 

Skradin Bridge in Croatia 

The old Skradin Bridge was a two lanes, two hinged steel truss bridge located over 

the Krka River in Croatia.  The bridge was destroyed during the World War II.  A 

new bridge was constructed after the War that was opened to traffic in 1955.  It is 

reported that most of the usable parts of the old bridge are used in the construction 

of the new bridge (Savor et al. 2010). The new bridge comprises of two shallow 

steel arch ribs spaced at 5 m apart. The span length of the bridge is 90 m. The arch 

ribs are hollow rectangular sections that are filled with concrete.  The elevation of 

the bridge is shown in Figure 9.  Dimensions of a typical cross section of the 

bridge are shown in Figure 10. The rise span ratio of this arch bridge is 7.73/90.0 = 

0.0859 that satisfies the requirement of 0.01 < f/L < 0.11 to be considered a 

shallow arch bridge. 
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In this example the cross section of the new Skradin shallow arch is redesigned 

considering the bridge has hinge supports.  The following data is used to estimate 

the live and dead load of the bridge. A uniform distributed live load of liveq = 0.64 

kips/ft per lane that is consistent with AASHTO specification is used in all 

iterations. The dead load of the deck is considered to be constant and is equal to the 

cross section area of the deck multiply by specific weight of the reinforced 

concrete. =deckq (0.150 kips/ft3 )(24.14 ft2) = 3.621 kips/ft. The dimensions of the 

existing arch rib are used to calculate the dead load of the arch rib for the first 

iteration.  It is assumed the arch rib is a hollow steel box with the outer dimensions 

of 41 by 32 inches. The thickness of the arch rib is considered to be 1 inch. See 

Figure 11 for rib detail. The dead load of the steel tub is 

=tubsteelq 0.489×  [(2×32×1+2×39×1)/144] = .482 kips/ft              (142) 

where specific weight of steel is 0.489 kips/ft3. Concert filled in arch rib is 

considered to be high strength concrete with strength limit of cf ′= 8000 psi.            

According to AASHTO Specifications, specific weight of high strength 

concert may be calculated from 

ccon f ′+= 001.0140.0γ  kips/ft3  for   0.150.5 ≤′≤ cf  ksi              (143) 

Therefore, 148.0=conγ kips/ft3 and the dead weight of concert is 

=conq 0.148× [(30×39)/144] = 1.203 kips/ft                (144) 

The dead weight of the arch is the sum of these two items 

 contubsteelarch qqq +=                     (145) 

=archq 1.685 kips/ft 
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The dead weight of the bridge is the sum of the dead weight of the deck and the 

arch 

=weightq 3.621+1.685 = 5.306 kips/ft                               (146) 

There are also railing and columns between the deck and the two arches and other 

accessories that are not included here.  In order to account for all dead loads 15% is 

added to calculated dead weight.  Factor dead load based on AASHTO      

Specifications considering strength type I is 

LLDWDCq factor )33.01(75.15.125.1 +++=                           (147) 

806.10)64.02(33.175.1306.5%155.1306.525.1 =×××+××+×=factorq  kip/ft 

Modulus of elasticity of normal strength steel is well defined and =sE  29000 ksi is 

used in this example.  American Concert Institute (ACI) provides the following 

equation to calculate modulus elasticity of the concert (ACI 318-11) 

6100.140000 ×+′= cc fE  psi                  (148) 

The modulus of elasticity of 8000 psi high strength concert is 4580=cE ksi.  The 

ratio of the modulus elasticity of the steel to concert is .33.6=n  

Moment of inertia and cross section area of this composite section is 

calculated.  They are 61.745921=xI in4 and 72.4137=A in2, respectively. The radius 

of gyration of the cross section is 427.13=xr in. 
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Figure 9. Longitudinal section of Skradin Bridge 

        
 

Figure 10. Typical cross section of Skradin Bridge 
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Figure 11. Rib detail for 32×41inches cross section 

7.4.1 Calculation of provided distributed load 

Dimensionless load ω  may be calculated from Eq. (57) 

1

1

2

1

1

1

1

22 A
C

A
B

A
B

−







±−=ω

                   (149) 

On the other hand, dimensionless load ω  is defined in Eq. (34) 

N
Nqp −

=ω
                     (150) 

Eliminate ω  between these two equations 
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11         (151) 

From Eq. (2) 

f
Lp
8

2

=
                     (152) 

where,  L = 90 m = 295.276 ft = 3543.307 in. and  f = 7.73 m = 25.361 ft = 304.331 
in. 

For pin-pin supported shallow arch as discussed in Section 4.2 , for anti-

symmetric mode πθ = , 829.7≥λ , and pNN =  

2933.01 =A  

4347.01 =B  

2

2

1 λ
π

=C
                                                                                                                 (153) 

( )2

2

2L
EIN x

p
π

=            

Substitute these data in Eq. (151) and calculate buckling distributed load 

7138.24=q kips/ft. Then, 

bucklingprovided qq ϕ=                     (154) 

242.227138.249.0 =×=providedq  kips/ft 

and since  

ftkipsqftkipsqq providedrequiredfactor /242.22/806.10 =<==               (155) 
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With the existence of relative horizontal drift and rotational movements, the 

provided load may be dropped to a reasonable level, and therefore, the original 

design achieved a safe yet economy design. 
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8.0 SUMMARY AND CONCLUSIONS 

In this thesis, a non-linear stability analysis of shallow parabolic arches with elastic 

restraints subjected to a vertically uniform distributed load is investigated. An in-

plane strian is first established by use of Lagrangian expression. Equilibrium 

conditions are then derived by total potential energy equations. A non-linear 

buckling analysis is then undertaken that delineates the buckling mode, and 

provides accurate solutions for symmetric and anti-symmetric buckling of shallow 

arches with horizontal and rotational spring supports. 

Several findings are listed below 

 It is found that the effects of stiffness of horizontal and rotational springs on 

the buckling load of the arch, and on the classification of different types of 

fundamental behavior, are significant. 

 It is also found buckled displacements are irrelevant to stiffness ratioα . 

 Whether or not an arch may buckle is found to depend on the modified 

slenderness ratio of the arch and on the stiffness of the elastic restraints, and 

this relationship is derived in this thesis. 

 An arch with sufficiently small modified slenderness ratio will not buckle, 

and it will behave as a beam curved in elevation. 

 It is also found that rotational springs are more effective in increasing 

buckling load. 
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9.0 FUTURE WORK 

Future efforts should be implemented with the following focuses 

 Carrying out finite element verifications on the buckling load of aches with 

various modified slenderness ratio and stiffness of elastic restraints.  

 Calculation of the numerical solution for symmetric snap-through buckling 

load of arches with both horizontal and rotational springs for design and 

stability analysis purposes. 

 Discussion on the more complicated external load, i.e. radial load distributed 

around arch axis, or uniform distributed load plus a central concentrated load.  
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APPENDIX 

NON-LINEAR EQUILIBRIUM CONDITION FOR FIXED ARCH 

Similar to the work presented in this thesis, the vertical displacement v for fixed 

supported arches, which satisfy the boundary conditions 0'== vv at 
2
Lz ±=  can be 

obtained by solving differential equation (18) as 

p
L

p
L

p
z

p
zLv

8tan22cos2
)cos( 22 ω

θµ
ωω

θµ
µω

−−+=                                                                     (I-1) 

Since horizontal displacement is prevented in the fixed supported arches,  

02/ =±Lw                                                                                                                   (I-2) 

Consider Eq. (55), (I-2), and substitute Eq. (I-1) into Eq. (54) leads to nonlinear 

equilibrium condition for fixed arches as 

033
2

3 =++ CBA ωω                                                                                                   (I-3) 

where the coefficients are given by: 

6
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tan
1(1

tan4
1

sin4
1

223 +−−−=
θ
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θθθθ
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3
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