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Rock drilling is the process employed to retrieve both the conventional and the unconventional 

resources, such as gas and oil buried deep under the ground. This study attempts to improve the 

understanding of the interaction between the drilling bit and rock by investigating the mechanics 

involved. In terms of achieving such a goal, a numerical modeling, if successful, can provide 

insights that are not possible through either field tests or laboratory experiments. 

When the cutting depth progresses from shallow to deep, there is a failure mode 

transition from ductile to brittle, and a critical depth that governs this transition. This study 

introduced Bažant’s simple size effect law into interpreting the transition process of rock cutting. 

By treating the cutting depth as a measure of size, the law was found applied well to rock cutting 

based upon the data available in the literature, and the Finite Element Method (FEM) modeling 

results. By introducing the concept of characteristic length, this study also reinterpreted the 

previous understanding of the critical depth in rock cutting, by introducing the concept of 

characteristic length, and obtained the influence of characteristic length on critical depth through 

numerical modeling.  

The Mechanical Specific Energy (MSE) and the Rate of Penetration (ROP) are two key 

factors for evaluating the efficiency of a drilling process and together they form a good base for 

strategizing a desirable drilling operation. In the absence of cutter wear rate, a relationship 

between MSE and ROP for a rectangular cutter has previously been suggested. This study 
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presented a simple model for a circular cutter that includes the wear progression, which could 

explain the laboratory result of cutting high strength rock under high pressure. 

The operation of a drilling bit in the field is mainly achieved through circular cutting 

action. This study extended the previous efforts and modeled first the circular cutting of a single 

disc cutter. This effort then formed the basis of a full drilling bit modeling presented at the end.  
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1.0  INTRODUCTION 

1.1 BACKGROUND 

Rock drilling is the process employed to retrieve both the conventional and the unconventional 

resources, such as gas and oil buried deep under the ground. From the mechanics point of view, 

it represents a complex interaction among the drilling bit, rock and drilling fluid. This study 

attempts to improve the understanding of the interaction between the drilling bit and rock by 

investigating the mechanics involved. Many methods have been used to study the cutting and 

drilling process, including field test[1], laboratory experiments [2-13], analytical models[13-17], 

and numerical modeling [17-30].  In terms of getting a better understanding of what happens 

when a cutter advances against a rock, a numerical modeling, if successful, can provides insights 

that are not possible through either field tests or laboratory experiments . First of all, a numerical 

modeling allows one to obtain a comprehensive picture of the stress and strain field, and examine 

the failure mechanism at play. It also enables the isolation of key parameters and investigation of 

their roles on the drilling mechanics. To top it off, it is also much cheaper in terms of the cost of 

analysis. Thus, this study focuses on the development of numerical modeling of rock drilling. 
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1.2 OBJECTIVES AND METHODOLOGY 

The main objectives of this study are to obtain a better understanding of the mechanics of 

drilling, and to develop a finite element model for a full drilling Polycrystalline Diamond 

Compact(PDC) bit. This study adopted a ground up approach by building the basic modeling 

components first, namely, first from slab cutting to groove cutting, then from linear cutting to 

circular cutting, and finally from a single cutter to a full drilling bit. 

The failure mode and the failure mode transition in rock cutting have important practical 

implications. For instance, an efficient drilling or tunneling operation would dictate that rock be 

cut away in a ductile mode so as to keep the amount of rock removed minimum; while an 

efficient mining operation might require the rock be cut in a brittle mode so as to keep the energy 

of mining minimum.  The ductile brittle transition will be studied from the theory and modeling 

perspectives. For simplicity, the modeling for this purpose is restricted to linear cutting by a 

single cutter. 

During a drilling operation by a drilling bit, each cutter on the bit undergoes a circular 

motion, and each cutter cuts a groove into a rock. In order to build the components that lead to a 

credible drilling bit modeling, this study first modeled a groove cut through orthogonal linear 

cut. This is followed by extending the model to circular cut.  

The friction between the drilling bit and the rock may significantly affect the 

performance of the bit. This friction may be introduced because of the geometry of the cutter or 

of the bit wear during the drilling. For a new drilling bit, each cutter on the bit is usually 

chamfered, and the chamfer may increase during drilling under high temperature high pressure 

(HTHP) environment. How the wear influences the cutting process for a single circular cutter 

was investigated.  
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Finally, in an effort to build a virtual drilling machine, a full drilling bit model was built, 

and some preliminary results were obtained. 

1.3 ORGANIZATION OF THE THESIS 

This thesis consists of 8 chapters. Chapter 2 presents a selected review of the mechanics of rock 

cutting and drilling. The review focused on the mechanics of ductile-brittle failure transition, and 

the implications on the scratch test. Some numerical approaches of rock cutting and drilling were 

briefly described.  

Chapter 3 introduces Bažant’s simple size effect law into interpreting the result of rock 

cutting obtained by FEM modeling. This study first established credence of the continuum 

damage model in fracture analysis under mode I loading, by comparing its FEM results with 

those from the cohesive model. The size effect was then modeled for structures with similar 

cracks using the damage model. Finally, the damage model was extended to rock cutting without 

pre-existing cracks, and Bažant’s simple size effect law was employed in interpreting the result. 

By treating the cutting depth as a measure of size, this study found Bažant’s simple size effect 

law could explain well the cutting result through numerical modeling based on damage model.    

Chapter 4 further interpreted the laboratory cutting data in the literature with Bažant’s 

simple size effect law. This led to a further exploration of a characteristic length measure that has 

been widely used in the concrete fracture research. With the aid of finite element analysis and 

few rock cutting test data points, the critical failure mode transition depth was expressed in terms 

of the rock characteristic length. Further aided by empirical relationships, this critical depth was 

shown to be a function of rock uniaxial compressive strength.  
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Chapter 5 focuses on the FEM modeling of groove cutting. 3D effect in groove cutting by 

a rectangular cutter was modeled and compared to the experiment. The modeling was then 

extended to circular cutting by a single PDC cutter. 

Chapter 6 investigates the influence of the wear on the cutting and drilling performance. 

A model considering the evolution of cutter wear was proposed for a circular disc cutter, which 

was an extension of a model for a rectangular cutter with fixed wear length. A simple function 

form was derived between MSE and ROP, and was evaluated with results from numerical 

analysis and laboratory tests. 

Chapter 7 presents some analytical models and physical tests regarding the mechanics of 

rock drilling, and some preliminary work on rock drilling by a full drilling bit was presented. 

Chapter 8 summarizes main contributions of the thesis and recommendation for future 

work. 
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2.0  LITERATURE REVIEW 

2.1 INTRODUCTION 

There are two important observations regarding linear orthogonal rock cutting in the laboratory 

obtained by the University of Minnesota group led by Professor Detournay[4-7, 19]. First, rock 

cutting induced two distinct failure modes. Specifically, rock fails dominantly by crushing in 

shallow cuts, with cutting depth typically less than 1mm. This mode of failure is referred to as 

the ductile failure mode. For deeper cuts, a crack initializes, propagates, and dynamic chip 

occurs. This is referred to as the brittle failure mode [6]. The second important observation is that 

the Mechanical Specific Energy (MSE), defined as the energy to remove a unit volume of rock 

[31], is approximately equal to the uniaxial compressive strength cσ , of rock in ductile failure 

mode[6, 7].  Here, we have initially reviewed the mechanics governing the failure mode 

transition.  

2.2 DUCTILE TO BRITTLE FAILURE TRANSITION 

The phenomenon of ductile to brittle transition is widely observed in rock cutting, in contrary, as 

well as in other materials and other loading conditions. In the framework of elastoplastic fracture 

mechanics, the energy is stored or dissipated by volume when plastic failure takes place. 
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However, the energy required for crack propagation depends on area, thus there must exist a 

cubic-square scaling effect[18]. Many researchers[6, 17, 19, 32-34] show that there is a material 

parameter, 2
yf EG σ , in the dimension of length, which controls the cubic-square scaling effect, 

or the transition from ductile to brittle. Here, fG  refers to the fracture energy, E  the Young’s 

modulus, and yσ  a yield strength. 

 The parameter 2
yf EG σ , or equivalently 22

ycK σ , was first recognized by Irwin[34] to 

measure the crack tip plasticity for metallic material. It was found to be a governing factor for 

the transition from plane stress to plane strain fracture. Specially, for a steel sample with crack 

subjected to two-dimensional loading, when the sample width was smaller than 23 yf EG σ  , 

large fracture process zone was observed, and the plane stress condition dominated. Otherwise, 

the plane strain condition predominated.  

The general importance of the parameter 2
yf EG σ

 
in ductile-brittle failure transition has 

been pointed out by Gurney et al. [32]. By studying a number of materials including glass, 

timber, polymers, and steel, they concluded that for small structure disseminated yielding occur 

before crack, that is the smaller structure was more ductile because of significant yielding; while 

for the geometrically similar larger structures with the same material properties, crack occurred 

before yielding, or the larger structure was more brittle.  

Puttick [33] further put forward that the critical length in ductile brittle transition was also 

a function of test, and the critical length was expressed as φσ 2
yf EG , where φ  is a dimensional 

parameter characteristic of the test, in which yσ is the yield stress in uniaxial test, covering cases 

both in uniaxial tension and in shear. 
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Bažant[35, 36] proposed a scaling law for transition from ductile to brittle for concrete, 

rock and steel. The transition is controlled by a critical structure size 2
0

22
0 kBfEGD tf= , in 

which tf  is the tensile strength, and 0,kB  are dimensionless parameters related to geometry 

shape and loading condition. For geometrically similar structures, when the structure size is 

smaller than the critical structure size, fracture process zone is significant and the strength theory 

governs the failure of the structure. The failure mechanism will shift to fracture as the structure 

size increases.   

Richard[6] found the parameter ( )2cICK σ , controls the transition from ductile to brittle 

failure mode in rock cutting. Figure 2.1 is a schematic description from ductile to brittle 

transition. When the cutting depth is smaller than a critical transition depth dc, the energy 

dissipates through the volume of crushed rock. Thus the cutting force is expected to be 

proportional to the uniaxial compression strength cσ and cutting depth. Otherwise, the energy 

dissipates through the area of the crack, thus the cutting force is expected to be proportional to 

the fracture toughness ICK  and the square root of cutting depth. 

Huang and Detournay [19], took up a different approach using dimensional analysis and 

obtained a similar relationship. They defined an intrinsic length scale,
 

22
cICi Kl πσ= , and with 

the aid of discrete element simulation they further proposed that the governing mode of failure is 

determined by this intrinsic length scale. In essence, they affirmed the earlier results of 

Richard[6]. 

Atkins[17] found a relevant length scale,
 

2'
yf EG τ , controled the ductile brittle transition 

by cutting polymers, where 'E  is the plain strain Young’s modulus, yτ is the shear yield strength. 
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Specifically, when the cutting depth is much smaller than  2'1.0 yf EG τ , the behavior is ductile; 

when the cutting depth is much larger than 2'1.0 yf EG τ , the behavior is brittle.
   

 

 (a)                                                           (b)                         

 

(c)                                                        

  

Figure 2.1 Schematic description of transition from ductile to brittle mode (a) energy dissipates through volume in 

ductile range  (b) energy dissipates through crack surface in brittle range (c) relationship between cutting force and 

cutting depth[6] 
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2.3 SCRATCH TEST AS A MEANS TO MEASURE ROCK STRENGTH 

Detournay and Defournay[15] proposed a 2D phenomenological cutting model for a blunt 

rectangular cutter, in which the forces applied on the cutting face and the wear face are 

independent.  This cutting model only applies to ductile mode of failure, and using the average of 

forces along a distance that is far longer than the cutting depth. On the cutting face, the average 

force is assumed to be proportional to the cutting area. The intrinsic specific energy, ε , is 

introduced to emphasize that the energy consumed on the cutting face, rather than on the  wear 

face. By plotting the cutting force versus the cutting area, the slope of a linear fit gives the 

intrinsic specific energy. Such a fit is illustrated in as shown in Figure 2.2[7] . 

  
Figure 2.2 Determination of uniaxial compressive strength from scratch test on Lens limestone [7] 
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When the cutting depth was shallow, typically less than 1mm, the intrinsic specific 

energy was found approximately equal to the uniaxial compressive strength, cσ , of sedimentary 

rocks[6, 7]. Figure 2.3 shows the relationship between ε and cσ
 
for a wide range of rocks.  

The scratch test as a measure of the rock strength was developed based on sharp cutters. 

However, there is usually a small wear flat area on the edge of cutter even for nominal sharp 

cutters. This flat area might induce extra force during cutting[6]. Based on Detournay and 

Defournay’s model[15], The total energy MSE from a blunt cutter is related to the intrinsic 

specific energy ε
 
as follows:  

 )1( dlMSE µε +≈  (2.1) 

where µ  is the coefficient of friction in the flat area, l is the wear flat length, the contact stress 

on the flat area was assumed to be approximately equaled to the intrinsic specific energy. 

  
Figure 2.3 Relationship between intrinsic specific energy and uniaxial compressive strength[7] 
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2.4 NUMERICAL APPROACHES 

Numerical modeling of rock cutting and drilling is a complicated task due to a diversity of 

physical phenomena involved, including the different failure mechanism, tool rock interaction 

and interaction between separated rocks, complex properties of the rock and downhole 

conditions, among others[37]. 

Different ways of cutting are possible, for example: (1) linear cutting versus circular 

cutting -- a difference in the relative motion between the cutter and rock; (2) slab cutting versus 

groove cutting -- a difference in the relative width of the cutter and the rock. Most literature was 

focusing on the modeling of the linear slab cutting, due to its simplicity. Discrete Element 

Method (DEM) and Finite Element Method (FEM) are the most widely used numerical methods 

for rock cutting analysis are. Other methods have also been used in the cutting process, such as 

Finite Differential Method (FDM), Displacement Discontinuity Method (DDM).  

Tulu and Heasley[20] adopted the commercial 3D FDM code FLAC3D  to simulate 

circular groove cutting, as shown in Figure 2.4. A special “null’ element was adopted upon 

reaching failure based on Mohr-Coulomb criterion. This method focused on the interaction 

between tool and rock within ductile range, where there was no crack propagation and chip 

formation. 

Guo[21] used the DDM to model the crack propagation in linear cutting, as shown in 

Figure 2.5. A special crack tip element was developed to simulate the crack tip stress singularity, 

thus the energy release rate and stress intensity factor could be accurately determined at the crack 

tip. The crack path was determined by the maximum strain energy release criterion[38], or the 

maximum stress criterion[39]. This study was limited to the initial stage of brittle failure mode, 

and could not provide dynamic chips, and was not applicable to ductile failure mode. 



12 

 

Figure 2.4 Modeling circular groove cutting with FDM[20] 

 
Figure 2.5 Crack propagation in rock cutting with DDM[21] 
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Huang [22] used a commercial 2D DEM code PFC2D  to model the linear slab cutting. 

Both the ductile and brittle failure mode were duplicated, as shown in Figure 2.6(a), and Figure 

2.6(b). Mendoza [23] introduced the crushable particles in rock cutting, by considering the 

difference of strength of particle size, and concluded that the failure pattern and cutting force 

would be affected. The linear relationship between MSE and uniaxial compressive strength was 

also partially reproduced in this study.  Lin et al.[24] used a  commercial 3D DEM code PFC3D 

to model shallow linear slab cutting, as shown in Figure 2.6(c). They found the forces obtained 

were smoother and closer to laboratory tests than those from 2D DEM. As the two failure modes 

could be well reproduced, and the MSE was well related to the uniaxial compressive strength. 

Hence, it appears that the DEM has become a mature tool to model rock cutting. 

In contrast, FEM modeling is much harder to carry out for it has to resolve a host of 

difficult problems: the problem of when and how a cutter comes into contact with the rock. The 

contact problem arises first when the cutter interacts with the rock, followed by the material 

constitutive problem that determines how the material fails. One of the most challenging 

problems is how to relate the material failure mechanism to the two failure modes observed in 

laboratory test is without a priori knowledge of the failure mechanism. These problems then 

repeat during the whole cutting process [29].  

Early on, Saouma and Kleinosky[25], Ingraffea [26] used 2D FEM to study the brittle 

failure of rock cutting, based on Linear Elastic Fracture Mechanics(LEFM). Singularity in the 

crack tip was considered, and the direction of crack propagation was determined by the 

maximum energy release criterion, and by the maximum stress criterion, respectively. Figure 2.7 

is an illustration of crack propagation under different boundary conditions. Because of the nature 
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of LEFM, these two studies were limited to the initial stage of brittle failure mode, without 

introducing dynamic chips, and are not applicable to ductile failure mode. 

(a)                                                          (b)                                     

 

(c) 

  

Figure 2.6 Numerical modeling of linear slab cutting with DEM (a) ductile mode with 2D DEM (b) brittle mode 

with 2D DEM   (c) ductile  mode with 3D DEM[22, 24]  
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 (a)                                                         (b)                               

  

Figure 2.7 Crack propagation with FEM based on LEFM (a) the cutter has only horizontal force, (b) the cutter has 

both horizontal and upward vertical forces[26] 

Liu et al. [27] simulated rock cutting with a FEM code R-T2D. This model considered the 

heterogeneity of the rock material, and the material properties degraded with failure and the 

degraded materials were highlighted in darker colors, illustrated in Figure 2.8. A smeared crack 

approach was used, and the modulus was keeping reducing during the failure process of an 

element. There was no explicit crack or dynamic crack, and this study was limited to the initial 

stage of cutting. 

(a)                                                          (b)           

 

Figure 2.8 Linear rock cuting with 2D FEM based on smeared crack (a) Initial setup, (b) Smeared crack after some 

advance of the cutter[27] 
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Yu [28] modeled the continuous mining of coal by a rotary cutting drum with 3D FEM, 

by using the commercial code LS-DYNA, as shown in Figure 2.9. An element erosion algorithm 

was adopted, and element was eroded when reaching certain failure criterion. This study showed 

the force in ductile failure mode, and no crack was presented. 

               (a)                                                    (b)           

                            

Figure 2.9 Coal mining with 3D FEM  (a) A rotary cutter and coal, (b) highlighted elements after cutting[28] 

Jaime et al. [24, 29] were the first to reproduce the two failure mode in linear cutting by 

3D FEM using LS-DYNA. Specifically, they successfully modeled the crushing failure mode in 

shallow cutting, and the crack initialization, crack propagation, and dynamic fragmentation in 

deep cutting, as shown in Figure 2.10. Their study incorporated a robust continuum damage 

material model MAT159 [40], capable of modeling the elastic and plastic deformation, as well as 

damage under static and dynamic loading condition. They also found the predicted forces under 

brittle mode compares well with the laboratory result. However, in ductile mode of failure, their 

study showed the MSE was approximately constant, but the value was much smaller than the 

uniaxial compressive strength. This might be attributed to the fact that the erosion algorithm that 
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deletes the rock elements after failure, and the presence of debris of crushed rock in front of 

cutter [41] could not be well modeled, resulting in smaller estimates of forces.  

(a)                                                  (b)           

 

Figure 2.10 Linear slab cutting with 3D FEM (a) ductile mode (b) brittle mode [24, 29] 

Fontoura et al. [30] also adopted an element erosion criterion to model rock cutting based 

on commercial code ABAQUS. Both the 2D linear slab cutting and 3D circular groove cutting 

was conducted, as shown in Figure 2.11. An element erosion algorithm was also used in this 

study, and it was limited to the ductile mode. Their predicted force pattern and magnitude 

deviated substantially from the experimentally determined forces. For the mechanical modeling 

of rock drilling with a full drilling bit, our literature review shows there is as yet no prior work 

that uses DEM or FEM. 

 (a)                                                       (b)           

 

Figure 2.11 Cutting in ductile mode with FEM (a) 2D linear slab cutting (b) 3D circular groove cutting [30] 
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2.5 SUMMARY 

The brittle-ductile failure transition is a widely observed phenomenon in nonlinear elastic 

fracture mechanics. Several theoretical results show that the transition is controlled by an 

important parameter associated with the dimension of a problem. The key governing parameter is 

affected by the fracture energy, Young’s modulus, yield strength, geometry and loading 

configuration. The yield strength in play may be the tensile yield strength, the shear yield 

strength, or the compressive yield strength depending on loading configurations.  

Extensive experiment results have shown that the intrinsic specific energy obtained in a 

scratch test is well related to the uniaxial compressive strength of rocks, provided that the depth 

of cut is shallow.  

Among the various numerical approaches, the DEM and FEM are the most popular 

methods to model rock cutting. DEM is able to capture most of the key phenomena in rock 

cutting. One major down side of DEM is that any material model employed has to be built from 

a micro level, and thus limits its versatility. Also the size of particles used introduced an artificial 

length scale into the analysis. As for the FEM modeling, the conventional LEFM and smeared 

crack based FEM are limited to the brittle mode or to the initial stage of cutting. Continuum 

damage model based FEM, on the other hand, is able to model both the ductile and brittle mode, 

capture chips during cutting. Hence, it is adopted in this study.  
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3.0  MODELING THE SIZE EFFECT OF ROCK CUTTING WITH DAMAGE 

MODEL 

3.1 INTRODUCTION 

Fracture process zone exists in the crack tip of quasibrittle material, such as concrete and 

rock[36]. Under various loading, the strength of quasibrittle material structures has been 

observed to follow a size effect law. Bažant derived a simple size effect law for quasibrittle 

material under mode I loading condition[35, 42] in terms of a strength Nuσ  is:      

 
0/1 DD

Bft
Nu

+
=σ  (3.1) 

where B is a dimensionless factor related to the geometry of structures and loading configuration, 

tf  is a tensile strength,  D is a characteristic structure size, and D0 represents the structural 

transition structure size. The strength Nuσ  is defined as the nominal stress Nσ at peak load, and 

the nominal stress Nσ  is determined as: 

 
bD
F

cnN =σ  (3.2) 

where F  is the applied force, b is the thickness of two dimension structure, and nc is coefficient. 

When the structure size is small, the fracture process zone is large in comparison with the 

crack size, the strength is governed by plastic failure. When the structure size is large, the 
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fracture process zone is negligible with respect to the crack size, and the strength is controlled by 

fracture [36]. Experiments have shown concrete, mortar, and rocks follow this size effect law, 

under various loading conditions that, include direct tension and three point bending [36, 42-45]. 

After some simplifications, the transition size can be related to the material fracture 

energy and tensile strength[36] as follows:  

 222
0

0
t

f

fBk
EG

D
κ

=
 

(3.3) 

where fG is the fracture energy, E is the Elastic modulus, 0k is a dimensionless parameter 

related to the energy release rate, 1=κ for plane stress condition, and 21 v−=κ for plane strain 

condition, and v is the Poisson’s ratio.  

The phenomenon of ductile to brittle transition is not limited to quasibrittle material 

under mode I loading condition. Literatures show that it was also observed in other materials, 

such as steel, polymethyl methacrylate(PMMA) and glass, under different loading conditions 

besides tension, such as shear, compression, or a more complicated stress condition[6, 17, 19, 32, 

33]. A general transition size could be expressed using a general strength measure besides tensile 

strength as follows, 

 20
y

f EG
MD

σ
=

 
(3.4) 

where M  is a dimensionless parameter related to the structure geometry and the loading 

condition, yσ  is a yield strength. 

Irwin[34] first recognized the parameter 2
yf EG σ , or equivalently the ratio 22

ycK σ , as a 

measure for the crack tip plasticity for metallic material, and found it to be a governing factor for 

the transition from plane stress to plane strain. Through studying a series of materials including 
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glass, timber, polymers, and steel, Gurney et al. [32] pointed out its general importance in ductile 

brittle transition under mode I loading condition. Puttick [33] further put forward that the 

transition size was not restricted to mode I loading by studying the indentation on PMMA under 

different temperature. He concluded that the transition size to be a function of tests conducted, 

and suggested that shear strength might be used for yσ . Richard[6],  Huang and Detournay [19], 

used the compressive strength as yσ  in the analysis of rock cutting. Atkins[17] used shear 

strength as yσ  in the study of cutting polymers. 

Bažant et al.[36, 46, 47] also derived a similar size effect law and the corresponding 

transition size for concrete under shear loading condition. In this case, the tensile fracture energy 

and tensile strength were replaced by the corresponding shear fracture energy and shear strength.  

The failure mechanism of cutting in brittle regime was generally regarded as mixed mode, as 

both tensile cracks and shear cracks were involved [17, 27]. The phenomenon of ductile brittle 

transition in cutting was widely observed in both laboratory test and numerical modeling, and the 

parameters controlling the transition have been studied [6, 17, 19]. However, there is no prior 

investigation on the application of such scaling law to rock cutting. Since Bažant’s smiple size 

effect law applied to mode I and mode II condition, there is a good possibility of its application 

to rock cutting. This study investigated this possibility, and attempted to introduce Bažant’s 

simple size effect law in interpreting the result of rock cutting first through numerical modeling. 

A successful modeling of rock cutting requires modeling crack propagation in the brittle 

regime. The recent advance in singularity modeling using  the meshless method[48], or  the 

discontinuity  representation using  the numerical manifold method[49] have introduced 

important progress on the modeling of fracture. For quasibrittle materials with substantial 

fracture process zones during fracture, the cohesive crack  model has been found effective in 



22 

FEM modeling the fractures[50, 51]. The cohesive crack model is basically an interface model 

that is placed at the crack tip along a perceived crack path.  

However, there is one class of fracture problem for which no prior macro cracks are 

present. The use of the cohesive crack model for this type of problem becomes tedious: it has to 

work in conjunction with other numerical techniques, such as remeshing algorithm[52], or the 

Extend Finite Element Method[53], to keep placing new cohesive zone element as fractures 

progress. In this procedure, a crack propagation criterion has to be employed to determine the 

crack propagation direction. This can be problematic. The maximum stress criterion[39] is often 

adopted regardless of the actual mode of failure. For problems such as rock cutting, the cohesive 

crack model based on maximum stress criterion is found inadequate because it fails to account 

for the complexity of the stress environment. On the other hand, the continuum damage 

mechanics has been found to be useful in the rock cutting application, in which fractures and 

subsequently fragmentation process were successfully modeled [29].  

Unlike the case with the cohesive crack model for which extensive numerical simulations 

regarding the size effect of concrete have been carried out [51, 54, 55], the credence of 

continuum damage model has to be established first. For this, the capacity of the continuum 

damage model in capturing the size effect was first investigated in mode I failure.  

A basic question was addressed: How did a continuum damage model compared with the 

cohesive crack model in terms of fracture modeling when geometrical similar structures each 

with a crack were analyzed?  

After this investigation, the continuum damage model was applied to rock cutting with an 

aim to see if the results follow Bažant’s simple size effect law. 
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3.2 A COMPARISON OF COHESIVE MODEL AND DAMAGE MODEL  

3.2.1 Theoretical background 

In the cohesive crack model[50], the strain softening is expressed as a traction separation curve. 

The continuum damage model can be viewed as a crack band model in mode I loading condition 

[36, 56], as the damage is occurs on an element basis and thus is localized within a finite width 

band.  Bažant showed that the soften curve of a crack band model is equivalent to that of a 

cohesive crack model, if the displacement due to stress softening in the crack band model is 

regarded as the crack mouth opening displacement in the cohesive crack model. The crack mouth 

opening displacement, w , as shown in Figure 3.1 [36], can be expressed as: 

 p
chw ε=  (3.5) 

where ch  is the crack band width, and pε is the inelastic fracturing strain beyond peak strength in 

the crack band model. 

The inelastic fracturing strain can be extracted from the total stress strain curve by 

neglecting the nonlinearity before the strength is reached [36], namely: 

 Ep /σεε −=  (3.6) 

where  ε is the total strain, σ  is the stress, and E is the elastic modulus. 

The fracture energy is defined as the integration of traction separation curve for cohesive 

model[50], or the integration of stress displacement in the crack band for the damage model 

[36].When they are set to the same, the equality gives: 

 ( ) ( )∫∫ ==
p
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where fδ is the displacement at final failure,  p
fε  is the fracture strain at final failure. 
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(a)                                                       (b)                         

 

Figure 3.1 Correspondence between cohesive crack model and crack band model (a): cohesive crack model (b): 

crack band model[36] 

3.2.2 Numerical implementation 

Both the cohesive crack model and continuum damage model are implemented in the 

commercial software ABAQUS and LS-DYNA[57, 58]. Both material models are available for 

mode I, mode II and mixed mode loading conditions, and they have some common material 

properties: initial stiffness or elastic modulus, damage initialization threshold, and damage 

evolution properties. For simplicity, the comparison conducted here of the cohesive crack model 

and damage model was limited to the mode I loading condition. Implementations in the two 

commercial software were briefly discussed. Emphasis was placed on implementation in LS-

DYNA, since this is the code with which the rest of the numerical modeling of the study used.  

For the continuum damage model, the most important parameters are the elastic modulus 

E , the tensile strength tf ,  the fracture energy fG , and the shape of the softening curve. The 

shape of the softening curve is important, as it governs how the stress drops in the fracture 
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process zone. It could be linear, exponential, and tabular in ABAQUS, and it is quasi-exponential 

in LS-DYNA.  

There is a small deviation regarding the definition of fracture energy in the continuum 

damage model, i.e., model MAT159 implemented in LS-DYNA, The integration starts not from 

zero, but from the displacement corresponding to peak strength[40]:  

 ( )∫=
f

0

δ

δ
εσ dwG p

f  
(3.8) 

where 0δ is the displacement at peak strength.
  

In this comparison, the continuum damage model used a single layer of cubic element, to 

represent the potential crack band, namely, the crack band width hc equals to the element size l. 

The fracture energy could be expressed as: df lSG = ,where dS  is the area of stress strain curve 

after peak strength, as shown in Figure 3.2(a). The difference of the implementation with the 

original definition could be expressed as ( )ElfG tf 22=∆
 
,  and it is negligible as long as the mesh 

size, l , is relatively small. 

The shape of the softening curve is defined by a damage parameter d, as shown in Figure 

3.2(a). The damage d increases from an initial value of zero for intact condition towards a 

maximum value of 1 upon rapture[40]. 
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(3.9) 

where A, C are two constants controling the softening shape. bτ is an energy type value to track 

the accumulation of damage, 2
maxετ Eb = . b0τ is a threshold beyond which the damage will 

accumulate. The nonlinearity before peak strength is negligible for concrete [36], thus, 2
00 ετ Eb ≈

, where 
0ε is the maximum strain at peak load. The two parameters A and C are not independent, 



26 

only parameter A is input, leaving parameter C calibrated automatically by the input fracture 

energy. 

 (a)                                                       (b)                         

 

Figure 3.2 Implementation of cohesive model and damage model in LS-DYNA (a): damage model: MAT159  (b): 

cohesive crack model: MAT186[40, 57] 

The cohesive crack model is typically implemented through a traction separation law 

curve in both ABAQUS and LS-DYNA. Comparing with the continuum damage model, it’s the 

cohesive crack model uses of an initial stiffness K , rather than an elastic modulus E .  

In ABAQUS, the cohesive element may have a finite thickness or zero thickness[58]. The 

zero thickness cohesive element, or interface element, is preferred as the actual physical 

thickness is usually ill-defined or unknown[59]. In this cases, the initial stiffness K  has no 

physical meaning, as it does not correspond to any measurable physical parameter[59]. K should 

be infinite to avoid artificially compliance, but a finite value, considered as a penalty, is used in 

the numerical implementation. The finite value of K provides compliance to the interface 

element, thus contributes to the overall deformation[60]. Turon et al. [60] proposed a guideline 

to choose the initial stiffness for the interface element: it should be large enough to ensure the 

overall compliance, while it cannot be too large to cause numerical instability.  
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There are several implementations of the cohesive model in LS-DYNA. The 

implementation for material model MAT186 is discussed herein[57]. Only eight-node solid 

element with finite thickness is available, and the traction is assumed to be applied on the middle 

surface. An artificial length scale is introduced by the element thickness. The initial stiffness can 

be expressed as: 0δtfK = . By neglecting the nonlinearity before peak strength, the fracture 

energy can be found as: ftcf fSG δ= . There is a default constraint in the implementation that 

01.00 ≥fδδ . Thus for fixed tf  and fδ , this constraint on 0δ  affect the value K can reach. An 

alternative procedure was developed to circumvent this problem by modifying the modulus of 

the material lies next to the cohesive zone. 

3.2.3 A calibration procedure 

To make the overall compliance not affected by the interface element, Turon et al. [60] 

suggested an increase the stiffness of the cohesive element itself, and Tomar et al. [61] suggested 

instead an increase in the elastic modulus of the bulk material on the two sides of interface. For a 

cohesive element with finite thickness, and with the constraint that limits its initial stiffness, a 

general procedure is derived here by scaling the elastic modulus of the bulk material. 

Consider the case of a plate under uniaxial tension in plain stress condition, in which the 

thickness of the cohesive zone is t , and the thickness of the adjacent bulk material is T , as 

shown in Figure 3.3 

Before reaching the peak strength, the elastic stress and strain relationship gives :  

 δεσ KE ==  (3.10) 
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where σ is the boundary traction, E  is the elastic modulus of the bulk material, ε is the strain of 

the bulk material,δ is the elongation of the cohesive zone. 

 (a)                                                       (b)                         

 

Figure 3.3 Influence of cohesive zone on the overall deformation:(a) initial condition; (b) deformation in the 

cohesive zone and overall deformation 

The overall effective strain of the plate is: 
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where λ is the elongation of the bulk material on each side.  

Thus the overall effective elastic modulus is: 
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It can readily be seen that EEeff ≈ when K is large and that t is of negligible thickness, as 

indicated by Turon et al.[60].  For a cohesive zone when the thickness is not negligible, one can 

simply select tEK =  to give EEeff = . 

But if the initial stiffness cannot satisfy tEK =  because of constraint imposed, the 

elastic modulus of the bulk material could be scaled as follows: 

 XEE =  (3.13) 

where E  is the elastic modulus of the bulk material after scaling, and X is a scaling factor. 

Thus the overall effective Elastic modulus after scaling could be expressed as: 

T Tt λ+T δ+t λ+T
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Making the overall stiffness equivalent, i.e., EE eff = , a scaling factor was obtained: 
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(3.15) 

This equation is useful as it could be applicable to both zero thickness and finite thickness 

element, and allows the stiffness of the cohesive element to vary over a wider range without 

affecting the overall compliance. This calibration procedure was thus adopted in the cohesive 

model implemented in LS-DYNA. 

3.2.4 Numerical study 

In order to compare the effectiveness of fracture modeling using the cohesive zone versus the 

continuum damage models in LS-DYNA, a problem of a simple concrete plate under mode I 

loading condition was posed with no preexisting crack but with known crack path. The plate was 

subjected to a uniform tensile stress condition through the application of a uniform end 

displacement∆ , in a plane stress setting. Figure 3.4 shows the initial set up and the associated 

FEM mesh. The plate has a size of D=24mm, t=0.5mm, and T=72mm. A single layer of cubic 

element was used in the middle both for the cohesive crack and the continuum damage models. 

This layer represents a crack path should one develop. The element size in the middle is the same 

as the thickness, i.e., l=t. The material properties of the concrete modeled with the continuum 

damage model are listed in Table 3.1 [40, 62]. 
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 (a)                                                        

 

(b)                                                                        

 

Figure 3.4 A plate under uniaxial tension: (a)initial set up (b) mesh  

Table 3.1 Material properties of concrete and rock used in simulation[40, 62-64]  

 E(GPa) v ft(MPa) σc(MPa) Gf(N/m) A lch(mm) 

Concrete 29.0 0.15 2.9 38.7 85 0.1 293 

Rock 8.3 0.34 2.9 38.7 35 0.001 35 

 

To compare the cohesive crack zone model and damage model, it is desirable to make the 

material properties the same, including stress displacement curve before and after peak strength. 

The cohesive zone material model MAT186 requires as input a normalized stress displacement 

curve, and it was derived from the stress strain curve of the continuum damage model. For this, a 

uniaxial tension test is conducted on a single element using the continuum damage material 

model, and the element size used was l=0.5mm. The stress strain curve obtained from FEM 

analysis is shown in Figure 3.5, with  4
0 101 −×≈ε , and 3.0≈fε . From this, the parameters for 

the cohesive model was derived, i.e., mml 5
00 105 −×≈= εδ , and the displacement corresponding 

to final failure was found to be mml ff 15.0≈= εδ .   
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T t
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(a)                                                       (b)                         

 

Figure 3.5 Representive curves in the two models (a) Stress strain curve in damage model; (b) stress displacement 

curve in cohesive model 

However, there was a problem: the values of 0δ and fδ  did not satisfy the default 

constraint: 01.00 ≥fδδ because 0δ was too small. The objectives were to set

34 /108.5 mmNtEK ×== . However, the minimum constraint fδδ 01.00 = gave a much smaller

3
0 /9.1 mmNfK t ≈= δ  , as shown in Figure 3.5. To overcome this problem, the elastic modulus 

of the bulk material was scaled based on Eqn. (3.15): 1.1≈X , and the elastic modulus of the 

bulk material is GPaE 2.32= . After adopting this calibrating procedure, the overall behavior of 

the two models matched very well, including behavior pre and post peak strength, as shown in 

Figure 3.6. Based on the accuracy of the continuum damage model in modeling unnotched 

concrete structure, this study further extends to model the size effect of notched concrete and 

rock structure under mode I condition.  
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Figure 3.6 Force displacement curve of damage model and cohesive model 

3.3 SIZE EFFECT FOR CONCRETE AND ROCK 

3.3.1 Size effect for concrete 

A plate with a single edge notch was studied under two common loading conditions: direct 

tension and three point bending. Displacement boundary condition was used to ensure 

computational stability, and plane strain condition was used to avoid possible warp. The testing 

configuration and a typical mesh are illustrated in Figure 3.7. The ratio of length over height was 

kept at L/D=6, relative initial crack length, defined as the ratio of initial crack length 0a over the 
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height of the plate D  , i.e., 25.0/00 == Daα . The potential crack path ahead of the notch tip was 

modeled by a single column of cubic element with the continuum damage model. The bulk 

material was modeled by standard eight-node elastic material. The material properties were listed 

in Table 3.1[40, 62]. The element size for damage model material was kept constant, i.e., 

l=0.5mm, matching the accuracy requirement of the mesh size in cohesive crack model [54]. For 

the latter, the mesh size ranged from 0.5mm-1mm in the cohesive element ahead of the notch tip. 

There was a gradual transition to a larger mesh size into the elastic material to save computation 

cost. 

For concrete, a series of plate with D=24, 48, 96, 192, 384, 768 mm were analyzed, with 

the maximum size used to be 32 times of the minimum size. As the element size in the middle 

cross section is kept constant, the corresponding number of element layers varied from N=36 to 

N=1152. The size effect results for tension and bending obtained are depicted in Figure 3.8. Even 

through a size effect law was typically applicable only to a range of structure size ratio of 1:20 

[36], the simulated data with a larger ratio also fit well, with R2  of the ratio to be 0.961 and 0.982 

for tension and bending, respectively. A fit of Bažant’s simple size effect law gave B=0.62, 

D0=271mm for tension, and B=1.16, D0=153mm for bending.  The fitted values fall within the 

typical range in laboratory tests: Bft varies between 1.7 to 6.0MPa, and D0 varies between 36 to 

719mm from a variety of concrete, under different geometry shape and loading condition [36]. 
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 (a)                                                        

         

(b)                                                        

 

(c)                                                        

 

Figure 3.7 Test configurations and typical finite element mesh:  (a) Test configuration for tension with single edge 

notch, (b) Test configuration for three point bending with single edge notch,(c)  A typical finite element mesh with 

D=96mm 
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Figure 3.8 Size effect results for concrete under tension and bending 

The load deformation characteristics from structure sizes are shown in Figure 3.9(a) and 

Figure 3.9(b), for tension and bending respectively. It is clear that as the structure size increases, 

the peak strength decreases, and the stress drops faster in the softening part [36]. Figure 3.9(c) 

and Figure 3.9(d) show, for tension and bending respectively, that the stress distribution in the 

middle cross section when the structure reached its peak strength. The range from the location 

with peak stress to initial notch tip is known as fracture process zone, where the stress decreases 

with increasing deformation [36]. It is shown that the relative fracture process zone decreases 

with structure size, indicating a transition from strength theory to linear elastic fracture 

mechanics. 
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 (c)                                                        

 

(d)                                                        

 

Figure 3.9 Typical stress strain curves, stress relative deflection curves, and stress distribution for concrete: (a) 

Typical stress strain curves under tension, (b) Typical stress relative displacement curves under bending, (c) Typical 

stress distribution under tension, (d) Typical stress distribution under bending(normal stress in the middle cross 

section)  
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3.3.2 Size effect for rock 

Fracture process zone has also been observed in the crack tip of rocks[35]. For example, some 

experimental results of granite[42, 65, 66], limestone[45] and marble[44] have been found to 

follow the size effect law, under compact tension and three point bending test.      

A soft Vosges sandstone was adopted for size effect simulation under direct tension and 

three point bending tests. The material parameters are listed in Table 3.1[40, 63, 64]. The 

geometries and FEM mesh for the rock were similar to that used concrete, except that the mesh 

size for the continuum damage material was much smaller with l=0.125mm, and the structure 

size range adopted was D=6,9,12,18,24,36,48,72,96,120mm, corresponding to 36 to 720 

elements in the middle cross section of the FEM model. The size effect results for tension and 

bending are presented in Figure 3.10. These results were again fit well again with the Bažant’s 

size effect law having a R2 of 0.969 and 0.984 for tension and bending, respectively.  The fitting 

gave B=0.61, D0=68mm for tension, and B=1.10, D0=39mm for bending. Some available 

experiment data showed Bft range from 3.3 to 5.1MPa, and D0 range from 35 to 47mm for rocks 

under three point bending test [36].  

The detailed load deformation characteristics of different structure sizes are shown in 

Figure 3.11(a) and Figure 3.11(b), for tension and bending respectively. Similar to the results for 

concrete, the structure is weaker and more brittle with an increasing in the structure size. Figure 

3.11(c) and Figure 3.11(d) show the stress distribution in the middle when the structure reaches 

peak strength, for tension and bending respectively. The relative fracture process zone again 

decreases with structure size. Compared with concrete, the fracture process zone is much smaller 

for rock with the same testing configuration and structure size, reflecting a much smaller 

characteristic length for rocks. For example, when the structure size D was 48mm, the fracture 
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process zones under tension test were approximately 31mm and 15mm, for concrete and rock, 

respectively, while their characteristic length were 293mm and 35mm.  

 

Figure 3.10 Size effect results for rock under tension and bending 
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(c)      

 

 (d)                                                        

 

Figure 3.11 Typical stress strain curves, stress relative deflection curves, and stress distribution for rock:(a) Typical 

stress strain curves under tension, (b) Typical stress relative displacement curves under bending, (c) Typical stress 

distribution under tension, (d) Typical stress distribution under bending  
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3.3.3 Size effect independent of geometry   

To facilitate the comparison of test results with different geometry shape and loading 

configuration, Planas and Elices[67], and Bažant, Kazemi and Gettu[68] independently 

introduced the concept of an intrinsic size:  

 
0

'
02 kk
DD =

 
(3.16) 

where 0k is a dimensionless parameter related to energy release rate for different geometry in 

LEFM[36],  

 ( ) ( )DKkk NuIC σα == 00  (3.17) 

where ICK is the fracture toughness, and '
0k is the derivative of 0k at 0αα = .  

For the problem studied here, the values used are listed in Table 3.2[69, 70]. 

Table 3.2 Dimensionless parameter related to energy release rate for different geometry[69, 70]  

 Tension with single edge notch Three point bending with single edge notch 

k0 1.33 0.91 

k0
’
 5.26 2.36 

The relationship between nominal fracture toughness and fracture toughness in large size 

range can be expressed as [36]: 

 
D
c

K
K f

IN

IC += 12

2

 
(3.18) 

where, ICK  can be expressed as ( )ecNu kD ασ , with ecα represents a relative equivalent crack length 

for quasibrittle material, Dc fec /0 += αα ., INK is a nominal fracture toughness, ( )0ασ kDK NuIN = , 

and fc is a limiting constant of critical crack extension for large size structure  
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Eqn. (3.18) shows that the nominal fracture toughness approaches the fracture toughness 

for large size structure. As both fc  and D  are independent of geometry shape and loading 

configuration, Eqn. (3.18) is useful for checking results from different geometries [36]. Figure 

3.12(a) depicts the size effect results for concrete and rock under tension and bending expressed 

in the form of intrinsic size. The results of tension and bending follow a similar trend for 

concrete, indicating the size effect is independent of loading configuration. Similar phenomenon 

was also observed for rock under tension and bending. This result compared well with the size 

effect result obtained by cohesive crack model, as shown in Figure 3.12(b), for concrete with 

different geometry shape and loading condition[71].  

Eqn. (3.18) could also be expressed in the following form that is independent of 

geometry [42, 68]: 

 
0/1 DD

fB t
Nu

+
=σ

 
(3.19)  

where fNuNu cDkkBBkk === 0
'
00

'
00 ,2,2σσ  in the large size range. 

Figure 3.13 shows the size effect study results for both concrete and rock under tension 

and bending after normalization. The results under tension and bending were combined for the 

same material and then fitted by Eqn. (3.19). The R2 obtained was 0.970 for concrete and 0.972 

for rock. The results fitted from combining tension and bending FEM results, compared well 

with the result by fitting tension and bending results separately, as listed in Table 3.3. As 0, DB  

are material properties that should be independent of geometry, and the values of fitted three sets 

of 0, DB were close for the same material, confirmed this point.  
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 (a)                                                        

 

(b)                                                        

 

Figure 3.12 Size effects curves with different geometry expressed as a function of  intrinsic size:(a) Size effects 

curves for concrete and rock under tension and bending, (b) Size effects curves for concrete with different 

geometries [71] 
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Figure 3.13 Size effects curves for concrete and rock under tension and bending after renormalization 

Table 3.3 Regression results of concrete and rock independent of geometry  

 R2   

Concrete tension  0.961  2.40  34.24  

Concrete bending  0.982  2.39  29.51  

Concrete tension and bending  0.970  2.41  31.25  

Rock tension  0.969  2.29  8.62  

Rock bending  0.984  2.28  7.43  

Rock tension and bending  0.972  2.30  7.79  

 

( )mmD0B
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3.4 SENSITIVITY ANALYSIS 

3.4.1 Mesh size sensitivity 

For elastic material model, it is not difficult to get objective result by refining the mesh. 

However, it has been a challenging issue for softening material model. Bažant[72] indicated that 

a straightforward incorporation of stress strain relationship in FEM implementation gave mesh 

sensitive results, as smaller elements lead to smaller fracture energies, making fracture easier to 

occur. Recent study pointed to the use of the fracture energy as a material property. To minimize 

mesh size sensitivity, the softening branch was adjusted according to element size so that the 

same fracture energy would be maintained[50, 56, 73].  

In the FEM formulation, one may first substitute the crack band width ch with the 

element size l, and the fracture energy becomes: 

 ( ) ( )∫∫ ==
p
f

p
f

00

εε
εεσεεσ pppp

cf dldhG  
(3.20) 

The mesh size sensitivity could then be minimized by adjusting the stress strain curve 

after peaks, to maintain the constant fracture energy for different element size l.  

This scaling was implemented in MAT159[40, 57], also included is the triaxiality in more 

complicated stress state.  

Figure 3.14 illustrated the stress displacement curves of concrete scaled by different mesh 

sizes, it is clear that there is only a small variation in the resulting softening curves even though 

the element sizes used were more than 100 times apart. To facilitate a comparison of the 

softening shapes, the original stress strain curves were converted to stress displacement curves 

based on Bažant’s crack band model[56]: 
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Figure 3.14 Softening curves of concrete with different mesh size (Gf=85Pa.m, A=0.1)  

As the stress displacement curve of a single element is insensitive to the mesh size after 

scaling, larger elements might be acceptable.  

It has been widely accepted that there is a minimum number of element that is required to 

accurately represent the stress distribution, in the cohesive zone using the cohesive crack model,. 

However, there is no consensus on the detailed number required: Moes and Belytschko[53] 

suggested the element size should be smaller than one tenth of the characteristic length, based on 

the work of Carpinteri et al.[74];  Tomar et al. [61] claimed that the element size should be much 

smaller than the size of cohesive zone, and suggested at least ten elements in a cohesive zone. 

Camanho et al. [75] and Turon et al. [60] used at least three elements in the cohesive zone. Most 
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a problem with a fixed structure size. This leaves an unsolved problem that how many elements 

are required in the whole cross section to model the size effect, especially that the fracture 

process zone is not known in advance for a given size of structure. 

In this study, the influence of the number of elements was analyzed for a wide range of 

concrete structure sizes, based on the tension test of concrete. Besides the very fine mesh of 

l=0.5mm, a series of coarse mesh are employed, by setting the number of elements N to be 36, 

18, 9, 6 and 3, respectively, in the middle section. Figure 3.15 shows three typical sets of meshes 

for a structure size D of 192mm, with N=9, 18 and 288, corresponding to the element sizes 

l=16mm, 1mm, 0.5mm, respectively.  

Figure 3.16(a) shows that the influence of N on the stress distribution for concrete 

tension. With a structure size D of 24mm, N=3 was enough for obtaining accurate stress 

distribution. However, a different N was required for different structure size, N=6 and N=18 were 

required for D=192mm and D=768mm, respectively, as can be observed in Figure 3.16(b) and 

Figure 3.16(c). Even though different Ns were required for different structure sizes, there was 

something in common: at least three elements are required in the fracture process zone to 

represent the nonlinear stress distribution. Thus, for the size effect analysis with typical range of 

structure size, two opposite factors should be considered on choosing the mesh size or the 

number of element layers in the middle. One one hand, as the fracture process zone increases 

with the structure size, a larger mesh size can be used for large size structure. On the other hand, 

at the same time the relative fracture process zone decreases, and a larger number of elements is 

required.  

To ensure the accuracy of stress distribution for all different structure size, it is suggested 

at least N=18 is required in the whole cross section, to ensure at least three elements in the 
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fracture process zone for not too large structure. For N=18 with D=768mm, the element size is 

32mm, approximately one-tenth of the characteristic length 293mm. Thus results of this study 

agreed with the conclusions obtained by Moes and Belytschko[53],Carpinteri et al.[74], 

Camanho et al. [75] and Turon et al. [60]; while the suggestion by Tomar et al. [61] appeared to 

be conservative. 

 (a)                                                        

 

(b)                                                        

 

(c)                                                        

 

Figure 3.15 Typical finite element mesh for concrete with different No. of element layers N in the middle cross 

section (D=192mm): (a) N=9, (b) N=18, (c)N=288 
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(c)                                                        

 

Figure 3.16 Typical stress distribution for concrete under tension with different No. of element layers N in the 

middle cross section:(a) D=24mm, (b) D=192mm, (c) D=768mm  

Figure 3.17 summarizes the size effect results of concrete under tension and bending, 

using both fine mesh and coarse meshes. The fine mesh refers to fixed mesh size l=0.5mm in the 

middle for all structure size, while the coarse mesh refers to fixed 18 layers of element regardless 

of the structure size. A good comparison was obtained, showing that the relative error was 

smaller than 3% in all cases, even though mesh size differed by up to 128 times. 
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(a)                                                        

 

(b)                                                        

 

Figure 3.17 A comparison of size effect results for concrete with different mesh size:(a)Size effect results under 

tension and bending with fine mesh and coarse mesh, (TF: Tension with fine mesh, TC: Tension with coarse mesh, 

BF: Bending with fine mesh, BC: bending with coarse mesh)  (b) Relative difference of nominal stress with different 

mesh size 
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3.4.2 Influence of shape of softening curve 

The shape of softening curve is very important, as it governs the stress in the fracture process 

zone. Dugdale[76] originally proposed a model with a constant stress ahead of the crack tip, in 

other words, he proposed a rectangular softening curve. Hillerborg[50] extended it to both a 

trapezoid and a linear softening curves. Petersson[77] showed a bilinear softening could 

reasonably approximate the behavior of concrete. More complicated softening functions, such as 

quasi-exponentially decaying functions have also been proposed[78].   

It has been recently shown that the initial portion, instead of the whole of the softening 

curve, played a paramount role in determining the peak strength for not too large structure[51, 

79]. The reason is that a crack that is not fully opened at peak load, the fracture process zone 

would sweep only the initial part of the softening curve, as shown in Figure 3.18. 

The continuum damage model implemented in the material model MAT159, 

accommodates different initial slopes, from relatively flat to steep. Eq. (3.9) can be 

approximately expressed as : 

 
( )


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 −
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−−
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inf
0

→
→

A
A  (3.22) 

Thus this softening curve is able to model exponential softening with small A and 

approximately rectangular softening with large A, as well as moderately descending initial slope 

between the two limits. 
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(a)                                              (b)                         

  

Figure 3.18 Maximum stress drop in the fracture process zone at peak load under bending: (a) Stress profile at peak 

load, (b) A typical stress separation curve and the location of stress at the initial notch tip on the softening curve [51] 

Figure 3.19(a) shows the softening shape with A, of 0.001, 0.1, 1 and 10 for concrete 

material, while the fracture energy is fixed at Gf =85N/m. For the same softening curve, different 

range of the curve will be swept for different structure size.  Figure 3.19(b) shows that the crack 

opening displacement of the initial notch tip for different structure size, with A=0.1. Generally, a 

larger structure will lead to a larger crack opening displacement, and that in turn leads to larger 

stress drop. Figure 3.19(c) summarizes stresses at the initial notch tip for both concrete and rock, 

under tension and bending test. All the data follow the trend of stress displacement under plane 

strain condition, but some discrepancy is also observed for rock. It is postulated that the relative 

larger Poisson’s ratio for rock might be the cause, as the stress displacement curve obtained 

depends on plane stress, plane strain, triaxiality and other variables [51, 80]. 
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(c)                                                        

 

Figure 3.19 Influence of softening shape on the stress at the initial notch tip: (a) Influence of A on softening curves 

for concrete under plane stress conditions, (b) Influence of structure size on the crack mouth opening displacement, 

(c) Locations of stress at the initial notch tip at peak load 

3.5 SIZE EFFECT IN ROCK CUTTING 

Experiments have shown that the in rock cutting, rock fails mainly by crushing when the cutting 

depth is shallow, and by crack growth when depth of cut is deep. The energy dissipated 

mechanism is therefore different, energy is dissipated by volume in shallow cuts and by surface 

in deep cuts. Clearly there exists also a transition from a failure is governed by strength criterion 

to that governed by LEFM criterion in rock cutting. This line of thoughts led to the present 

proposal of treating the cutting depth as a measure of size corresponding to Bažant’s simple size 

effect law.  
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A set of geometrical similar rock samples with different sizes was generated. The 

dimensions and some typical mesh are shown in Figure 3.20. Tetrahedron elements were used, 

and the mesh size was fixed to be approximately l=0.15mm. The rake angle of the currer was 

015=θ , and the width of rock sample was b=0.1mm. Plane strain boundary was applied, and the 

normal translation in the bottom, left and right boundary were fixed. The cutter advances forward 

with a velocity of v=0.2mm/ms. The dynamic compressive strength and dynamic tensile strength 

consider the rate effect was approximately ,3,47 MPafMPa tc ==σ respectively. The depths of cut 

chosen were D = 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, and 4.0 mm. No depth 

below 0.5mm was chosen because that would be less than three layers of element in contact with 

the cutter as mesh size was set as l=0.15mm.  

(a)                                                       (b)                         

  

(c)                                                       (d)                         

 

Figure 3.20 Geometry and mesh in  rock cutting: (a) geometry, (b) D=0.5mm, (c) D=2mm, (d) D=4mm  
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Figure 3.21 shows the damage configuration from different cutting depths, with D = 0.5, 

2.0, and 4.0 mm, respectively. Two snap shots were taken for each depth, one corresponding to 

peak cutting force, and the other after the peak cutting force.  

 (a)                                                    (b)                         

 

(c)                                                       (d)                         

  

(e)                                                       (f)                         

 

Figure 3.21 Damage configuration of rock cutting (a) D=0.5mm, corresponding to peak force (b) D=0.5mm, after 

peak force (c) D=2mm, corresponding to peak force (d) D=2mm, corresponding to peak force(e) D=4mm, 

corresponding to peak force (f) D=4mm, after peak force 



59 

It was found the failure pattern as observed in the distribution of damaged areas was 

much more complicated than those posed by a tension test, or by a three point bending test 

confined to mode I failure.   

Stress state of some typical elements along the crack was analyzed. It was found that for 

a typical element with some damages, i.e., the damage index lies between 0 for no damage and 1 

for complete damage, the damage would accumulate under both compression and tension stress 

states. The results suggested that rock cutting failure is governed by a mixed mode of failure. 

Despite of the complexity of the failure mode, the damage configurations were similar for 

different cutting depths when the peak cutting force was reached. But the pattern started to 

diverge afterwards.  

To interpret the cutting test results with Bažant’s simple size effect law, the nominal 

stress Nσ  and ultimate nominal stress Nuσ in the cutting tests are defined as: 

 
bD
F

bD
F p

Nu
c

N == σσ ,
    

(3.23) 

where cF  is the cutting force, and pF  is the peak cutting force. 

Compared with tests under tension and three point bending, the stress field in rock cutting 

is dominated by compression in front of the cuter. Thus the compressive strength, instead of 

tensile strength, was used to normalize the nominal stress in Bažant’s simple size effect law, and 

it is introduced in rock cutting as followed: 

 
0/1 DD

B c
Nu

+
=

σσ
 

(3.24)  

The result of the fit is shown in Figure 3.22. A higher fluctuation of the data point around 

the simple size law is not unexpected since the stress field is more complicated. Nontheless, with 
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the R2 of the fit was still rather high at 0.844, and the parameters obtained were B=1.77, 

D0=2.04mm.  

The stress and relative displacement curves for three typical cutting depths are also 

shown in Figure 3.23. The relative displacement is defined as the ratio of horizontal 

displacement over cutting depth. A similar trend as the size effect from the tension and the three 

point bending tests was found: (1) the initial slope before peak strength was approximately the 

same; (2) the peak nominal stress for smaller cutting depth was larger; (3) the shape after peak 

strength was flatter for shallow cuts, suggesting its behavior to be more ductile.  

 

Figure 3.22 An interpretation of rock cutting with Bažant’s simple size effect law 
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Figure 3.23 Stress and relative displacement with different size in rock cutting  

3.6 CONCLUSIONS 

This study modeled rock cutting based on damage mechanics, and introduced Bažant’s simple 

size effect law in interpreting the result. Previously, Bažant’s simple size effect law was found to 

hold under either mode I or mode II conditions, this study showed the law is also applicable in 

rock cutting with mixed mode failure, as posed in a rock cutting problem. 

For modeling the failure of quasibrittle materials, a successful model should capture the 

crack propagation and fracture process zone during the fracture. Cohesive model have been 

widely used in modeling crack propagation in mode I and mode II condition, but has limitation 

in modeling rock cutting with mixed mode failure, and with unknown crack growth path. The 

continuum damage model was thus adopted. The damage model compared well with the 
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cohesive model under model I failure after appropriate scaling, and that provided a credence of 

the continuum damage model in a general setting.  

The study found relatively coarse mesh would also render good resolution results for the 

three point bending test of concrete. Similar to the role of traction separation curve of a cohesive 

model, the softening curve in the damage model governs the stress distribution in the fracture 

process zone.  
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4.0  ON THE CRITICAL FAILURE MODE TRANSITION DEPTH FOR ROCK 

CUTTING 

4.1 INTRODUCTION 

Cutting, much like indentation, induces in rocks two different modes of failure: the ductile mode 

of failure and the brittle mode of failure. The ductile mode of failure prevails when the depth of 

cut is shallow, and rocks fail either via the development of damage zones or through some plastic 

flow. In contrast, when the depth of cut is deep, the mode of failure becomes brittle and the rock 

fails through fracture. For processes such as drilling or tunneling, it is often desirable to control 

the extent of a rock being removed and that fail a rock in a particular mode becomes essential. 

As the cutting depth progresses from shallow to deep, there is a critical depth that the rock failure 

changes from the ductile to the brittle mode.  This is one of the important questions that 

Detournay and his team at the University of Minnesota studied, and in fact they have been 

instrumental to the current understanding on this subject [4-6, 19].  

Through extensive tests, Richard et al. [5, 6] have shown that within the ductile failure 

mode, the average specific mechanical energy input in a scratch test is directly proportional to 

the uniaxial compressive strength of rocks, cσ , and proposed that the scratch test could serve as 

a rapid method for determining the uniaxial compressive strength of sedimentary rocks. The 
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specific energy [31], ε , in a scratch test maintained at a fixed depth of cut of a wide cutter can be 

expressed as 

 
wd
F

=ε
 

(4.1) 

Where F is the average cutting force, w is the width of a cutter, and d is the depth of cut.  

When a rock is failed in a ductile mode, the average cutting force is proportional to the 

depth of cut since the specific energy is proportional to cσ , namely [6] 

 wdF cσ∝  (4.2) 

On the other hand, during a brittle failure the cutting force would be proportional to the 

square root of the depth of cut according to the Linear Elastic Fracture Mechanics (LEFM). In 

other words, the cutting force for deep brittle mode can be written as [6] 

 dwKF IC∝
 

(4.3) 

By equating the two equations, a critical failure mode transition depth, dc, thus can be 

determined as [6] 
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(4.4) 

Test data from Nicodeme [4] were employed by Richard to obtain the transition depth. 

Nicodeme's data for Vosges sandstone, Berea sandstone and Rhune sandstone were reproduced 

in Figure 4.1. In these plots, both the average forces and the average peak forces were presented. 

Because peak forces are more closely related to the fracture initiation process, they are more 

relevant in the transition depth discussion. There is an uncertainty associated with this approach 

because it is not clear data from which depth should be fitted by Eq. (4.3). This uncertainty could 

be removed as elaborated in the discussion that follows.  
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Huang and Detournay [19], took up a different approach using dimensional analysis and 

obtained a similar relationship. They defined an intrinsic length scale as follows, 
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(4.5) 

With the aid of discrete element simulation they further proposed that the critical 

transition depth is related to this intrinsic length scale. In essence, they affirmed the earlier 

results of Richard et al. 

 (a)                                                        
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(b)                                                        

 

(c)                                                        

 

Figure 4.1 Evolution of  cutting force with cutting depth: (a) Vosges sandstone, (b) Berea sandstone, (c) Rhune 

sandstone, [4, 5] 
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4.2 A DIFFERENT VIEW FROM THE SIZE EFFECT ANGLE 

The problem of ductile-brittle transition in a fracture process is an important one and viewed 

from a larger context may provide some insights on rock mechanics applications.  In this respect, 

Puttick [33] has developed a theory of transition based on the scaling law of crack propagation 

deduced from fracture mechanics. In his theory the size effect appears because as the size of a 

test specimen is increased under geometrical similarity, the energy supply in the form of volume 

strain energy grows as a cubic function of some linear dimension, while the demand of the 

growing crack increases as the square of the same dimension. He further argued that for a failure 

involved an inhomogeneous tensile stress field, the rate of strain energy release depends also on 

a characteristic length defined by the strain energy field. His theory concluded that the apparent 

fracture stress is a function of both this characteristic length and the geometry of the test sample. 

This characteristic length, chl , is related to the crack fracture process zone, which  in the concrete 

fracture literature is often expressed as [80]  

 2
t

ft
ch

EG
l

σ
=

 
(4.6) 

Where ftG  is fracture energy, E is Young’s Modulus, and tσ  is the tensile strength.    

To follow up on Puttick theory about the connection between the size effect and the 

ductile-brittle transition, we reexamined Nicodeme’s data [4]. For the rock cutting problem, 

based on the findings of the Minnesota group a recast of the problem can be proposed as follows: 

the rock cutting be viewed as a geometrically similar problem and that the depth of cut the size 

measure. With this in mind, bilogarithmic plots of Nicodeme’s data using average peak forces 
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are presented in Figure 4.2. Here we define the nominal  stress as the average peak cutting force, 

FC, divided by the cross section of cutter-rock contact as follows, 

 
wd
FC

N =σ
 

(4.7) 

The plots clearly demonstrate that rock cutting, when the depths of cuts lie within the 

range of practical interests, follows the size effect law of ductile-brittle transition of quasibrittle 

material as Bažant [36] has proposed for concrete.  Bažant simple size effect equation fit to these 

data were carried out using the following form, 

 
0

0 /1
)/(

dd
Bdd c

N +
=

σσ  (4.8) 

Where B is a scaling factor, d0 represents the intersection of asymptotes  and is a measure of how 

large the transition zone is.  
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 (b)                                                        

 

(c)                                                        

 

Figure 4.2 Evolution of  nominal stress with  cutting depth : (a) Vosges sandstone, (b) Berea sandstone, (c) Rhune 

sandstone, [4, 5,32] 
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Nicodeme’s data gave non-zero intercepts on the forces versus depth plots, which implied 

presence of friction caused by cutter wear. For the Vosges sandstone and Berea sandstone data, 

the frictions were small, with magnitudes around 15 and 28.5 N, respectively. Whereas for the 

Rhune sandstone, the friction was as high as 230 N, but in this case the rock strength was also 

high. These frictions were subtracted with the assumption that the cutter wear remained 

unchanged during the cutting, and this step might introduce significant error in the interpretation 

of  Rhune sandstone results.  

Bažant size effect equation fit Nicodeme’s data well: for the Vosges sandstone test, cBσ  

=28.3 MPa, d0= 1.67 mm, R2 of fit was 0.94; for Berea sandstone, cBσ  =39.1 MPa, d0=1.13 mm, 

R2 of fit was also 0.94; for Rhune sandstone, cBσ  =200 MPa, d0=0.78 mm, R2 of fit was 0.90. 

The larger scatter in the Rhune sandstone data fit might reflect that the friction was not properly 

addressed. Using Bažant size effect law removes the uncertainty about the data selection because 

cutting data from all depths were use. In the discussion that follows, the critical transition depth, 

dc, was estimated using d0.   

The application of Bažant size effect equation may be interpreted as follows: at shallow 

cut the plasticity dominates, then as the depth of cut increases it gradually  shifts toward fracture 

mode with a -1:2 slope on the bilogarithmic plot dictates by the  LEFM. The transition clearly is 

a gradual process, and that LEFM is reached only asymptotically.  

With the size effect law fitting the data well, it follows that the work on qusaibrittle 

material from concrete fracture research could also have important bearing. In this respect, we 

looked into Hillerborg’s characteristic length which has been widely used in concrete fracture 

research. 
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4.3 CHARACTERISTIC LENGTH AND INTRINSIC LENGTH SCALE 

According to Irwin [81], the energy release rate and stress intensity factor are equivalent in the 

critical condition of mode I crack, namely  

 
E

KG IC
ft

2

κ=
 

(4.9) 

where 1=κ for plane stress condition, and 21 v−=κ  for plane strain condition, and v is 

the Poisson’s ratio. 

Applying the above equation, the characteristic length can alternatively be defined below 

as a function of the mode I fracture toughness and tensile strength: 

 2
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(4.10) 

Puttick [33] has mentioned that the yielding strength other than the tensile strength might 

be used in defining the characteristic length, Huang and Detournay [19] were the first to use the 

uniaxial compressive strength for this purpose. We can view Huang and Detournay’s intrinsic 

length scale in terms of Hillerborg’s characteristic length as follows, 

 ( )2
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=
 

(4.11) 

The greater the Hillerborg’s characteristic length, the greater the intrinsic length scale is, 

and the deeper it goes before failure shifts from ductile to brittle. In other words, the greater the 

Hillerborg’s characteristic length, the more ductile a material becomes; and it is a measure of 

ductileness. On the other hand, the ratio of uniaxial compressive strength over tensile strength is 

clearly related to the brittleness of rock [82]:  
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tcB σσ=1  (4.12) 

Thus Huang and Detournay’s measure can be viewed as a contrast of ductileness to 

brittleness, and its physical significance then becomes clear: When the ductilness to brittleness 

ratio is large, the critical depth of failure mode transition increases.  

From the present discussion it follows that Eq. (4.4) can be rewritten as 

2
1B

ld ch
c ∝  (4.13) 

For engineering applications, it would be beneficial to know dc of a given rock, and an 

establishment of the above equation would be useful. Can this relationship be determined other 

than using experiments?  A reflection on the Bažant’s size effect law, particularly on the 

substantial plastic deformation during transition and complex mechanics of cutting, leads to the 

conclusion that the critical depth of failure mode transition is unlikely to be theoretically derived.  

In view of this, a computational procedure is presented below. 

4.4 A COMPUTATIONAL CALIBRATION PROCEDURE 

A numerical method that would facilitate the specification of right hand side of Eq. (4.13) may 

serve as a basis for determining the proportionality constant posed by Eq. (4.13). The explicit 

finite element program LS-DYNA [57] fit this objective and was employed in the numerical 

analysis. Specifically, a constitutive model-- a continuous surface cap model, i.e., model 159 in 

LS-DYNA, enabled such an undertaking. The main features of the model [40] include a plastic 

yield surface with  a smooth cap, the damage-based softening with erosion and modulus 

reduction and rate effects for strength increase in high strain rate application. A detailed 
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description of the procedure in rock cutting application, including the determination of rock 

parameters, can be found in [83].  

For the present application, the most important feature of this continuous surface cap 

model is that it facilitates the input of fracture energy 
fG , cσ  and tσ  that, in turn,   makes the 

specification of characteristic length feasible. cσ  and tσ  are defined through the specification of 

the yield surface, while 
fG is directly input.  

In the continuum surface cap model, strain softening starts when the stress reaches the  

yield surface. As the strain softening continues, fracture eventually takes place when the 

cumulative energy release, or the stress times the displacement, equals the material fracture 

energy.  That is [40], 

∫=
f

p

x

x
f dx)x(G σ

 
(4.14) 

Where )x(σ is the stress during the strain softening, xp and xf are the displacements at the 

yielding and fracture, respectively.  

Three fracture energies are defined in the continuum surface cap model: The fracture 

energy due to tension, or mode I fracture , Gft, the fracture energy due to shear,  or mode II, Gfs,  

and the fracture energy due to compression, Gfc.  Which fracture energy  is used  depending on 

the stress state when the yield surface is reached: the uniaxial tension failure triggers Gft,  pure 

shear failure triggers Gfs , and the uniaxial compression failure triggers Gfc, that is, 
21 3J/I

equals to -1, 0, and 1 ,respectively, as depicted in Figure 4.3, where I1 denotes  the first invariant 

of the stress tensor, and J2 the second invariant deviatoric stress tensor. For other stress states,   

interpolation is used: 13 21 −≤J/I  uses Gft , 031 21 <<− J/I interpolates  between Gft  and Gfs,  
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130 21 << J/I  interpolates  between Gfs  and Gfc, and  13 21 ≥J/I uses Gfc . Tensile stress is 

defined negative, and when I1 ≤ 0, pure mode I and pure mode II fracture are governed by the 

same fracture energy [84] ,  thus Gfs  was set equal to Gft in this study. As for fracture under 

compression, there existed very few data to guide the selection of Gfc. From Li's data [85], Shen 

and Stephansson [86] concluded that fracture energy in compression could be greater than 100 

times of Gft. We carried out limited sensitivity with Gfc varied between 100 and 250 times of Gft, 

and found that fragmentation pattern next to the cutter might change slightly, but the cutting 

forces were not much affected. Accordingly Gfc was set equal to 100 Gft in this study. 

 

Figure 4.3 Stress states upon which the fracture energies are defined 

In the analysis carried out, each rock sample was assigned a different characteristic length. 

This was achieved by varying the fracture energy, while all other essential properties such as cσ , 
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the properties of Vosges sandstone, in that the uniaxial compressive strength was set to 36MPa, 

the tensile strength to 3MPa, the Young’s modulus to 8.3GPa, the Poisson’s ratio to 0.3, and the 

fracture energy, Gft, to 35 Jm-2. Following that, the fracture energies were the only change made 

to provide a host of characteristic lengths Using Table 4.1  as a guide, the   fracture energies of 

the following values were further employed in computation:  =ftG 8.8Jm-2, 17.5Jm-2, 26.3Jm-2, 

43.8 Jm-2, 52.5Jm-2. Thus, except for the baseline case, the rock samples used were not realistic 

in the sense that the parameters were artificially set. Thus it was essential that real test data were 

also used in evaluating the analysis.  

Table 4.1 Some typical values of fracture surface energy of rocks [63] 

Rocks Fracture surface energy cγ  (Jm-2) 

Fontainebleau sandstone 7-27 

Berea sandstone 10 

Carrara marble 35 

Solnhofen limestone 12 

Red Oland limestone 19 

Holston limestone 12 

 

To obtain the critical transition depth corresponding to each sample, a series of scratch 

tests were conducted. The dimension of rock sample used was 24mm in length, 5mm in depth 

and 1mm in thickness. The average mesh size was about 0.17mm. The rack angle of the cutter 

was fixed at 15 degree. Figure 4.4 shows the setup for the case with depth of cut of 1 mm. The 

cutting depth started at 0.2mm for small intrinsic length scale sample, and was increased at an 

interval of 0.2mm until the failure mode transition was identified. But for the larger intrinsic 
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length scale sample, the starting depth of cut was set greater. For example, for the case in which 

the fracture energy was 17.5 Jm-2, or that the characteristic length  was  16  mm , when the 

cutting depth reached 0.6mm the rock failed mainly by crushing along with small chipping;  but 

significant chipping was observed when the depth of cut was 0.8mm, and dc was determined to 

be 0.8mm. Figure 4.5 shows the snapshots of the analysis around the transition depth.  

Figure 4.6 summarizes the results from numerical modeling together with three data 

points processed with the size effect law from Figure 4.2. 

A linear relationship between the critical transition depth dc versus 2
1Blch was obtained 

with R2=0.90 as follows,  

 2
1

4.5)(
B
lmmd ch

c =
 

(4.15) 

This result affirms that the critical transitional depth is indeed directly related to the 

intrinsic length scale.  

 

Figure 4.4 A typical FEM model setup  for  a slab scratch test  
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 (a)                                                       (b)                         

 

(c)                                                       (d)                         

 

(e)                                                       (f)                         

 

 (g)                                                       (h)                         

 

(i)                                                       (j)                         
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(k)                                                       (l)                         

 

Figure 4.5 Damage for rocks  with different fracture energies at various  cutting depths (a) Gft=8.8Jm-2, d=0.2mm, (b) 

Gft=8.8Jm-2, d=0.4mm, (c) Gft=17.5Jm-2, d=0.6mm, (d) Gft=17.5Jm-2, d=0.8mm, (e) Gft=26.3Jm-2, d=0.8mm, (f) 

Gft=26.3Jm-2, d=1.0mm, (g) Gft=35.0Jm-2,d=1.0mm, (h) Gft=35.0 Jm-2, d=1.2mm, (i) Gft=43.8 Jm-2,d=1.4mm, (j) 

Gft=43.8 Jm-2, d=1.6mm, (k) Gft=52.5Jm-2,d=1.4mm, (l) Gft=52.5Jm-2, d=1.6mm 

 

Figure 4.6 The critical transition depth as a function of 2
1Blch  
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regarding cσ  for the test data. The reported cσ  values for Vosges sandstone, Berea sandstone 

and Rhune sandstone were 28, 39 and 89MPa, respectively [6].  It was not clear if these strengths 

were determined on the same batch of samples used in the cutting tests. Therefore, the cutting 

specific energies  from Figure 4.1 were also used as estimates of cσ  [5, 7], and they were found 

to be  15.2, 28.4 and 144 MPa, respectively. We used these two sets of  cσ  as a potential range 

of the actual values. Each of the test data point was therefore marked on Figure 4.6 as a range on 

lch  for a given dc value. 

4.5 TRANSITION DEPTH AS A FUNCTION OF ROCK UNIAXIAL COMPRESSIVE 

STRENGTH 

It is much easier to determine the strength properties of rock than to obtain its fracture properties. 

Chaput [3] has shown that the transition depth reduces when the uniaxial compressive strength 

increases, as reproduced in Figure 4.7, where the rocks are sorted along the vertical axis by 

increasing strength. In the plot, the boundary between the secondary and the primary chipping 

represents transition from ductile to brittle mode of failure. This plot motivated us to investigate 

a conversion of Eq. (4.13) into a relationship between the critical transition depth and the 

uniaxial compressive strength.  This is feasible if relationship could be established between ICK  

and tσ ,  and between 2
1B  and cσ . Indeed, there exists a rich literature in relating  ICK  to tσ , 

and all were posed in a linear form: Gunsallus and Kulhawy [87] found a linear relationship 

between ICK  and tσ  for several types of rock; Bhagat [88] obtained one for coal; Harison et al. 

[89] proposed one for some soft rocks based on experiments by Haberfield and Johnston [90]. 
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Using available experimental results  from  various kinds of rocks and coals,  Whittaker et al. 

[84]  obtained the following empirical equation, 

 53.235.9 −= ICt Kσ
 

(4.16) 

Where the unit of ICK is MPa.m0.5, the unit of tσ  is MPa. 

 

Figure 4.7 Failure mode transition as a function of  depth of cut and rock strength [3]  

Zhang [91] argued that the intercept of should be set to zero in regression, as rocks that 

had no tensile strength rock could not have fracture toughness. As such, he obtained the 

following equation, reproduced in Figure 4.8, with data from [84, 92-95]  

 ICt K88.6=σ
 

(4.17) 
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This empirical equation was employed in this study. One would expect a large data 

scatter around such empirical relationship as attested by Figure 4.8. Using the original data, we 

found the R2 to be 0.78. 

 

Figure 4.8 Relationship between  fracture toughness and tensile strength [94]  

As for the relationship between 2
1B  and cσ , this study used about 200 samples from a 

wide variety of sources [96-107], and obtained a relation between 2
1B  versus cσ . Through a 

linear regression in bilogarithmic scale, see Figure 4.9, we obtained, with a large scatter as 

reflected in a R2 of only 0.25, the following 

 ( ) 43.02 05.0 −= cct σσσ  (4.18) 

Where cσ  is expressed in MPa. 
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Figure 4.9 The Brittleness as a function of the uniaxial compressive strength.  

Substituting Eqs. (4.10), (4.17), (4.18) into Eq. (4.11), the intrinsic length scale, li , in 

mm, was converted to a function of cσ , in MPa, as follows, 

 43.006.1 −= cil σ
π  

(4.19) 

The critical transitional depth, dc, being proportional to intrinsic length scale, became 

proportional to a fractional power of the uniaxial compressive strength as follows, 

 43.0−∝ ccd σ
 

(4.20) 

To obtain the proportionality constant of the above equation, we used results from the 

FEM computation. Among the FEM cases analyzed, only that from the baseline case was 

employed as it represented a realistic rock, i.e., the case with cσ =36 MPa, Gf=35 Jm-2   in 
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which   lch= 32 mm and  B1=12 from Eqs. (4.6) and (4.12). Using this data point alone, we 

obtained, 

 43065 .
cc .d −= σ  (4.21) 

Where the units of cd and cσ are mm and MPa, respectively.  

How does this relationship compare with real test data? The three samples from Figure 

4.1 were again employed.  Again due to the uncertainty in cσ , each of the laboratory test data 

point was marked on Figure 4.10 with a range on cσ  for a given dc value. The data appeared to 

support the trend posed by Eq. (4.21), albeit that they also pointed to the potential of a large 

variability as would be expected.  

 

Figure 4.10 The critical transition depth as a function of rock strength  
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4.6 CONCLUSIONS 

By treating the depth of cut as the scale of similarity, this study showed that the rock cutting 

follows Bažant size effect law for quasibrittle material. The critical transition depth from ductile 

to brittle failure can  be obtained by fitting cutting data with the size effect law.  

The intrinsic length scale, proposed by Huang and Detournay, was shown to be a contrast 

between ductileness and brittleness, where the ductileness could be represented by Hillerborg’s 

characteristic length, and the brittleness by the ratio of the square between the compressive 

strength and the tensile strength.   This contrast became the basis of using FEM modeling to 

obtain a linear relationship between the critical transition depth and the characteristic length. By 

further obtaining an empirical relationship between the brittleness and the uniaxial compressive 

strength, a relationship between the critical transition depth and the uniaxial compressive 

strength was also presented. The trend from three laboratory test data points appeared to  support 

such a relationship, but they  also pointed to potentially significant inherent variability. 

The two relationships so derived manifest the general trend regarding the critical 

transition depth with respect to the intrinsic length scale and the uniaxial compressive strength, 

respectively. With limited data, they are perhaps best be viewed as an illustration of a potential 

framework  to obtain critical transition depth as presented in this study. 
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5.0  MODELING GROOVE CUTTING IN ROCKS USING FINITE ELEMENTS 

5.1 INTRODUCTION 

In an effort to establish the modeling framework of rock cutting within the finite element 

method, laboratory rock scratch tests has been successfully modeled [29]. It has been 

demonstrated that the Lagrangian FEM approach was capable of modeling the rock 

fragmentation progression from crack initiation, to chip formation, to the interactions of chips, 

cutter, and the rock sample.  In particular, two failure modes as observed in the laboratory tests 

were reproduced by FEM: the ductile failure for shallow cuts and the brittle failure for deep cuts. 

The cutting modeled was slab cutting, in which the width of a cutter was the same as that of the 

rock sample. The problem was essentially a two dimensional one. In an effort to model the 

cutting action of a drilling bit, this study expanded research into the modeling of groove cutting 

by a single polycrystalline diamond compact cutter. The cutter had a narrower width and cut 

beyond the immediate contact area, both laterally and along the depth. A clear difference 

between slab cutting and groove cutting was the lateral cutting of the latter, resulting in a larger 

specific energy in groove cutting [6, 8]. 

To provide an accurate estimate of the cutting force, it was essential to capture the 

volume of cut. It turned out that the volume of cut was sensitive to the mesh size used in a finite 

element modeling. This study thus first investigated the mesh-size conditions. Also affecting the 
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results of an analysis was the number of elements in contact with a cutter.  After establishing 

preliminary guidelines, numerical experiments were conducted on groove cutting using both 

rectangular and disc cutters. Finally, a circular cutting model, albeit preliminary, was also 

developed. 

5.2 MODELING CONSIDERATIONS 

The core considerations of the finite element modeling effort were: 

• The bottom, right, and left surfaces of the rock piece are treated as “non-reflecting” 

boundaries, which allow stress waves to be dissipated instead of being reflected, thus there is 

no such boundary effect affecting the stress distribution near the edges of the model. 

• Nodes on the front and rear faces were constrained to ensure lateral confinement.  

• The Continuous Surface Cap Model (Mat159) in LS-DYNA [57] was adopted to model the 

rock behavior. The material parameters were calibrated based on the experimental results of 

Vosges Sandstone [64]. 

• Rock fragmentation was modeled via removal of elements that had been subjected to a high 

level of damage. The procedure is known as element erosion. 

•  The study modeled sharp cutters and a coefficient of friction of 0.0 or 0.30 was used at the 

cutter-rock interface [108].  Cutting velocity was 4 m/s, with a force-sampling rate of 25 

data/mm. 

• The mesh of rock sample was originally generated by LS-PrePost using pyramidal elements, 

and then refined in the top by ANSYS. Randomness was desirable in element size 
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distribution and element orientation. The quality of mesh size was vital to the accuracy of 

result.   

5.3 LATERAL REFINED ZONE REQUIREMENT FOR THE GROOVE CUTTING 

During a groove cut, a cutter plows through rock over some lateral distance from its edge.  

Before a judgment can be rendered on the adequacy of a finite element mesh, an understanding 

of the lateral reach of a cutting action had to be established. A numerical experiment focusing on 

the influence of the lateral distance on the cutting specific energy was designed. In our design, 

the right side of the sample was the widest at 10 mm, which gradually tapered down toward the 

left to 2 mm.  The geometry of the sample and the mesh employed is shown in Figure 5.1. The 

average mesh size in the fine zone was 0.2mm. The depth of cut was 1mm, the width of the 

cutter was 2 mm, and the lateral extent of the sample from the edges of the cutter ranged between 

0 to 4 mm.   

Figure 5.2 shows the damage, as well as the post cutting configuration of the sample. It 

was clear that lateral damages was confined within a strip zone with a width of wa=1 mm, which 

was about five times the average element size from the edge of the cutter. Figure 5.3 depicts the 

history of the original specific energy and its moving average. The horizontal axis was the lateral 

extent of the rock sample from the edge of the cutter at the time the energy was computed.  The 

moving average shows that the specific energy increased when lateral distance increased and that 

it was approximately constant if the lateral distance exceeds five times of the element size.  
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Figure 5.1 Groove cutting with different lateral distance 

 

Figure 5.2 Affected lateral distance in groove cutting 
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Figure 5.3 Log of specific energy with different lateral distance (the width of moving average is three times average 

element size) 

5.4 SYMMETRY CONSIDERATIONS 

Whenever possible, in an orthogonal cutting, one would employ the symmetry conditions and 

only analyze half of the problem, in order to reduce computational cost. Aside from the necessity 

of using enough small elements to guarantee an accurate solution, one might ask if there were 

any unexpected consequences stemming from the application of symmetry conditions. To answer 

this question, a numerical experiment was carried out. Figure 5.4 shows both a half model and a 

full model: the full model was generated by reflecting the half model across an XY plane. The 

average mesh size in the fine zone was 0.2mm. The cutting width was 6mm and the cutting depth 

was 1mm. 

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

lateral distance/ average element size

M
S

E
(M

P
a)

 

 

Original data
Moving average



90 

 (a)                                                        

 

(b)                                                        

 

Figure 5.4 A half model and a full model  (a) a half model (b) a full model 
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Figure 5.5 gives the force histories of these two models; the average forces were 0.103kN 

and 0.099kN, and the standard deviations of the force were 0.076kN and 0.052kN, respectively. 

By imposing symmetry conditions, the resulting cutting forces were close. But a greater 

difference was measured in the fluctuation of the forces. The full model gave a lower coefficient 

of variation at 0.53, while the half model gave a higher coefficient of variation at 0.74. The full 

model encountered more elements, and the total force was the average of a larger number of 

elements, and thus resulted in a smaller fluctuation. In the present study, these differences were 

deemed insignificant. 

(a)                                                        

 

(b)                                                        

 

Figure 5.5 Cutting force for a half model and a full model(a) a half model (b) a full model 
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5.5 SPECIFIC ENERGY EVOLUTION IN GROOVE CUTTING FOR THE 

RECTANGULAR CUTTER 

Having confirmed the validity of imposing the symmetry conditions, we moved on to model 

groove cutting. In order to investigate the influence of  cutter width with respect to cutting depth, 

namely, the influence of  w/d ratio, on the specific energy in groove cutting, a total of five 

groove cuts were conducted using the same cutting depth while varying the cutting width. The 

cutting depth chosen was 0.6mm, which corresponded roughly to 6 layers of the elements, to 

ensure sufficient resolution in a ductile failure mode cutting [19]. The cutting widths increased 

from 1.2 mm to 3.6 mm at an interval of 0.6mm. A full model of the rock sample was only 

adopted for the case where the width equaled 1.2 mm to ensure an adequate number of elements  

made contact with the cutter, while for all the other cases only half models were used. 

Figure 5.6 presents the mesh of groove cutting for the case where w/d equaled 2. A fine 

mesh with average element size of 0.11 mm formed the top 1.5 mm of the sample, while a coarse 

mesh with an average element size of 0.5 mm was used for the rest. Figure 5.7 depicts the mesh 

for all the other groove cutting cases, where fine mesh was limited to a zone of 0.8 mm in depth 

and 2.2 mm in width. The lateral distance in all cases exceeded six times that of the average 

element size. The cutting force history and a snapshot for the case where w/d=2 are shown in 

Figure 5.8; the average cutting force was 0.023KN, and the specific energy was 32.5MPa. The 

cutting forces for the cases that w/d=3, 4, 5 and 6 were all obtained based on the mesh in Figure 

5.7. The cutting force history and a snapshot for the case where w/d=4 are shown in Figure 5.9; 

the average force was 0.038kN, and the specific energy was 26.5MPa. The slab cutting was 

carried out based on the mesh of Figure 5.6. Its cutting force history and a snapshot are shown in 

Figure 5.10; the average force was 0.039kN and the intrinsic specific energy was 21.4MPa.  
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Figure 5.6 Geometry and mesh used in grooving cutting with w/d=2 

 

Figure 5.7 Geometry and mesh used in grooving cutting with w/d=3,4,5,6 
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 (a)                                                        

 

(b)                                                        

 

Figure 5.8 Cutting force and a snapshot of damage in grooving cutting with w/d=2 (a) cutting force history (b) a 

snapshot 
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(a)                                                        

  

(b)                                                        

 

Figure 5.9 Cutting force and a snapshot of damage in grooving cutting with w/d=4 (a) cutting force history 

(b)snapshot 
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 (a)                                                        

  

(b)                                                        

 

Figure 5.10 Cutting force and a snapshot of damage in slab cutting (a) cutting force history (b)snapshot  
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A summary of the cutting force and specific energy for all the groove cutting cases as 

well as a slab cutting is shown in Table 5.1. 

Table 5.1 A summary of cutting force and specific energy 

 w/d Average 

force(kN) 

Force standard 

deviation (kN) 

Specific 

energy(MPa) 

Groove cutting 2 0.0234 0.0155 32.5 

3 0.0310 0.0262 28.7 

4 0.0382 0.0276 26.5 

5 0.0478 0.0272 26.6 

6 0.0480 0.0346 22.2 

Slab cutting 0.0386 0.0196 21.4 

 

The evolution of the specific energy versus w/d is shown in Figure 5.11. It agreed with 

the experimental results in Vosges sandstone, by observing that the specific energy decreased 

with w/d and showed a tendency to converge to the intrinsic specific energy in slab cutting. 

However, as the details of the mechanical properties of laboratory data were not available, the 

comparison can be viewed as qualitative. In the simulation, the specific energy in the slab cutting 

is smaller than the uniaxial compressive strength, and this might result from the element erosion 

algorithm. As the rock elements were deleted after failure, thus the debris or plastic flow of 

crushed rock in front of cutter [41] would not be well modeled. 

  



98 

(a)               

      

 (b)      

 

Figure 5.11 Evolution of the specific energy versus w/d (a) present modeling  results. (b) experiments conducted in 

Vosges sandstone[6] 
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5.6 COMPARISON OF LINEAR CUTTING AND CIRCULAR CUTTING 

As extensive calibration of material parameters and sensitivities analysis were based on linear 

cutting [29], it was desirable to establish the relationship between linear cutting and circular 

cutting.  A numerical experiment was designed to compare the circular cutting and linear cutting, 

regarding the force and cutting volume, which were essential for MSE. The comparative 

experiment adopted the same cutter but different shape of rock sample. To save computation 

expense, only 1/8 of rock sample was modeled in the circular cutting, as shown in the shaded 

area in Figure 5.12 

  

Figure 5.12 Sketch of rock sample for circular cutting 

The diameter and thickness of PDC disc cutter was 13mm and 2mm, respectively. The 

rake angle of the disc cutter was 15o. The mesh of rock sample was illustrated in Figure 5.13. For 

circular cutting, the width and average length of rock sample is 11mm and 23.4mm, respectively; 

the height is 3mm, with the top 2.5mm fine zone formed with the average mesh size of 0.25mm. 

The total number of tetrahedron element is 645,140. For the counterpart linear cutting, the 
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dimension of rock sample was X*Y*Z=23.4mm*3mm*11mm, with a total number of 595,660 

elements.  

The horizontal velocity was fixed to be vx=vθ=4m/s, while the vertical velocity of cutter 

was fixed to be vy=0.255m/s, resulting in a linear increase of the cutting from zero in the left to 

1.5mm in the right. As the maximum cutting width was 8.4 mm corresponding to the cutting 

depth of 1.5mm, the width of rock sample allowed a margin of at least five times mesh size 

beyond immediate contact area in the lateral direction. 

(a)                                                       (b)                         

 

Figure 5.13 Geometry and mesh by a disc cutter (a) circular cutting (b)linear cutting 

Figure 5.14 showed the damage as well as post cutting configuration. Figure 5.15 shows 

the histories of three force components. To eliminate the possible effect of boundary condition, 

only the middle part when depth is between 0.3mm to 1.3mm was plotted to compare. The 

cutting force was larger than the thrust force, and the side force was around zero. These trends 

agreed qualitatively with the laboratory test of circular cutting in ambient pressure environment 

[8]. To compare the forces components statistically, the average and standard derivation of three 

force components were summarized in Table 5.2. By comparing the force components of circular 

cutting and linear cutting, it turned out that they were almost identical.  
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 (a)                                                       (b)                         

  

Figure 5.14 A snapshot of damage by a disc cutter (a) circular cutting. (b)linear cutting 
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 (b)                                                    

 

Figure 5.15 History of force componentsby a disc cutter (a) circular cutting (b)linear cutting 

Table 5.2 Comparison of force components between circular cutting and linear cutting 

Circular  cutting Linear cutting 

 average(kN) standard derivation(kN)  average(kN) standard derivation(kN) 

Fθ 0.066 0.069 Fx 0.066 0.053 

Fy 0.023 0.019 Fy 0.024 0.018 

Fr -0.001 0.005 Fz 0.000 0.003 

 

Besides the force hisory, another key component to evaluate MSE was the volume of 

rock. The volume traced by the cutter through its path in the rock was apparent the same for 
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accumulative value along versus the horizontal distance was plotted in Figure 5.16, and it was 

shown that the actual volume of rock been cut was also almost identical. 

Given the fact that the force components, volume of rock traced by the cutter, and 

volume of rock been cut were almost identical between circular cutting and linear cutting, it was 

concluded that the experience in linear cutting could be readily translated to circular cutting.  

 

Figure 5.16 Comparion of eroded volume between linear cutting and circular cutting by a disc cutter 
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cutting became insignificant. The computed trend of the specific energy of the groove cutting 

agreed well with the experiment.  

After successfully modeling the linear cutting by a rectangular cutter, we moved on to the 

modeling of the circular cutting by a disc cutter, and the result showed that the cutting forces and 

specific energies for linear cutting and circular cutting were almost identical. 

This study has obtained satisfactory results, by using a finite element mesh with element 

size in the order of 0.1 to 0.4 mm within the interested zone of the rock. Using such a small 

element size, however, could be problematic at times, causing anomalies such as distorted 

element deformation, or a decrease in the automatic time stepping to an unmanageable time step 

during a run. For future application, the issue of how to scale up the problem needs to be further 

investigated. 

The element erosion algorithm in FEM often led to loose of contacts between the cutter 

and the rock elements. It then led to an underestimation of the cutting force, or the specific 

energy of the slab cutting. A proper tuning of FEM modeling would have to take this into 

account. 
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6.0  RELATIONSHIP BETWEEN MSE AND ROP BY CONSIDERING CUTTER 

WEAR 

6.1 INTRODUCTION 

Mechanical Specific Energy (MSE) and Rate of Penetration (ROP) are two key factors for 

evaluating the efficiency of a drilling process [9] and together they form a good base for 

strategizing a desirable drilling operation. MSE is defined as the energy required to removing a 

unit volume of rock [31]. This study looked into the relationship between MSE and ROP as 

obtained from cutting by a single Polycrystalline Diamond Compact (PDC) disc cutter as well as 

by a full drilling bit. In terms of a single PDC cutter, a MSE versus ROP relationship may be 

obtained in two ways. One approach is to use a suite of tests that adopts a different fixed depth of 

cutting for each of the tests, while advancing the cutter forward at a fixed speed. The other 

approach uses just a single test and advances the cutter both horizontally and vertically with their 

respective fixed rates. In this second approach, the rate of depth of cutting increases as the 

cutting progresses. This corresponds to an ever increasing ROP within a test. Thus a study on the 

relationship between MSE versus the depth of cut in such a setting constitutes a convenient way 

of understanding the relationship between MSE and ROP. 

Even for the same ROP, or cutting depth, the MSE may be different for a blunt cutter due 

to the force below the cutter. Based on Detournay and Defourny’s cutting model [15], the forces 
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act on the cutting face and wear face independently for a blunt rectangular cutter, and the MSE 

can be expressed as: 

 c
s

f
n

F
FMSE µ

ε
+= 1

 
(6.1) 

where ε  is the intrinsic specific energy for a sharp cutter, µ is the friction coefficient. f
nF is the 

vertical force component on the wear face, c
sF is the horizontal force component on the cutting 

face. 

Both force components are assumed to be proportional to the area[15, 16]: 
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where cA is the cutting area on the cutting face, fA  is the friction area on the wear face, σ  is the 

contact stress on the wear face. The ratio of σ over ε  is defined as εσκ /= , which is in the 

order of one to ten[109]. 

Extensive cutting experiments have shown that the intrinsic specific energy ε is 

approximately equal to the uniaxial compressive strength of rock cσ [6, 7]. Thus, Eq (6.1) and Eq 

(6.2) leads to:  
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Specifically for a blunt rectangular cutter,  
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(6.4) 

where 0l is the initial wear length on the edge of cutter, d is the cutting depth. 

Thus Detournay and Defourny’s cutting model [15] presented an relationship between 

MSE and cutting depth, for slab cutting with both sharp and blunt rectangular cutters. The MSE 
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associated with a blunt cutter is larger than that of a sharp cutter, as extra energy is consumed by 

friction in the bottom of blunt cutter. MSE also decreases with cutting depth provided that the 

wear length is constant, as friction is more significant at small depth. A blunt cutter may be a 

product of wear. The main wear mechanism includes: microchipping on cutter edge due to 

impact loading, abrasion caused by hard abrasive rock, thermal degradation by high temperature, 

among other factors[110, 111] 

The concept of tip force due to defects or chamfer on the edge of cutter has been used by 

other researchers [6, 112, 113]. Challamel and Sellami[112] argued that an extra tip force might 

be introduced by microstructure effect and defects or chamfer on the tip of a cutter. Richard [6] 

found that the tip force could well explain the force intercept at zero depth for a nominal sharp 

rectangular cutter. Richard [113] has also observed the MSE decreases with cutting depth for a 

nominal sharp circular cutter.  

The derived relationship between MSE and cutting depth based on Detournay and 

Defourny’s cutting model [15] assumes a constant wear length along a rectangular cutter, 

without considering the evolution of wear during the cutting process. In a drilling operation wear 

would not remain unchanged. Thus, this study extended the relationship between MSE and depth 

to a circular cutter, and took into account the evolution of wear during cutting.  

This study started by deriving a simple model for the relationship between MSE and 

cutting depth of a circular cutter, based on several assumptions. The model considered four 

different conditions: (1) perfect sharp cutter; (2) initially perfectly sharp cutter with a constant 

wear rate; (3) blunt cutter with a fixed wear; and (4) blunt cutter with a constant wear rate.  

To test the model, Lagrangian Finite Element Method was first employed to model the 

circular cutting of a perfectly sharp circular cutter. In laboratory tests and in the field drilling, it 
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is not always possible to obtain an accurate estimate of the volume of rock being removed. In 

contrast, in a finite element analysis the actual volume of rock being removed can be accurately 

estimated.  An accurate estimate of removed rock volume turned out to be a significant issue as 

the results of this study would attest.  

Secondly, the model was applied to some experiment data in literature[113]. The cutting 

tests were carried out with soft rock under ambient pressure condition. The actual volume of rock 

removed was estimated based on the measurement of micrometers after cutting. 

Thirdly, the model was applied to cutting test conducted in the Ultra-deep Drilling 

Simulator (UDS) [10] of the Extreme Drilling Laboratory located at National Energy and 

Technology Laboratory (NETL), Department of Energy. The test was conducted under high 

pressure with high strength rock. The volume of rock removed was estimated using high 

resolution 3D surface profile obtained with confocal microscope.  

Lastly, the model was employed to study MSE from the drilling operation by a full 

drilling bit.  

6.2 A SIMPLE MODEL BETWEEN MSE AND DEPTH  

Considered here is the case of a groove cutting with a circular cutter, in which the cutter 

advanced at a fixed horizontal velocity and a fixed but different vertical velocity. The rake angle 

considered is 015=θ . A simple model between MSE and cutting depth is derived based on 

several assumptions as follows: 

(1) The failure mode is ductile, as the cutting depth investigated is shallow. 
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(2)The 3D effect in groove cutting of a circular cutter is neglected for simplicity, as the 

w/d is typically large with small depth for a circular cutter. For a grooving cutting, its MSE is 

larger than that of a corresponding slab cutting, however, the difference is not significant when 

the ratio of w/d is large [6].  

(3)The wear surface on the edge of the cutter is idealized to be horizontal, and it is in 

perfect contact with rock. 

(4) The rate of wear is constant, in which the wear rate is defined as the increase of wear 

length within a unit contact time between the cutter and rock.  

Assuming that the cutting surface of a circular cutter is in the coordinate system x’y’z’, 

which is rotated clockwisely with the rake angle of θ  from the global coordinate system xyz. In 

other words, θcos'yy =  on the cutting face. For a circular cutter with a radius r, the cutter edge 

on the cutting face can be expressed in polar coordinate as: ( )φcos1' −= ry . Figure 6.1 shows the 

definitions of the Cartesian coordinate systems x’y’z’, xyz, and the polar coordinate system as 

well as the geometrical terms used. 

For a shallow cut, 2

2
11cos φφ −≈ , and the polar coordinates are related to the Cartesian 

coordinates by
 

( )θφ cos2 ry≈ . This gives the curve length along the cutter edge as: 

 θ
φ

cos
222 ryrL ≈=

 
(6.5) 

To consider the evolution of wear, a constant wear rate is defined here as: τddlK = , 

where l is the wear length on the edge of cutter, τ is the contact time between the cutter and the 

rock. For a cutter travels both horizontally and vertically, the contact time is a function of the 
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depth of cut d , the vertical distance between the bottom of the cutter and any position below the 

rock surface y , and the vertical velocity of the cutter yv . The contact time can be written as  

 dy
v

yd

y

≤≤
−

= 0,τ  (6.6) 

As the wear length increases with contact time, thus at any location below the rock surface, the 

wear length can be expressed as: 

 ( ) dyyd
v
KlKll

y

≤≤−+=+= 0,00 τ  (6.7) 

where 0l is the initial wear length before cutting. The wear length is the largest at the bottom of 

the cutter after cutting, because of the longest contact time there. 

When the depth of cut is d, the worn area along the cutter edge can be expressed as: 

 ( )∫∫ ≈==
d

cf dflrdy
dy
dLlldLA

0 0cos
22
θ

 (6.8) 

where ( ) ( ) 0,0,23, 00
2/32/1 ≠≠=+= lKKlvdddf yαα . α is a parameter introduced for 

simplicity with a dimension of length. It is related to the wear rate K and thus can be determined 

from the boundary condition. Assume the final wear length in the bottom of cutter is fl when the 

cut depth is fd , then the wear rate can be expressed as:
 

( ) fyf dvllK 0−= . For simplicity, the 

ratio of initial wear length over the final wear length in the bottom of cutter is defined as:

fll /0=β , which lies between 0 and 1. α can be determined from the initial and final condition 

as:
 

( )[ ]ββα −= 123 fd . 
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 (a)                                                       (b)                         

 

Figure 6.1 Coordinate transformation and geometrical terms. 

The summation of two power functions can be further approximated with a simple power 

function: ( ) ( ) ( ) ( )11212/32/1 1 +++=≈+= αααα ddgdddf . Figure 6.2 shows the comparison of  

( )df  and ( )dg  for different α , with α =0.1, 1, 10mm, it shows that these two functions match 

well. Thus the friction area can be approximated by a simple power function of depth as: 

 1
1

2
1

0
1

cos
22 +

++
≈ α

α
α

θ
dlrAf  (6.9) 

The cutting area, on the other hand, can be expressed as: 

 θφφ cos2sin
2
12 






 −= rAc  (6.10) 

Based on the approximation of !3sin 3φφφ −≈ , the cutting area corresponding to dy = can also 

be approximated as a power function of depth as: 

 2
3

cos
2

3
4 drAc θ

≈  (6.11) 

x’

y y’

x

θ

l z’

y’

φ r

L



112 

 

Figure 6.2 Approximation of the summation of two power functions with a simple power function 

Thus, for an initially blunt circular cutter with a evolving of wear ( )0,00 ≠≠ Kl , a simple 

relationship between MSE and cutting depth can be expressed as: 

 
2

11 β

β
σ d

MSE

c

+≈  (6.12) 

where ( ) ( ) ( )[ ] ff lldl /,123,1,23 02201 =−=+≈≈ βββαααββµκβ  

It can readily be seen that the power 2β  lies in the range of (0,1), and a higher wear rate 

leads to smaller 2β and larger 1β , resulting in larger MSE. The value of 1β  and 2β  in some 

special cases are as follows: 

021 == ββ , for an perfectly sharp cutter ( )0,00 == Kl ; 

0, 21 ≈≈ βµκβ ff dl , for an initially sharp cutter with a constant rate of wear ( )0,00 ≠= Kl ; 

1,23 201 ≈≈ βµκβ l , for an initially blunt cutter with a fixed wear ( )0,00 =≠ Kl . 
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6.3 FEM MODELING OF CIRCULAR CUTTING 

For the modeling of a circular cutting by a disc PDC cutter, only 1/8 of rock sample was 

modeled as shown in the shaded area in Figure 6.3 

  
Figure 6.3 Sketch of rock sample used in the circular cutting model 

As it has already been found that in this study that in order to ensure sufficient lateral 

confinement of a groove cutting, the width of the finite element rock sample should satisfy[114]: 

 
awwB 2+>  (6.13) 

where B is the sample width, w is the cutter-rock contact width, and wa is affected distance from 

edge of a cutter, which is approximately six times of the average element size. 

A sample of the FEM mesh used is depicted in Figure 6.4. The diameter and thickness of 

the PDC disc cutter considered was 13mm and 2mm, respectively. For the circular cutting 

studied, the width and average length of rock sample were 11mm and 23.4mm, respectively; 

while the sample height was 3mm, with the top 2.5mm a finely meshed zone formed with an 

B
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average mesh size of 0.25mm. A total number of 645,140 tetrahedron elements was used in the 

sample depicted in Figure 6.4.  

 

Figure 6.4 Mesh of cutter and rock for circular cutting 

The rake angle of the circular cutter used was set at 015=θ . The tangential velocity of the 

cutter was fixed at θv =4m/s, while the vertical velocity of cutter was fixed at vv =0.255m/s, 

resulting in a linear increase of the cutting depth from zero on the left to 1.5mm on the right. The 

maximum cutting width was 8.4 mm, when the cutting depth reached 1.5mm, and the width of 

rock sample did maintain a sufficient margin as dictated by Eq. (6.13). 

The present FEM cutting analysis was carried out on Vosges sandstone[64]. The uniaxial 

compressive strength was MPac 39=σ . As the adopted material model uses an erosion algorithm 

that deletes the rock elements after failure, thus the debris or plastic flow of crushed rock in front 

of cutter [41] would not be well modeled. To offset the influence of erosion algorithm on the 

cutting force, special efforts were conducted by tunning the dynamic strength of rock, to offer 

reliable cutting force observed in laboratory cutting test. 
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Figure 6.5 gives the configuration of a cutting in progress as well as the state of damages 

incurred on the sample behind the cutter as it passed. Figure 6.6 shows the histories of three 

force components, the force normal to the cutter, θf , the force tangential to the cutter, and the 

vertical force, vf . The cutting forces obtained were larger than the thrust forces, and the side 

forces were around zero. These trends agreed qualitatively with the laboratory test of circular 

cutting in ambient pressure environment of sharp cutters[8].  

MSE computation requires an estimate of the volume of rock being removed. Two 

different volume measures can be distinguished: the project removed volume and the actual 

removed volume.  The projected removed volume is the volume that is swept by a cutter through 

its path over the sample; whereas the actual removed volume is literally the actual volume of 

rocks that is being removed.  

Given the histories of force components and projected cutting area during the cutting 

process, the MSE using the projected volume may be calculated as:  

 
pp

rrvv

p
p A

f
vA

vfvfvf
dV
dWMSE θ

θ

θθ ≈
++

==
 

(6.14) 

Where W is the work, pV  is the projected removed volume, pA  is the projected area that the 

cutter traced through its path in the rock.                  

If the actual removed volume of rock was used, the MSEa could be calculated as: 

 
a

a A
fMSE θ≈

 
(6.15) 
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Figure 6.5 A snapshot of showing the cutting in progress. 

 

Figure 6.6 Histories of forces obtained in FEM 
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The actual cut area aA  was related to the actual volume cut, aV , as 

 dtv
dVA a

a
θ

=
 

(6.16) 

In a FEM run both areas can be readily found. The projected area and actual cut area are plotted 

in Figure 6.7.  

 

Figure 6.7 History of actual cut area and projected area in FEM 

The actual removed or cut area, fluctuated as expected, whereas the smaller projected 

area was smooth. The MSEp or MSEa obtained are presented in Figure 6.8, in which a moving 

average has been applied as a filter. Figure 6.8 shows that the MSEp computed decreased with 

the cutting depth and then leveled, while the actual MSEa was more or less constant. To 

eliminate the possible effect of boundary, the depth smaller than 0.3mm and larger than 1.3mm 

were taken out, thus only the depth from 0.3mm to 1.3mm were plotted. 
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Because the FEM analysis modeled a sharp cutter, the MSEa obtained should be a 

constant, independent of the depth of cut, as the analysis results affirmed. The estimate of the 

MSE from using the projected area would best be carried out at the maximum depth where the 

projected area and actual cut area has the smallest difference.  

 
Figure 6.8 Evolution of MSEp and MSEa over cutting depth in FEM 
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Richard et al. [113] conducted extensive experiments on the groove cutting tests under ambient 
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cutting depth was kept constant during each test, but the depth varied from test to test. For each 

test, the cutting depth was measured with a micrometer at several points along the groove after 

cutting, and the average depth was used as the actual cutting depth[113].  

Two sets of their circular cutting data obtained using two different cutter radii were 

compared to the present model. The radii of the cutter were 6.5mm and 9.5mm, respectively, 

with an average initial wear lengths.l0 in the range of 0.05 to 0.08mm. The back rake angles were 

fixed at 015=θ . The particular rock tested was soft Lens limestone, with MPac 30=σ . The data 

with cutting depth smaller than 1mm were used to fit Eq (6.12), and we found a reasonable good 

match for these two sets of data, as shown in Figure 6.9. Specifically, for the test with the cutter 

radius of mmr 5.6= , 96.0,18.0 21 == ββ  and 93.02 =R ; while for the test with the cutter radius 

mmr 5.9= , 04.1,10.0 21 == ββ  and 81.02 =R . 

  

Figure 6.9 Evolution of MSE with cutting depth under ambient pressure condition 
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Due to the uncertainty about the contact stress on the wear face, the comparison between 

the fitted result and the model was focused on the parameter 2β . For these two sets of data, it 

shows 12 ≈β , suggesting that the wear length of the initially blunt cutter was approximately 

constant when cutting soft rock under ambient pressure condition. 

6.5 EXPERIMENT OF CIRCULAR CUTTING UNDER HIGH PRESSURE 

To understand the complex interaction among the drilling bit, rock, and drilling fluid, NETL 

invested in the construction of an Ultra-deep Drilling Simulator (UDS) [10] as shown in Figure 

6.10(a). The UDS is capable of simulating the cutting action of a single PDC cutter under 

pressure as high as 205MPa. Figure 6.10(b) gives a layout on the force measurements taken in 

UDS. 

Here we studied one set of test results obtained from UDS [10]. The PDC disc cutter had 

the diameter and thickness of 16mm and 1.8mm, respectively. It also had a small chamfer of 

0.3mm at 45 degrees. The rake angle applied was set at 15 degrees, and the initial wear flat 

length 0l  was approximately 0.4 mm along the edge of cutter. The rock tested was Carthage 

marble, and the sample had a diameter of 0.2m and a thickness of 0.2m.  The surface of the rock 

sample was tilted in a fashion so that the cutting depth would increase from 0 to 1.5mm as the 

cutter was rotated without vertical translation. A clear mineral oil was used to simulate the 

drilling fluid, and a pressure of 103 MPa was applied through the hydraulic system. Figure 6.11 

presents a photo of the rock sample of Carthage marble taken after cutting was completed.  
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Figure 6.10 Laboratory of rock cutting under high pressure in (a)one view of the NETL UDS system (b)The UDS 

force measurement layout[10] 

 

Figure 6.11 The rock sample of Carthage marble[115] 
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Three force components were recorded during the cutting process, and two primary force 

components obtained are depicted in Figure 6.12, as the side force was almost zero.  

 

Figure 6.12 History of tangential force and vertical force in UDS 

The projected area was calculated based on the geometry and the experiment setup, and 

the actual cut area was obtained by measurement through high resolution three-dimensional 

images taken by a confocal laser scanning microscope [115]. Confocal images were taken on 

several rectangular areas on the surface of the rock sample as shown in Figure 6.11, and one is 

presented in Figure 6.13. 

Based on the projected area and actual cut area, the corresponding MSEp and MSEa were 

obtained and plotted in Figure 6.14. It can be observed, just as from the FEM results, that MSE 

decreased with cutting depth and then leveled. Meanwhile, MSEa also varied with depth, albeit 

with a smaller change. From the fact that the vertical forces or, weights on bit, were much larger 
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than the cutting forces, it follows that the cutting was similar to that from a blunt cutter, and 

friction between the cuter and the rock surface was significant even though the cutter was 

initially sharp with small chamfer.      

 

Figure 6.13 Confocal image of a typical section after cutting in UDS[115]. 

 

Figure 6.14 Evolution of MSE with cutting depth in UDS 
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Figure 6.15 An interpretation of the MSEa with depth in UDS 

When fitting the UDS MSEa data to Eq. (6.12), a good match was found with 

88.0,57.0,56.2 2
21 === Rββ , as shown in Figure 6.15. Here the MSE was normalized with the 

confined compressive strength of Carthage marble MPac 317≈σ  under the confining pressure 

of 103MPa[9].  

The fitting result 57.02 ≈β
 
suggests substantial wear during cutting under high pressure 

condition. The wear length in the bottom of cutter was determined to be approximate 3 times of 

the original value after cutting with mmd f 5.1= , as illustrated by: 
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The shape of cutter before and after cutting are shown in Figure 6.16[10]. Even though 

the final wear length after cutting couldn’t be accurately determined, Figure 6.16 clearly show 

the bottom of cutter severely wore after cutting. 

(a)                                                       (b)                         

 

Figure 6.16 The shape of the cutter in UDS (a) before cutting (b) after cutting [10]  

By comparing the results of cutting low strength rock under ambient pressure and that of 

cutting high strength rock under high pressure condition, it shows that the MSE is much larger in 

the latter case. As the proposed model is associated with 21,, ββσ c , thus it suggested that the 

extra energy consumed is mainly due to the following factors among others: 

(1) The strength of rock increases under high pressure condition, and gave a larger cσ ; 

(2) Cutting high strength rock under high pressure leads to severe wear in the cutter, that 

resulted in a smaller 2β ;  

(3) The friction coefficient is larger in high pressure condition[116, 117], and the contact 

stress is also expected to be larger. As 1β  is approximately proportional to the friction 

coefficient, the normalized contact stress, and the inverse of 2β , thus high pressure will results in 

larger 1β .  

1mm 1mm
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6.6 FULL BIT DRILLING TEST  

In a laboratory drilling test, the actual cut volume, even though unknown, was not expected to 

vary significantly from the projected volume.  This is mainly because the extra cutting volume 

beyond the edge of bit is small compared to the volume that the bit traced. Extensive laboratory 

drilling tests have been carried out by TerraTek[9] under contract from DOE, to improve the 

drilling performance under high pressure high temperature condition. The tests involved different 

rocks, drilling bits and drilling fluids. A set of data from the drilling test was studied. The tested 

rock is Crab Orchard Sandstone, which had a confined compressive strength of MPac 593≈σ  

under the confining pressure of 76MPa[9]. The MSE obtained is presented in Figure 6.17.  

 

Figure 6.17 Evolution of MSE with depth per revolution with full drilling bit 
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The projected volume of the rock removed was calculated by multiplying the cross area 

of the drilling bit and the average depth per revolution. It was observed that MSE of the full 

drilling bit has a similar trend to that of a single cutter, in the sense that MSE decreased with 

depth and then almost leveled. Again, Eq. (6.12) provided a good match with the data with 

89.0,49.0,08.2 2
21 === Rββ . Even though the mechanics of the drilling process by a full 

drilling bit is much more complex than that of a single cutter, the relationship between MSE and 

cutting depth was found to follow a similar equation.  

6.7 CONCLUSIONS 

A simple model between the MSE and cutting depth for a circular cutter was proposed, by 

considering the wear evolution of the wear surface. The derivation was an extension to 

Detournay and Defourny’s cutting model for a rectangular cutter with fixed wear length. 

Numerical simulation and laboratory tests have been successfully carried out to study the effect 

of cutting depth on MSE, and the results matched well with the proposed model. 

In the FEM analysis, when a sharp cutter is used, the MSE would be constant if the actual 

cut volume is used in its calculation, and the MSE obtained is approximately equal to the 

uniaxial compressive strength.  

In the laboratory test of cutting soft rock under ambient pressure environment, the rate of 

wear increase was negligible, and the initial wear length is thus approximately constant. Even 

though the small chamfer had large influence on MSE at small depths, its impact diminished at 

larger cutting depth, since the MSE leveled off at the value approximately equaled to the uniaxial 

compressive strength. 
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In the laboratory test of cutting hard rock under high pressure environments, the rate of 

wear increase is not negligible. The evolution of cutter wear makes the normalized MSE much 

larger compared with those from cutting soft rock under ambient pressure condition. 

This simple model proposed also applies to the drilling by a full bit, and may serve as an 

approximation when a theoretical relationship between MSE and ROP is not available.   
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7.0  THE MECHANICS OF ROCK DRILLING 

7.1 INTRODUCTION 

A full drilling bit consists of multiple cutters have been used for drilling for more than a 

century[109]. The cutters were originally made of steel, and the invention of PDC cutter in 1970s 

significantly improves the drilling efficiency. The two most important factors in characterizing 

the drilling efficiency is through the use of MSE and ROP as discussed. To increase the drilling 

efficiency and decrease the drilling cost are the main objectives for a bit design to strive to 

achieve. A bit design covers a spectrum of issues from the selection of the bit body material, 

cutter placement pattern and density, bit profile, back rake, side rake and hydraulic horsepower, 

among other factors [12]. The interaction between drilling bit and rock is a complex process, and 

the main methodologies to study the interaction include analytical models[13, 16], laboratory and 

field tests [1, 9, 12], and numerical modeling.  

Due to complex mechanism of bit rock interaction under High Temperature High 

Pressure (HTHP) condition the analytical models were typically derived for ambient pressure 

condition[13, 16]. Even so, further simplifications were necessary, because of the complicated 

geometry and discrete properties of drilling bit, the complicated contact interaction between 

cutters and rock.  
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Laboratory and field tests are the most widely used methods to evaluate the efficiency of 

drilling under various conditions[1, 9, 12], because they could render reliable results in the actual 

drilling process, with the inclusion of HTHP, complicated bit geometry, and other factors. A 

major drawback of physical tests is that they are expensive. 

Compared with analytical models and physical tests, numerical modeling has many 

advantages: it is able to accommodate complicated geometry of the bit, to extensively study the 

key parameters influencing the drilling efficiency, all at a relatively low cost. To make the 

numerical modeling reliable, the numerical procedure and parameters employed should be 

carefully calibrated with results from physical tests.  

In this Chapter, some analytical models and important results in physical tests were first 

reviewed[9, 13, 16], and a prototype numerical drilling bit was initiated. The objectives were to 

demonstrate that a detailed mechanical modeling of a drilling bit was feasible. 

7.2 ANALYTICAL MODELS 

Based on the 2D cutting model [15], Detournay et al. developed a 3D model for a PDC drilling 

bit[16]. Instead of considering explicitly the cutter shape and the cutter distribution on a bit, this 

3D model introduced a bit constant to represent the geometry impact of the bit. A full set of 

equations were established by relating Weight on Bit (WOB), ROP, Torque on Bit (TOB), and 

angular velocity, Ω , of the bit rotation. The dynamic parameters WOB and TOB are conjugate 

to the kinematic parameters ROP and Ω [16] . However, the two kinematic parameters can be 

combined by redefining ROP as depth of penetration per revolution. By so doing, only three 
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independent parameters need to be considered. The dynamic parameters WOB and TOB could 

then be expressed as functions of the kinematic parameters ROP [16]. 

 )(),( ROPTOBTOBROPWOBWOB ==  (7.1) 

Figure 7.1 shows a typical PDC drilling bit, the idealized bit in a 3D model, as well as 

corresponding cutter in 2D [15, 16, 118]. The frictional effect is represented in the 2D by a flat 

length, l. In this simplified representation, a rotation of the 2D cutting model [15]. becomes the 

basis for the rotation of a 3D model [16]. This is carried out by scaling WOB and TOB with the 

radius of the drilling bit, a, and the two sets of parameters were related as[16]: 

To make the interface law of 2D model [15] readily be used in the 3D model, the WOB 

and TOB were scaled based on the radius of the drilling bit, a, and introduces an equivalent 2D 

model subjected to a vertical force denoted as wob, and a horizontal force denoted as tob. The 

equivalence of a 2D and 3D models are established as follows, [16]:  

 dROP
a
TOBtob

a
WOBwob === ,2, 2  (7.2) 

On the other hand, the MSE incurred by a drilling bit includes two parts, coming from 

TOB and WOB respectively, and it may be expressed as [31],  

 
ROPa

ROPWOBTOBMSE
*

*2*
2π

π +
=  (7.3) 

As the angular displacement associated with TOB is typically much larger than the 

vertical displacement associated with WOB, the work associated with WOB is negligible, and 

the MSE for a drilling bit could be simplified as: 
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2
2  (7.4) 
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(a)                                                        

 

(b)                                                       (c)                         

 

Figure 7.1 3D model for a PDC bit (a) a real PDC drilling bit (b) a simplified PDC bit (c) the equivalent 2D 

model[15, 16, 118] 
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As the TOB is a function of ROP, the MSE could also be expressed as function ROP. The 

3D model of Detournay et al. considered the existence of three drilling phases as the drilling 

progressed in depth. They reasoned that the contact conditions between the drilling bit and rock 

changed as the depth of drilling increased, and as a result different relationships between TOB 

and ROP emerged[16]. In phase I, the wear friction, represented by the flat length increases 

linearly with the depth, then it becomes constant in the phase II, and it is more complicated in 

phase III for instance the poor cleaning may increase the flat length, while vibration may reduce 

it[16]. The general trend of wob and tob in the first two phases, which is of interests to the study,  

were similar and shown in Figure 7.2(a) [16]. A corresponding relationship between MSE and 

depth has been derived based on Eq (7.4) and a general trend is depicted in Figure 7.2(b).  

It is clear that MSE is decreases with depth in phase II, which covers the typical range of 

depth in the actual drilling process. This trend agrees with the laboratory drilling test[9]. 

However, in phase I when the drilling bit is not in full contact with the rock, the 3D model 

suggested the MSE be constant. This, however, deviates with the laboratory drilling results, 

likely due to the unsatisfactory the assumption that the contact length increases linearly with 

depth in phase I. 

 (a)                                                        
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(b)                                                        

 

Figure 7.2 The performance of a drilling bit (a) general evolution of wob and tob over depth (b) general evolution of 

MSE over depth[16] 

For a roller cone bit, Franca[13] derived a theoretical model. The general ideas are the 

same with the analytical model for the PDC bit: including the bit constant for the geometry of 

bit, the rate independent interface law between cutter and rock, the scaling of dynamic 

parameters between 3D and 2D models, and three phases in the drilling process[16]. Comparing 

with the PDC drilling bit in which cutters are fixed, the cutters are movable in the roller cone bi. 

Figure 7.3(a) shows a typical roller cone bit with three cones[118]. Due to the motion of cutters, 

the indentation introduced an extra process besides cutting and friction, as shown in Figure 

7.3(b). The cutters on each cone are spirally placed along the radius of the bit, as shown in 

Figure 7.3(c), and it was simplified that all the cutters were aligned on one cone, as shown in 

Figure 7.3(d) [119]. The model also predicts the dependence of WOB and TOB on the ROP, and 

some laboratory tests were conducted under ambient pressure condition to support the model.  
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 (a)                                                       (b)                         

           

(c)                                                       (d)                         

 

Figure 7.3 3D model for a roller cone bit (a) a real roller cone bit (b) three process for a roller cone bit (c) sketch of a 

roller cone (b) sketch of a simplied roller cone[13, 118, 119] 
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7.3 LABORATORY TESTS 

Extensive laboratory tests of rock drilling under high pressure have been conducted by TerraTek 

[9]., and several factors were studied, including the influence of bit type, rock type, drilling mud, 

angular velocity. Figure 7.4 shows a layout of the test and several drilling bits used. Some typical 

results tested on Crab Orchard Sandstone under the confining pressure of 76MPa were analyzed 

here. The evolution of scaled wob and tob on depth per revolution is summarized in Figure 7.5, 

and the evolution of normalized MSE on depth is summarized in Figure 7.6.  

The depths the laboratory tests carried out correspond to the first two phases as defined 

by the Detournay et al. model[16]. However, no clear boundary can be distinguished between 

phase I and phase II from the data. This implies that the transition from phase I to phase II is 

likely to be a gradual process. The wob and tob obtained did increasing with the depth, as 

predicted by the model. Within the likely range of phase I, the rates of increase in both wob and 

tob were nonlinear contrast to the linear assumption adopted in the model. Moreover, the MSE is 

obtained from the test results showed a steady decrease with depth in phase I range, instead of 

being constant as predicted in the model. A follow up investigation at this point would be 

worthwhile undertaking.  
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 (a)                                                        

 

(b)                                                        

 

Figure 7.4 Laboratory drilling test under high pressure by TerraTek (a) Experiment set up (b) four typical PDC bits 

used in the test[9] 
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 (a)                                                        

 

(b)                                                        

 

Figure 7.5 Laboratory test result of rock drilling under high pressure (a) relation between wob and d (b) relation 

between tob and d[9] 
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Figure 7.6 Relationship between normalilzed MSE and d in laboratory drilling test under high pressure[9] 

7.4 NUMERICAL MODELING 

The mechanics between the rock and a full drilling bit is one of the main objectives in this study. 

Due to the complexity of this problem, this study considers only the ambient pressure pressure 

condition should be deemed as only at the early phase of modeling the mechanics of rock drilling 

by a full PDC bit. 

In this study, a drilling bit model is built following the design as presented in Figure 7.1 

(a) as a base. The diameter of a PDC drilling bit typically ranges from 75 to 900mm, and a much 
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the cutters are mounted. The diameter of the bit was 12mm, and the diameter of a single cutter is 

1.45mm. Each cutter makes a 15o rake angle from vertical. The cylindrical rock model and initial 

set up is illustrated in Figure 7.8(a). The diameter and height of the cylindrical rock sample were 

set to be 14mm and 4mm, respectively. The average FEM mesh size for the rock was finer 

within the depth of interest and the mesh size was around 0.27mm. Altogether 160,114 elements 

were employed for the rock and 6,799 elements were employed for the drilling bit. 

Two different boundary conditions could be applied to this virtual drilling bit, namely, 

the kinematic controlled boundary, and the weight-on-bit controlled boundary. In the kinematic 

controlled boundary, the ROP and angular velocity Ω  were imposed, and the TOB and WOB 

were measured; while in the weight-on-bit controlled boundary, the angular velocity Ω  and 

WOB were imposed, and the TOB and ROP were measured[16]. Kinematic controlled boundary 

was preferred as it was more sTable[16], thus it was adopted in the present computation.  

In the analysis, the bit moved along a helical trajectory. This is achieved by pushing 

downward at a velocity of 0.5mm/ms and at the same time rotating at an angular velocity Ω  of 

4rad/ms. This resulted in a ROP of 0.79mm per revolution.  A snapshot of damage in the rock 

during the drilling process is showed in Figure 7.8(b). The resulting WOB and TOB computed 

for one revolution were shown in Figure 7.9.  

One significant drawback of the study was that the FEM mesh was not dense enough, in 

that a cutter might only in contact with about four elements, while in the circular groove cutting 

studty 70 elements were in contact with the cutter. Thus a follow up study using super computer 

will be necessary to get quantified results.  

Additionally, several simplifications were used in the preliminary modeling of rock 

cutting. The cutters were ideally sharp without wear flat. The model cutting was carried out 



141 

under ambient pressure condition, without considering the typical HTHP in real drilling. The bit 

was a small scale model, how to scale the problem still needs further study.  

 

Figure 7.7 The modeled small scale drilling bit 

 (a)                                                        
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 (b)                                                        
 

 

Figure 7.8 Drilling by a full drilling bit (a) geometry and mesh (b) a snapshot of damage during the drilling process 
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(b)                                                    

 

Figure 7.9 Modeled response of drilling bit under kinematic boundary condtion (a) WOB (b) TOB 

7.5 CONCLUSIONS 
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analytical methods and physical tests. The available analytical models presently some 
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effort, but much work is still required before the modeling results can represent a real drilling 

process.  

It is conceivable that a good way to study the complicated mechanism of the bit rock 

interaction would be to combining the advantages of all these methods. 
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8.0  CONCLUSIONS 

8.1 MAIN CONTRIBUTIONS 

The main contributions in this study are presented below. 

(1)This study built on the Jaime’s damage-based Finite Element Method(FEM) modeling 

of rock cutting. Based on previous experiences on linear rock cutting by a single Polycrystalline 

Diamond Compact(PDC) cutter, this study first extended the modeling to the circular cutting by 

a single cutter, then further initiated the modeling of rock drilling by a full drilling bit with 

multiple cutters. 

(2)The FEM modeling has been shown to reproduce an important feature observed in 

laboratory test, namely, the MSE obtained approximately is equaled to the uniaxial compressive 

strength in the ductile mode in groove cutting when the cutter width to cutting depth ratio was 

large. 

(3) The damage model in crack modeling has been shown to be compatible with the 

cohesive model in the modeling of the size effect of quasibrittle materials under mode I loading. 

The damage model was also successfully used to model the size effect of rock cutting under 

general setting.  

(4) Using the cutting depth as a measure of size, Bažant’s simple size effect law was 

shown to interpret the failure mode transition process in rock cutting well. 
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(5) The characteristic length is known to be linked to the critical transition depth, and its 

influence on the critical depth is studied through FEM modeling. Further, guided by FEM 

modeling results, few test data and some empirical equations, a relationship defining the critical 

depth as a function of the unconfined compression strength was derived. 

(6) A simple model on the relationship between MSE and ROP was derived on ductile 

mode of cutting with the inclusion of the evolution of cutter wear, and it has been used to 

interpret the results in cutting high strength rock under high pressure. 

8.2 FUTURE WORK 

Recommendations for future work are presented herein. 

(1) As the current analytical models in rock cutting are either focusing on ductile mode or 

on brittle mode, there has been a lack of a unified model. Based on the finding of this study that 

Bažant’s simple size effect law fits well with all the data both in numerical simulation and in 

laboratory test, it might be feasible to develop a simplified analytical model covering the whole 

spectrum of cutting depths of interests. This would be a desirable undertaking for future work.  

(2)The crack propagation in rocks is a complex problem, and even the fundamentals on 

the shear and compression fractures are not well understood. With the advance in the singularity 

modeling, a numerical study that differentiates the merits of different fracture criteria would be 

useful and timely.  Such type of study has the potential of clarifying the ambiguities of defining 

damage in three-dimensional stress space.  

(3)Since the deep oil drilling is carried out in High Temperature and High Pressure 

(HTHP) environment, research in such area is in urgent need. Even though there is solid 
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laboratory evidence that the MSE is also related to the compressive strength at a high pressure 

environment as the study has shown, the data points are simply too few to make sound 

conclusion. Research on HTHP cutting test would cast light on a better understanding of the 

underlying mechanics, and also on the adequacy of the numerical tool including the present 

damage model.  

(4) Clearly, the current analytical model relating the Mechanical Specific Energy(MSE) 

and Rate of Penertarion(ROP) for a full PDC drilling bit has room for improvement. It is 

essentially important to revisit the assumptions to improve the model.  

(5) A small scale drilling bit model was presented in this study. Even with 160,114 

elements employed in the rock sample, a much larger number of elements are needed for the 

analysis. A follow up study using high speed supercomputer is needed.  Also, it is not clear how 

the model would be scaled up, and an investigation in this respect is desirable. An immediate 

extension would be to study the impact of the drilling rod and its transmission of force and 

moment to the drilling bit. To study the effect of drilling fluid and drilling pressure, however, 

may require the work to be carried out in an FEM-based program where the source code can be 

manipulated. This poses a hurdle that might not be easily overcome. On the other hand, a 

decouple approach, linking one fluid mechanics code with one solid mechanics code, would be 

feasible. This would be worthwhile endeavor until a fully coupled code can be developed.  
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