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Human herpesvirus-8 induces a wide range of inflammatory immune mediators known to 

contribute to its associated cancer, Kaposi’s Sarcoma (KS).  Soluble immune mediators, such as 

cytokines, chemokines and growth factors produced during HHV-8 infection have been 

associated with tumor-cell proliferation, angiogenesis and vascular permeability. We sought to 

determine immune mediator production by two antigen presenting cells (APC) that are 

susceptible to HHV-8 infection, i.e., monocyte derived Dendritic cells (MDDC) and B 

lymphocytes.  

Dendritic cells abundantly express the HHV-8 receptor, type II C-type lectin, DC-specific 

ICAM-3 grabbing nonintegrin (DC-SIGN) resulting in viral entry, whereas only a small 

percentage of activated B cells express DC-SIGN in vitro.  Despite this, HHV-8 infection of 

MDDC results in an abortive replicative cycle, whereas full-lytic cycle replication occurs in the 

B cells.  I hypothesized that immune mediators produced by HHV-8 infected APC are unique 

between cell types and that HHV-8 infects a subset of B cells and initiates cytokine and 

chemokine production that contributes to HHV-8 replication, viral dissemination and initiation of 

KS and HHV-8 lymphomas. 
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I used a cytometric bead array to determine cytokine and chemokine production in B cells 

and MDDC, as well as qRT-PCR, TCID50 assay and flow cytometry to determine HHV-8 

replication in B cells.  I identified significant differences in the quality and quantity of cytokine 

and chemokine profiles of HHV-8 infected APC.  MDDC produced significant levels of MCP-1, 

MIP-1α, MIP-1β, RANTES, IP-10 and IL-10, while B cells produced significant levels of MIP-

1α, MIP-1β, IL-6, TNF-α and IL-8.  HHV-8 lytic replication in B cells resulted in polyfunctional 

immune mediator activity that may contribute to viral replication and proliferation of target cell 

populations in HHV-8 related cancers.  The importance of this work was demonstrated by the 

detection of B cell-produced cytokines and chemokines in HHV-8/HIV co-infected individuals 

who developed KS.  This is the first extensive, multiparameter, longitudinal study of HHV-8 

infection of B cells and immune mediators in development of KS.  This study provides novel 

targets for vaccine development and treatment options for KS, which could have great 

implications on Public Health. 
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1.0  INTRODUCTION 

Human Herpesvirus-8 (HHV-8), or Kaposi’s sarcoma associated herpesvirus (KSHV), is the 

etiologic agent of Kaposi’s sarcoma (KS) (50), a neoplasm of endothelial origin that occurs in 

four distinct epidemiologic forms (69, 135): classic or Mediterranean KS, epidemic or Acquired 

Immunodeficiency Syndrome (AIDS)-related KS, endemic or African KS, and iatrogenic or 

organ transplant-associated KS. KS is the most common cancer associated with Human 

Immunodeficiency Virus-1 (HIV-1) infection and AIDS (57). Although the incidence of KS in 

HIV-1 infected persons declined with the advent of antiretroviral therapy (ART) (98), KS can 

occur in persons on ART with suppressed HIV-1 infection (178). The success of ART in treating 

HIV-1 associated KS has been countered by the occasional occurrence of an immune 

reconstitution inflammatory syndrome (91). This is a severe, temporary enhancement of KS 

lesions due to an increase in inflammation and immunologic recovery after ART.   

The discovery of HHV-8 and its causal role in KS development opened the potential for 

prophylaxis and treatment of the infection and cancer with antiviral drugs, and prevention of 

both with a vaccine. Strategies to achieve these ends require an intimate knowledge of the 

pathogenesis and immune control of HHV-8 infection. We postulate that host control of HHV-8 

infection and development of KS is linked to T cell interactions with HHV-8 infected, 

professional antigen presenting cells (APC), i.e., dendritic cells (DC), monocytes/macrophages 

and B lymphocytes. Similarly, APC-T interactions are likely to be centrally involved in the 

HHV-8-associated B cell neoplasms multicentric Castleman’s disease (MCD) (242) and primary 

effusion lymphoma (PEL) (42, 193).   
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HHV-8 has been reported to be transmitted to common marmosets and cause persistent 

infection with rare, KS-like skin lesions (49). However, there is as yet no consensus that this or 

other simian models (92, 137, 227) recapitulate human HHV-8 infection and development of KS 

or other cancers associated with this herpesvirus. Thus, although in vitro models are suspect to 

lacking certain in vivo characteristics, they offer the most relevant model of HHV-8 infection for 

this human species-specific herpesvirus. 

As with the other human gamma herpesvirus, Epstein Barr virus (EBV) (202), HHV-8 

targets APC both in vivo and in vitro. Indeed, the primary tropism of B cells by these gamma 

herpesviruses is uncommon among human virus infections. This sets the stage for development 

of their associated cancers both indirectly through alteration of host immunity dependent on APC 

function, and directly via neoplastic effects of the virus.  HHV-8 is found in KS spindle cells, 

which are of mixed vascular and lymphatic endothelial cell and macrophage origin, monocytes 

that are found in proximity to KS lesions, and circulating B cells of KS patients (25, 33, 187, 

219). In PEL, HHV-8 is found in immunoblastic cells expressing plasma cell markers, and in 

plasmablastic cells of a less terminally differentiated state in MCD (75). The intimate association 

of HHV-8 with such professional APC in the KS lesion and in other HHV-8 associated cancers 

suggests a major role for virus-APC interplay. Moreover, anti-HHV-8 T cell immunity that 

presumably is critically dependent on such virus-APC interactions is present in HIV-1 infected 

and uninfected persons who are seropositive for HHV-8 (226). Achieving a better understanding 

of the role of HHV-8 in inducing associated cancers could greatly benefit from a yet-to-be-

developed in vitro model of primary HHV-8 infection of a natural target cell that consistently 

reflects virus lytic, latent and reactivation infections. 
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Infection of APC in vitro reveals different cycles of HHV-8 replication that are likely to 

relate to the pathogenesis of the virus. The first step in targeting and alteration of APC by HHV-

8 is at the level of cell receptor.  Herpesviruses use more than one receptor to infect the same cell 

(121). Use of these receptors by herpesviruses is hierarchical based largely on differential 

expression of the receptors in specific cell types and states of cell activation. Extensive in vitro 

evidence indicates that the ubiquitous cell surface proteoglycan heparin sulfate serves as an 

initial binding receptor for HHV-8 on endothelial cells and fibroblasts as well as APC (5, 6, 47, 

141).  Multiple integrins are subsequently involved in HHV-8 binding and entry (141). A third 

level of differential selection that has been identified from in vitro studies of the three major 

types of APC, i.e., monocyte-derived DC (MDDC), B cells and monocyte-derived macrophages 

(MDM), is the type II C-type lectin, DC-specific ICAM-3 grabbing nonintegrin (DC-SIGN; 

CD209) (215, 216, 263). A new entry receptor for HHV-8 on endothelial and epithelial cells 

(116), i.e., ephrin receptor tyrosine kinase A2, a tyrosine kinase that functions in 

neovascularization and oncogenesis, has not yet been assessed in HHV-8 infection of APC.  

The relative contribution of each of level of HHV-8 binding to viral infection of APC is 

not clear. For example, the Raji B lymphoblastoid cell line (LCL) and the myeloblastoid K562 

cell line constitutively express little or no DC-SIGN or α3β1 integrin (216). Thus, these cell lines 

do not support detectable production of infectious virions (15, 24, 216). However, transfection of 

the cell lines with DC-SIGN renders them highly permissive for HHV-8 infection as measured 

by the production of viral proteins and DNA (216). Moreover, infection of these cell lines can be 

blocked by anti-DC-SIGN mAb, soluble DC-SIGN and mannan, a natural ligand of DC-SIGN.  

Interestingly, six B cell and T cell lines (BLAB, Ramos, BCBL1, JSC1, Jurkat and SupT1) were 

susceptible to infection through cell-mediated transmission with a doxycyline- inducible cell line 
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harboring recombinant HHV-8 (rKSHV.219), indicating that viral entry can be achieved despite 

lack of expression of a major HHV-8 receptor (192). There is also evidence that HHV-8 can 

infect CD34+ stem cell precursors of DC in vitro by as yet undefined receptors (122, 154). It is 

likely that there are less prominent alternative receptors for HHV-8 that account for a small 

percentage of DC-SIGN negative APC and cell lines that can be infected by this virus. 

 Suggestive evidence that HHV-8 is B-cell tropic in vivo is that HHV-8 DNA is detected 

in B cells from patients with KS lesions (8) and some HIV-1/HHV-8 co-infected individuals 

(189). We speculate that this is related to DC-SIGN expression that is enhanced by an activated 

state in B cells. That is, once blood-derived B cells are activated to express DC-SIGN, HHV-8 

can effectively establish infection and elicit full-cycle production of infectious virions in these 

cells (215).  The fact that HHV-8 cannot infect Raji LCL and the K562 erythroleukemia cell line 

expressing DC-SIGN that lacks the transmembrane domain, supports DC-SIGN-mediated 

endocytosis of viral entry. Moreover, infection can be blocked by pretreatment of the B cells 

with anti-DC-SIGN mAb or mannan but not antibody specific for the amino acid transporter 

protein xCT (215). HHV-8 has been reported to use xCT for infection of surface adherent human 

cells (138),  and in a post-entry stage of human endothelial cell infection as part of a complex of 

heterodimeric membrane glycoprotein CD98 and the α3β1 and αVβ3 integrins (265). Notably, 

HHV-8 infection is not restricted to blood-derived B cells, as tonsillar B cells constitutively 

express DC-SIGN and can be lytically infected with the virus in vitro (190, 215). It is probable 

that B cells in such tonsillar tissue are in an endogenously activated state resulting in enhanced 

expression of DC-SIGN.  

HHV-8 infection of freshly derived blood and tissue B lymphocytes could provide an in 

vitro model for assessing HHV-8 lytic and latent infection.  Our in vitro model for measuring 
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HHV-8 infectivity and replication supports the concept previously put forth that DC-SIGN is a 

major receptor for this virus (47, 215, 216).  This adds to the wealth of evidence that shows that 

in addition to certain integrins (4-6, 22, 265), DC-SIGN is required for highly efficient infection 

of the natural APC targets with HHV-8, which is in contrast to previous reports (101). However, 

there is still need for improved reliable, quantitative measures of HHV-8 replication to better 

define B cell infection with HHV-8. This should be combinations of real time polymerase chain 

reaction (PCR) assays for cell-associated and non-cell associated copy numbers of HHV-8 

encapsidated DNA, flow cytometry assays for enumerating the number of monoclonal antibody 

(mAb)-stained cells expressing viral lytic and latency cycle proteins, and most important, cell 

culture-based assays, e.g., a 50% tissue culture infectious dose assay, for quantitating the number 

of infectious virus particles.  

It is postulated that HHV-8 infection drives B cells to an early plasmablast-like state in 

MCD and a preterminal plasma cell stage of differentiation in PEL (2, 42, 44, 45, 76, 79, 97, 

119, 146, 176, 184, 194). Hassman et al., recently showed that latency associated nuclear antigen 

(LANA)+ B cells express Immunoglobulin (Ig) heavy chain M and the λ light chain at 2.5-3.5 

days post-HHV-8 infection. These cells are plasmablast-like with increased IL-6R expression 

and increased proliferative response to Interleukin (IL)-6, with 7-36% expressing CD27 (119). 

This molecule is a member of the tumor necrosis factor (TNF)-receptor super family, and is 

involved in regulation of B cell activation. It is not known whether HHV-8 directly infects these 

IgM+ memory B cells or a precursor of these cells. Also, there are no data on which subset of B 

cells supports a complete lytic cycle of replication with virion formation and death of the cell, or 

if this is abortive, leaving HHV-8 infected memory B cells that survive and maintain latent virus 

infection. Infection of naïve and IgM memory B cells may lead to establishment of latency in a 
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portion of cells, resulting in virus-driven plasmablast differentiation, while some cells support 

the viral lytic cycle.  Activated B cells may support full lytic cycle replication, resulting in virion 

formation and cell lysis, or HHV-8 could abort the cycle prematurely and either enter latency or 

result in cell apoptosis.  

Such definitive B cell targets for primary infection and lytic replication could be useful in 

studies of HHV-8 prophylactic and therapeutic vaccines.  Currently, the main in vitro models to 

recapitulate HHV-8 infection in APC are cell lines persistently infected with the virus, 

particularly body cavity based lymphoma cells (BCBL-1), a B cell line derived from PEL, which 

is latently infected with HHV-8 and EBV negative (42, 50). In such cell line models, HHV-8 

lytic and latent infections cannot be defined conventionally starting with the total absence of 

infectious viral particles, as there is always a low level of persistent virus production. However, 

latency can be disrupted, triggering the lytic cascade of viral replication and lytic genes 

expressed sequentially as immediate early genes, early genes and late genes, resulting in 

production of encapsidated virions. Such lytic viral replication is largely irreversible (47, 276).  

HHV-8 lytic gene profiling in these models has been extensively accomplished using tiling 

microarray (52), DNA microarray (2, 48, 167), and high-throughput real-time PCR (73, 89). 

However, most studies on latency-lytic reactivation of HHV-8 use various chemicals to induce 

viral replication (191). The question is whether such reactivation reflects natural HHV-8 viral 

lytic reactivation from latency, since chemical agents such as 12-O-tetradecanoylphorbol-13-

acetate (TPA) have pleiotropic effects on host cell signaling and chromatin structure. How they 

affect cell signaling pathways is also unknown. Thus, the natural reactivated cascade of lytic 

transcripts of HHV-8 still waits to be revealed.   
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Instead of using chemical inducers, Nakamura et al., (195) developed an engineered body 

cavity based lymphoma (BCBL-1) cell line that inducibly expresses the replication transactivator 

protein, RTA, encoded by open reading frame (ORF)-50, i.e., TREx-BCBL1-RTA.  RTA has 

been shown to be necessary and sufficient for the switch between HHV-8 latency and lytic 

replication (71).  In fact mutation of the RBP-Jk sites within the RTA promoter is enough to 

enhance latency in transformed-293 cells and peripheral blood mononuclear cells (PBMC) (169).  

In the TREx-BCBL1-RTA cell line, RTA expression is under the control of a doxycycline-

inducible promoter and treatment of TREx-BCBL1-RTA cells with doxycycline (Dox) results in 

expression of RTA which in turn induces viral replication (195). While the role of RTA in 

causing a switch from latency to viral replication has been demonstrated by several laboratories, 

the mechanisms regulating coordinate induction of expression of most of the HHV-8 lytic genes 

during this reactivation have not been evaluated in a systematic fashion. 

Virus reactivation events have been studied in primary and immortalized microvascular 

endothelial cells (MVEC) with the recombinant virus, rKSHV.219 (268).  This virus expresses a 

green fluorescent protein (GFP) under an EF-1α promoter to indicate infection and a red 

fluorescent protein under a PAN promoter to indicate lytic transcription.  This model should be 

considered for a more detailed evaluation of APC infection and reactivation.  

Transcription of HHV-8 lytic genes occurs during either a primary infection of 

susceptible cells or during reactivation of latently infected cells. The question remains whether 

the kinetic gene activation in a chemically induced cell line (BCBL-1) or the naturally targeted 

RTA (TREx-BCBL1-RTA) will reflect the cascade events of natural infection of B cells or other 

APC. To identify the true gene transcription and reactivation events in HHV-8 infection, primary 



 8 

cells susceptible to HHV-8 should be used.  Only then can the observations from TPA induced 

BCBL-1 and DOX induced TREx-BCBL1-RTA cell lines be validated.   

In 2005, a cluster of microRNA (miRNA) coded by HHV-8 was discovered (36, 232). 

This short, 22 nucleotide, non-coding miRNA silences mRNA expression through a silencing 

complex (miRISC). HHV-8 miRNAs are expressed during lytic and latency cycles of virus 

replication, and act on both cellular and viral transcriptomes (110). Studies of HHV-8 miRNA 

have utilized PEL cell lines, as well as foreskin fibroblasts and endothelial cells. These indicate a 

multifactorial role in maintaining viral latency, regulating lytic virus replication and enhancing 

cell survival. As miRNA activity is dependent on its level and targets within specific cell types, it 

is imperative that miRNA be assessed in primary B cells.   

Finally, as HHV-8 is one of the few human viruses that primarily targets B cells, an in 

depth understanding of the effects HHV-8 infection has on these cells should be established. 

However, little data exist concerning B cell activation states or surface marker expression upon 

HHV-8 infection.  Likewise, interactions between HHV-8 infected B cells and CD4+ T helper 

cells are yet to be defined. Considering that the major function of B cells is production of Ab that 

prevent and ameliorate infection, there is need to assess the quality and quantity of Ab 

production over the course of HHV-8 infection and development of KS. Yet, there is no 

consensus assay for detecting or titering anti-HHV-8 Ab. Detection of anti-LANA Ab by 

immunofluorescence assays has low sensitivity (as low as 64%) among individuals  with KS (61, 

198, 212). ELISA and Western blot assays for anti-latent (LANA) and lytic (ORF65 or K8.1) Ab 

has higher sensitivities and is often used for serologic testing, yet can have low specificities 

(198). These conventional methods for serologic testing therefore lack standardization and can 
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be unreliable, underlining the necessity for more accurate methods of quantifying anti-HHV-8 

Ab titers.   

Given the vagaries of anti-HHV-8 Ab assessments, humoral immunity to HHV-8 

infection has been described for several cohorts. A luciferase immunoprecipitation system that 

quantifies Ab response to multiple antigens was used to compare profiles of KS, MCD and PEL 

patients (34).  The study showed significant differences in Ab responses among the groups, 

including higher anti-K8.1 Ab detected in PEL and MCD compared to KS and higher titers of 

ORF65 in PEL compared to KS.  Likewise, higher Ab titers against v-cyclin were observed in 

KS and PEL compared to MCD, and higher anti-LANA Ab titers were detected in KS compared 

to MCD. An explanation for the difference in Ab responses in individuals with these HHV-8 

associated cancers is currently unknown, but is likely a reflection of the differential expression of 

latent and lytic viral genes. The quality and quantity of anti-HHV-8 response may change over 

the course of disease progression or after anti-viral therapy. Following antiretroviral therapy, 

increases in Ab against both latent and lytic proteins have been observed for individuals with or 

without KS (29, 108, 253, 280).More in depth studies with larger cohorts and advanced testing 

methods should be performed, while in vitro models for HHV-8 infection in B cells and 

detection of antiviral Ab should be established.  

Interestingly, there are only minimal data on neutralizing Ab in HHV-8 infection. The 

first such evidence was that rabbit polyclonal neutralizing Ab to gB prevent HHV-8 infection of 

primary human foreskin fibroblasts (4)  and oral epithelial cells (82). Concurrently it was 

demonstrated that sera from persons who were seropositive for HHV-8 as shown by anti-LANA 

immunofluoresence assay also had neutralizing Ab that inhibited virus infection of transformed 

dermal microvascular endothelial cells (72). Using a recombinant HHV-8 (rKSHV.152) that 
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expresses GFP, Kimball, et al., (144) found significantly lower neutralizing Ab titers to HHV-8 

in the serum of HIV-1 infected persons with KS compared to those without KS. This is in 

contrast to Inoue, et al., (129) who reported that there were no differences in neutralizing Ab 

titers between HIV-1 infected patients with or without KS. However, the latter study used an 

HHV-8 reporter cell line T1H6 treated with polybrene in their virus neutralization assay. 

Polybrene results in receptor-independent infection (67), thus potentially obscuring interpretation 

of virus neutralization assays. Finally, it is evident that is a need for in depth, longitudinal studies 

of neutralizing Ab and other antiviral Ab such as those that mediate Ab-dependent cell 

cytotoxicity, in relation to progression of HHV-8 infection and development HHV-8 related 

cancers.   

In addition to B cells and MDDC, other APC have been shown to be susceptible to HHV-

8 infection, including macrophages.  Macrophages in several body compartments naturally 

express DC-SIGN (111, 139), as well as integrins including α3β1 (9), which presumably renders 

them susceptible to HHV-8 infection.  An early report showed that MDM from normal donors 

that are stimulated in vitro with allogeneic PBMC can be infected by HHV-8, but this rarely 

results in complete, lytic replication (24). In addition, treatment of blood monocytes from KS 

patients with proinflammatory cytokines in vitro results in HHV-8 persistence (187).    

MDM become susceptible to HHV-8 infection in vitro after activation with IL-13, which 

result in enhanced DC-SIGN expression (216).  IL-13 is an anti-inflammatory, T helper (Th) 2 

cytokine that promotes differentiation of B cells into antibody-secreting plasma cells. 

Importantly, non-IL-13 activated MDM express α3β1 integrin yet are not infected by HHV-8 in 

vitro, supporting the requirement of multiple receptors for efficient infection of APC by HHV-8. 

Indeed, when DC-SIGN is blocked in IL-13-activated MDM or the monocytic cell line THP-1, 
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HHV-8 can still bind using heparin sulfate but virus entry is reduced (141). HHV-8 establishes 

productive infection in THP-1 cells with an ordered expression of latency gene ORF73 and lytic 

gene ORF50.  In fact, the HHV-8 genome was reported to persist for 30 days in these cells (141). 

Such limited expression of lytic genes together with the persistence of latency genes is believed 

to be unique for HHV-8 (148).  

Of interest is that ORF K14 of HHV-8 encodes a surface glycoprotein vOX2 that is 

homologous to cellular OX2 (55), which inhibits macrophage function (96).  The vOX2 

glycoprotein could be central to HHV-8 immunopathogenesis in that it stimulates production of 

inflammatory cytokines IL-1β, IL-6, monocyte chemoattractant protein 1 (MCP-1), and TNF-α 

in primary monocytes, MDM and MDDC (55).  Furthermore, expression of vOX2 on B cells 

stimulates monocytes to produce inflammatory cytokines.  MDM transfected with vOX2 produce 

inflammatory cytokines and have enhanced phagocytic activity, while inhibiting the 

immunomodulatory effects of IFN-γ and down-regulating major histocompatibility complex 

(MHC) class I and class II expression on macrophages (231).  It was recently reported that 

vOX2-transfected APC co-cultured with T cells results in suppressed interferon gamma (IFN-γ)  

production and mobilization of the cytolytic granule marker CD107a through inhibition of 

extracellular signal-regulated kinase (ERK1/2) phosphorylation (185). 

Evidence of infection of human DC in vivo with HHV-8 has been limited (203, 221). 

When MDDC are infected in vitro with HHV-8, viral lytic proteins are produced with little viral 

DNA production (216), similar to abortive HHV-8 infection of vascular endothelial cells (5, 197, 

214, 220, 267).  Although HHV-8 infection does not significantly alter MDDC viability, it 

decreases MDDC function, i.e., lowers their capacity to activate antigen-specific CD8+ T cell 

responses.  Moreover, HHV-8 infected MDDC have impaired antigen uptake, with a significant 
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decrease in endocytic capacity and DC-SIGN expression within 24 hours after infection.  DC-

SIGN internalization in MDDC is associated with lytic HHV-8 gene expression (216).  In 

addition to MDDC, HHV-8 in vitro infection of IL-13-treated MDM results in a loss of DC-

SIGN surface expression, suggesting that HHV-8 binding to DC-SIGN triggers internalization.  

Hence, alteration of DC-SIGN expression could be a strategy used by HHV-8 to escape immune 

defenses and lead it to a non-robust immune response (273).     

The skin and mucosa contain two major types of DC – Langerhans cells (LC) which 

reside in the epidermis in close contact with keratinocytes, and interstitial DC (iDDC) resident in 

the dermis and mucosal layers. LC and iDDC process cutaneous antigens and migrate to draining 

lymph nodes to present antigens to T and B cells. Because of the strategic position of LC and 

iDDC and their ability to capture pathogens, these cells could represent potential targets for 

HHV-8 infection.  Furthermore, due to the expression of the C-type lectins, i.e., langerin 

(CD207) and DC-SIGN, on LC and iDDC, respectively, it is tempting to speculate that HHV-8 

could utilize the same entry mechanisms as seen in MDDC (216). LC and iDDC can be 

generated from pluripotent cord blood CD34+ cells (40) that could prove to be valuable tools to 

study HHV-8 infection and subsequent antigen process and presentation to T cells (59). 

Plasmacytoid (pDC) are a lymphoid-lineage subset of APC that produce extraordinary 

amounts of the antiviral protein IFN-α in response to virus infection (166). DC-SIGN is not 

expressed by pDC, yet HHV-8 can infect human pDCs, up-regulate expression of the activation 

molecule CD83 and T cell co-receptor CD86, and induce production of IFN-α (278). Induction 

of IFN-α by HHV-8 occurs through activation of Toll-like receptor 9 (TLR9) signaling in pDC.  

Several types of TLR expressed on different APC are emerging as important factors in 

the innate and adaptive immune response to HHV-8. Notably, triggering of C-type lectins, 
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including DC-SIGN, in combination with TLR triggering on DC induces signaling and cytokine 

responses, which in turn regulate T cell polarization that is central to host immune control of 

infections (264).   In addition, TLR have also been implicated in reactivation of HHV-8. TRL7/8 

could control reactivation of HHV-8 from latency in B cells, as demonstrated by agonists 

specific for TLR7/8 reactivating latent KSHV and inducing viral lytic gene transcription and 

replication in latently infected PEL cell lines of B cell origin (112). This has important 

implications for host control of HHV-8 infection, as signaling through the TLR1/2/6 complex, 

TLR7, TLR9 and TLR10 affects multiple stages of B cell activation, proliferation, cytokine 

secretion, terminal differentiation and antibody secretion in response to T cell-dependent 

antigens (16).  

Cytokines and chemokines produced by inflammatory APC, as well as T cells, play a 

crucial role in HHV-8 replication and development of KS. Inflammatory changes occur early in 

KS, prior to the detection of the cancer (182).  Proinflammatory processes drive early-stage KS 

to develop into mature, spindle cell lesions (222). Thus, KS tumors are comprised of spindle 

shaped cells of endothelial origin (219) in an environment rich in inflammatory cell infiltrates, 

including B cells, macrophages, monocytes and CD8+ T cells (187).  The infiltrating cells 

produce large amounts of Th1 polarizing, proinflammatory cytokines (e.g., IFN-γ, IL-1β, TNF-α 

and IL-6), chemokines (e.g., IL-8), and growth factors (e.g., vascular endothelial growth factor 

[VEGF]), which can induce the KS-like phenotype observed in activated endothelial cells (93, 

187) (87, 187).  IFNγ is the earliest and most abundant inflammatory cytokine observed in KS 

(93) and can be detected in KS lesions before evidence of HHV-8 DNA (187).  IL-6 is also 

found at very high levels in both KS lesions and in circulation of patients with MCD (8).  In 

MCD, IL-6 induces B cell proliferation and causes inflammatory clinical symptoms (237). 
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Observations from a transgenic mouse model demonstrate that mice expressing viral IL-6 but 

lacking mammalian IL-6 do not experience phenotypic changes (e.g., lymphoadenopathy, 

hypergammaglobulinemia, splenomegaly) associated with MCD (255).  IL-6, as well as 

oncostatin M and IL-10, are also detected at high levels in PEL cells.  Proliferation of PEL can 

be inhibited when receptors for the IL-6 pathway are blocked (74).  Thus, an as yet minimally 

detailed imbalance in the Th1-Th2 milieu during HHV-8 infection appears to be closely linked to 

APC in driving the outgrowth of KS endothelial cells as well as PEL and MCD B cells. 

Other cytokines and chemokines produced by APC, particularly IL-8 and MCP-1, are 

elevated in serum of KS patients and have been implicated in many cancers (179, 254).  

Enhanced expression of MCP-1, but not other NF-kβ activated cytokines (RANTES, IL-8 and 

TNF-α), is also detected in in vitro infected human umbilical vein endothelial cells (HUVEC) 

(39). When bound to its CCR2 receptor on endothelial cells, MCP-1 results in chemotaxis and 

mediates angiogenesis in vitro (100, 179).  KS tumors are highly vascularized with abnormal 

angiogenesis, leading to enhanced blood flow to the tumor by expanding pre-existing blood 

vessels (182).  IL-1β, TNF-α, IL-8 and IL-6 can also enhance tumor cell growth and 

vascularization (84, 86, 93) by inducing the expression of two angiogenic mediators, i.e., VEGF 

and fibroblastic growth factor (FGF) (58, 62, 84, 187).  In addition to angiogenesis, 

inflammatory cells and cytokines can contribute to viral reactivation and replication. IFN-γ was 

shown to induce expression of the DNA polymerase processivity factor, ORF59 PF-8, in BCBL-

1 (23) and reactivate latent HHV-8 in BC-3 PEL cells by activation of Pim-family kinases (53). 

Mercader et al., showed oncostatin M, IFN-γ, and HGF/SF induced lytic cycle activation of 

BCBL-1 resulting in virion production(181). This principle has been demonstrated in HHV-8 

infected PBMC, where inflammatory cytokines could maintain or increase viral load up to 10-
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fold higher when the infected cells were cultured in the presence of inflammatory cytokines 

(187).  A summary of host derived cytokines and their relationship to HHV-8 and/or associated 

cancers are shown in Table 1.  

In addition to cellular cytokines and chemokines, HHV-8 encodes several proteins 

involved in inflammation and angiogenesis that contribute to the inflammatory environment 

observed in KS. Cytokines and chemokines encoded by HHV-8 have been the focus of numerous 

studies and reviews (105, 156, 182, 199, 230, 240). Thus, vIL-6 has 24% homology to human 

IL-6 and can induce expression of VEGF and MCP-1 (200). These in turn trigger angiogenic 

pathways. Elevated levels of vIL-6, as well as levels of human IL-6 and HHV-8 viral load, have 

been associated with a recently described syndrome of severe systemic inflammatory symptoms 

(262). The G-protein coupled receptor (vGPCR) is an early lytic phase gene homologous to the 

IL-8 receptor, CXCR-2 (12, 199).  vGPCR constitutively signals and results in enhanced 

production of IL-1β, IL-8, MCP-1, IL-6 and VEGF that can have both autocrine and paracrine 

effects (107, 239).  K1 and K15 are signal transducing proteins that induce VEGF, IL-6 and IL-8  

(54).   LANA, encoded by ORF73, and the viral flice inhibitory proteins (vFLIP) have been 

linked to enhanced cytokine production via activation of the mitogen activated protein kinase 

(MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, 

respectively (272). Viral interferon regulatory factor (vIRF3) expression inhibits MHC class II 

expression as well as IFNγ production (235).  Finally, the viral macrophage inflammatory 

proteins (MIPs) (chemokine (c-c motif) ligand [vCCL1, vCCL2, vCCL3]) share homology to 

MIP1-α and regulated upon activation, normal T-cell expressed, and secreted (RANTES) and 

can induce monocyte chemotaxis and signal transduction (12, 196, 199).  Given the plethora of 

such data derived from highly manipulated molecular and cell line models, the challenge is to  
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Table 1: Host cytokines and chemokines in relation to HHV-8 
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link these unique HHV-8 factors directly to HHV-8 infection and development of cancers in 

natural targets of the virus. 

In epidemic or AIDS-related KS, the immune dysregulation and induction of 

inflammatory cytokines acts to further enhance KS tumor growth.  When BCBL-1 cells that are 

latently infected with HHV-8 are cultured with HIV-1 infected CD4+ T cells, soluble factors 

secreted by the T cells cause the virus to enter lytic reactivation (181). Inflammatory cytokines 

induced by both HIV-1-infected and HHV-8-infected cells promote expression of receptors for 

HIV-1 Tat, which acts as a progression factor in KS development (14, 83) and increasing viral 

load  (118). Indeed, serum and cell samples taken from KS lesions of HIV-1 infected individuals 

co-infected with HHV-8 show markedly increased levels of inflammatory cytokines, growth 

factors and angiogenic mediators (86, 209).   Furthermore, treatment of KS patients with IFNγ, 

IL-2 and TNF causes KS progression (187). 

HHV-8 has a broad cellular tropism in vivo including B cells, endothelial cells, 

monocytes, keratinocytes and epithelial cells that could result in production of inflammatory 

mediators (46).  In monocytes, production of interferon inducible protein (IP-10), IFN-β1, MCP-

1 and IRF-1 occurs in conjunction with an upregulation of TLR3 expression (277). Our lab has 

previously demonstrated that in vitro HHV-8 infection of MDDC, which do not support lytic 

virus replication, secrete IL-6, TNF-α, IP-10, MIP-1α and MIP-1β (123). While IL-12p40 

expression increases post-infection, bioactive IL-12p70 is not detected in HHV-8 infected 

MDDC. This suggests a virus-related inhibition of constitutive production of IL-12p35, or a 

defect in complexing of these subunits into IL-12p70. Furthermore, the results support an 
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intentional skewing of cytokine production in HHV-8-infected MDDC towards induction of a 

Th2 response that could enhance development of KS. 

Elevated levels of IL-1β, TNF-α, IL-6, IL-8 and IL-10 are detected in the serum of 

patients with EBV-associated diseases, while a less favorable outcome correlate with increases 

of IL-6 and IL-10 in Hodgkins lymphoma (90).  Common strategies between EBV and HHV-8, 

such as NF-κB signaling pathway alterations (68, 120) and the expression of virokines (240), 

imply that an imbalance of immune mediators is associated with the oncogenesis of these 

gammaherpesviruses.   

Although there are several studies that focus on HHV-8 induced and encoded cytokines, 

we know little regarding HHV-8-specific T cell-APC interactions and their role in controlling 

viral infection and disease. A key challenge is to adapt in vitro models using cell lines and HHV-

8 constructs to systems that allow deciphering of the basic steps of natural HHV-8 infection, and 

antigen processing and presentation, in various types of APC. The interactions of APC with T 

cells that underlie the generation of anti-HHV-8 T cell immunity begin with DC of myeloid 

origin that take up viral antigen at local sites of infection, then travel to the draining lymphatics 

and induce antiviral T cell responses (260). There are specialized subsets of DC that populate 

different tissue sites and have distinct virologic interactions and immunologic functions. 

Myeloid-derived LC and dermal DC populate the epidermis and dermis respectively, and are 

associated with KS lesions.  Interstitial or interdigitating tissue DC are similar in phenotype and 

function to dermal DC, and are linked to systemic KS lesions. Other DC subsets such as CD141+ 

DC which are the human surrogates of mouse CD8α DC subsets (13, 136), could be natural 

targets for HHV-8. It is imperative that we assess transcription of HHV-8 ORFs in natural targets 

of the virus, in comparison to well documented immunomodulatory properties of HHV-8 



 19 

expressed in cell lines and artificial constructs, such as persistently infected BCBL-1 and its 

variants (63).  

Interactions of HHV-8 with DC subsets could be critical at the site of virus replication, 

and be centrally involved in generating T cell responses to the virus. Efficient activation of 

HHV-8 epitope-specific CD8+ T cells requires presentation by peptide-loaded, autologous, 

mature MDDC (273). This is similar to optimal activation of anti-EBV cytotoxic T lymphocytes 

(CTL) by peptide-loaded DC (165, 217, 249-252, 279). Other studies have revealed 

polyfunctional CD8+ and CD4+ T cell reactivity and new MHC class I epitopes for HIV-1 Gag 

and Nef using peptide-loaded DC (128). Importantly, we have used this DC model to map 

epitopes of HHV-8 lytic and latency proteins with libraries of synthetic, 15mer peptides 

overlapping by 11aa (158). Nevertheless, it may be more practical to generate large numbers of 

CD40 ligand (CD40L)-activated, autologous B cells that favourably compare to DC as APC 

(238).  

To date, relatively few CD8+ and CD4+ T cell epitopes within only 15 of the over 80 

ORFs of HHV-8 have been identified, and most of these are restricted by human leukocyte 

antigen (HLA) A*0201 (226).  Information is therefore needed on the broad range of potential 

antigenic sites in the virus that are restricted by other MHC class I and II haplotypes. Moreover, 

no studies have yet established a hierarchy of naïve and memory CD8+ or CD4+ T cell responses 

to HHV-8 epitopes in control of HHV-8 infection. There also are minimal data on whether 

alterations in anti-HHV-8 T cell responses are related to development of KS (114) and whether 

the lower incidence of KS in HIV-1 infected persons receiving ART is related to increases in 

anti-HHV-8 T cell responses (20, 29). Such information is important for development of 

prophylactic and therapeutic vaccines for HHV-8. 
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HHV-8 infection alters the capacity of DC to be recognized by and activate CTL. Both 

direct presentation using viral proteins endogenously produced in DC, and cross-presentation 

pathways using viral proteins from exogenous sources of virus are likely to be operative in 

HHV-8 infection. In fact, EBV does not replicate in MDDC, which instead activate anti-EBV 

CD8+ T cells by an antigen cross-presentation pathway (124, 207, 251).  

It is possible that HHV-8 infected, apoptotic endothelial cells, macrophages and B cells 

are recognized as “distressed” cells at local sites of infection and engulfed by LC and iDDC 

(260). These DC then migrate to local lymph nodes while processing the ingested viral proteins 

through alternative MHC class I pathways for presentation to CD8+ T cells. Furthermore, several 

HHV-8 proteins, particularly those coded by ORFs K3 and K5, have intriguing properties of 

altering expression of MHC class I, T cell co-receptors and DC-SIGN. Interestingly, cytokines 

released by primary effusion lymphomas can interfere with the in vitro differentiation of 

immature MDDC from CD14+ monocytes (56). 

An intriguing recent discovery is that activated CD4+ T cells suppress HHV-8 lytic 

replication in tonsillar B cells (190). The suppressive activity requires cell-cell contact. However, 

it is not a classic CTL response, as it can be mediated by T cells from HHV-8 seronegative 

persons, is not MHC restricted and does not lyse the B cell targets. This is proposed to be a 

pathway by which HHV-8 is driven into latency in B cells. These CD4+ T cells are reminiscent 

of CD8+ T cells that exhibit non-cytotoxic responses that suppress HIV-1 infection (142).   

 Presentation of HHV-8 proteins to both CD8 (MHC class I restricted) and CD4 (MHC 

class II restricted) T cells is impaired by HHV-8 infection.  Evidence suggests that anti-HHV-8 

CD8+ T cell responses can be inhibited by K3 and K5 proteins that down-regulate MHC class I 

expression (64, 132).  Interestingly, K5 encoded MIR2 down-regulates T cell co-stimulatory 
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molecules intracellular adhesion molecule (ICAM-1) and CD86 (65) and IFNγR1 (164) which 

could act to decrease T cell responses to HHV-8.  Ishido et al., showed that K5 dampens NK 

cell-mediated cytotoxicity by down-regulation of ICAM-1 and CD86 (131).   The NK activating 

receptor, NKG2D, responsible for detecting infected cells, is down-regulated by HHV-8 K5 

(258) via the release of the tumor-associated prostaglandin E2 (PGE2) from KS cells (81).  This 

also results in inhibition of IL-15-mediated NK cell activation and survival, adding to the 

immune escape tactics employed by this virus (81). Likewise, infection of primary fibroblasts 

results in limited NK cell activation and subsequent killing activity (177).  Brander, et al. (31), 

reported a decrease in lysis by HIV-1 peptide-specific CTL clones of cells infected with HHV-8.  

Thus, it is apparent that K3 and K5 potentially have multifactorial effects on immune control of 

HHV-8 infection.  Of note is that the intracellular load of HHV-8 in infected endothelial cells is 

directly related to their loss of expression of MHC class I and ICAM-1, in association with 

expression of MIR2 (1).  Interestingly, EBV infection also decreases recognition of latently 

infected cells by down regulation of MHC class I molecules, particularly in cells derived from 

Burkitt’s lymphoma (127). 

MHC class II recognition is dampened by HHV-8 infection.   Sabbah et al., reported that 

LCL, with an intact MHC class II processing pathway, could present LANA peptides to LANA-

specific CD4+ T cell clones, whereas PEL cells were not recognized in an IFN-γ ELIspot (229).  

PEL express vIRF3, a known inhibitor of the MHC class II master regulator, CIITA (class II 

transactivator) (235). When CIITA function was restored in PEL, CD4+ T cell clone recognition 

was also restored (229), supporting a role for HHV-8 in the reduction of MHC class II 

expression.  Interestingly, IFN-γ inducible expression of CIITA results in MHC class II 

expression on endothelial cells, and is impaired after HHV-8 infection through induction of 
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suppressor of cytokine signaling 3 (SOCS3) (35). This results in inhibition of the early events in 

the IFN-γ signaling pathway.  In sum, various HHV-8 proteins appear to play a significant role in 

the disruption of antigen processing and presentation. However, further data are needed to 

understand the extent of viral protein function in immunopathogenesis of HHV-8 infection in 

APC. 

Although immunity to HHV-8 is far less well defined than that to EBV, T cell immunity 

to HHV-8 likely plays a similar, critical role in viral control.  First, there is an increase in CD4+ 

and CD8+ expanded T cells in patients with classic KS that share a T cell receptor (TCR)-β 

variable subunit bias (99), a phenomenon observed in response to chronic viral infections (259, 

282). Second, CD8+ T cell immunity to HHV-8 proteins is present in HHV-8 seropositive, 

healthy individuals.  CD8+ T cells specific for 5 HHV-8 lytic cycle proteins are present in blood 

in the first few months of primary HHV-8 infection of normal adults (274).  This primary CTL 

and IFN-γ response to HHV-8 peaks within 2 years of infection, and wanes thereafter to low but 

detectable levels. Furthermore, KS does not commonly occur in individuals with a high CD4+ T 

cell counts (248).  

To date, however, there is little direct evidence for a role of T cell immunity in HHV-8 

infection and control of KS (126). Lower CD8+ T cell responses have been found in persons with 

KS compared to asymptomatic persons (114, 151).  However, very modest increases in CD8 T 

cell responses to HHV-8 immunodominant peptides are found in persons on ART (29, 280).   

While progressive increases in HHV-8 load precede development of disease in HIV-1-infected 

persons (37, 153), evidence is lacking for a direct association between control of HHV-8 load 

and HHV-8 specific, T cell immunity (114).  Nevertheless, an increased incidence of KS in 

organ transplant recipients and HIV-1-infected persons (69) suggests a role for T cell immunity 
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in prevention of KS, similar to T cell immunity in EBV-related cancers (109). Reduction of 

immunosuppressive regimens can result in spontaneous resolution of KS in organ transplant 

recipients (94).  Similarly, the incidence of KS has declined after suppression of HIV-1 by ART 

(211), where T cell numbers and function are partially restored (17, 159, 223).  There are also 

shorter incubation periods for development of KS after HHV-8 infection in HIV-1-infected men 

compared to men infected with HHV-8 prior to HIV-1 infection (104, 133). Primary infection 

with HHV-8 in immunosuppressed persons has a more severe outcome than reactivated HHV-8 

infection. Finally, HHV-8 expresses many proteins that have immunomodulatory functions that 

could down-regulate T cell immunity (11).    

The emerging biology of KS and HHV-8 infection presents intriguing factors that 

interrelate HHV-8 specific T cell immunity to control of the cancer. HHV-8 is found as a latent 

infection in most of the spindle cells in the KS lesion (27, 80, 95, 188).  Since replication of 

herpesvirus in susceptible cells results in cell death, latency must be established either very soon 

after infection or possibly following an abortive (non-productive) infection. A small percentage 

of endothelial and KS spindle cells express a complete replication library of HHV-8 proteins 

early in the disease, whereas the majority of the transformed cells ultimately express only HHV-

8 latency proteins. Circulating B cells and monocytes can be positive for HHV-8 DNA (8, 25), 

and HHV-8-infected macrophages are present in KS tissues(25). Th1 cytokines have been 

implicated in reactivation and persistence of HHV-8 in B cells and monocytes from KS patients 

(241).  T cell infiltrates are common in KS tissues (25, 93). CD8+ T cells in KS tissues produce 

IFN-γ and express HLA DR (93, 241), suggesting that tumor-infiltrating lymphocytes are 

responding to HHV-8 antigens. 
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Comprehensive longitudinal studies are needed to accurately assess the role of anti-HHV-

8 T cell immunity in development of KS. T cell responses to HHV-8 could be directed at 

different lytic and latency proteins at different stages of infection and disease (109, 126). By 

comparison, in EBV the immediate early regulatory protein BMLF1 and other early and late lytic 

cycle proteins are targets for CD8 CTL during primary and latent infection (26, 127, 246).   

During mononucleosis, a primary symptomatic infection of EBV, both lytic and latency EBV-

specific T cells are present, but responses to lytic epitopes tend to be stronger (168).  In healthy 

EBV seropositive individuals, CD8+ T cell responses are also found to be greater for lytic 

epitopes, with up to 3% of cells specific for a single lytic epitope and up to 0.5% for a single 

latency epitope (126).  Anti-EBV CTL responses shift during latent infection to EBV nuclear 

antigens EBNA3 and LMP2, while still retaining specificity for some lytic cycle proteins (125). 

The hierarchy of CTL responses to immunodominant epitopes of EBV is related to a lower 

expression of latency proteins in infected cells (208). Although HHV-8 does not have genes 

homologous to EBNA and LMP, HHV-8 LANA, kaposin (T0.7 or ORF K12) and K1 are 

putative latency and transforming proteins that are targets for CTL (30, 158, 204).   

Host selection of CD8+ T cell epitopes within HHV-8 proteins could be based in part on 

the relative expression of viral proteins by the MHC class I endogenous pathway, comparable to 

EBV (161).  However, evidence from the anti-EBV CTL field indicates that CTL reactivity to 

this gamma herpesvirus varies as to the HLA haplotype, with different MHC class I haplotypes 

exhibiting different CTL reactivity to the same EBV proteins (127). Perhaps HHV-8 has 

mechanisms similar to the Gly-Ala (Gar) (207) repeat domain in EBNA1 that inhibits 

proteosome processing of viral proteins through the MHC class I pathway (127, 160), thereby 

inhibiting generation of EBNA1 specific T cells. In fact, LANA1 can inhibit protein processing 
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in cis (149, 285). Bioinformatic analysis of HHV-8 sequences supports that latency proteins are 

likely to be poorer targets for CTL than immediate early or lytic proteins (266). However, it is 

not yet clear if the in cis function of LANA1 is directly involved in down-regulation of CTL 

lysis of HHV-8 infected cells, including how it compares to other putative, in trans inhibitors of 

CTL function such as K3 and K5. Moreover, the EBNA1-CTL inhibition concept has undergone 

major revision. First, the GAr domains of EBNA1 can inhibit mRNA translation, which may be 

more critical to lack of CTL recognition than inhibition of proteosomal processing (284). 

Second, EBNA1 infected cells express EBNA1 peptides that can be recognized by CTL when 

assessed in more sensitive assays (157). This indicates that the effects of LANA1 on pathways 

related to CTL function that use chimeric constructs, indicator cell lines, etc., need to be 

characterized in a natural context using CD8+ CTL and natural targets that are specific for 

LANA1.  

Similar to EBV, the CD8+ T cell responses to HHV-8 tend to be directed more toward 

lytic antigens (224). While there are much fewer CD8+ T cell epitopes known for HHV-8 than 

EBV, the majority of these epitopes are within the early and late-lytic proteins (225, 226).  With 

regard to polyfunctionality, one study found that for both EBV and HHV-8, T cells specific for 

latency antigens were more polyfunctional than those specific for lytic antigens (21).  The 

phenotype of these cells was also found to be different, with a greater proportion of effector 

memory T cells specific for latency antigens than lytic antigens for both EBV and HHV-8.  In 

both EBV and HHV-8-associated malignancies, latency proteins are predominantly expressed, so 

it is thought that responses to latency proteins could be important in controlling these diseases 

(126, 256).  Evidence suggests that there are higher levels of CD8+ CTL specific for EBV and 

cytomegalovirus (CMV) than HHV-8 in the blood of seropositive individuals (114, 273). Higher 
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T cell responses to EBV and CMV antigens could be related to their greater viral load in 

persistently infected persons, with more turnover of viral antigen from latent, persistent 

reservoirs that maintains a greater level of memory CTL precursors.  

Antigen-specific CD8+ T cells occupy a lineage of naïve and memory compartments that 

are involved in the expansion, effector and contraction phases of CD8+ memory T cells (117).  

Central memory and effector memory T cells are contrasted based on expression of surface 

molecules related to migration and differentiation. Patients with MCD have more 

CD45RA¯CCR7¯CD27¯CD8+ IFN-γ+ cells (a late memory T cell phenotype) and fewer 

CCR7¯CD27+CD45RA¯ cells (early and intermediate T cell phenotype) than normal, HHV-8 

seropositive controls. This phenotypic shift is not found for EBV-specific CD8+ T cells. 

Interestingly, HHV-8 viral loads are negatively correlated with early and intermediate effector 

memory cells. The more differentiated T cell phenotype is associated with disease, rather than a 

loss of HHV-8 specific CD8 T cells or polyfunctional activity, as the HHV-8 specific T cells are 

similar in function (secretion of IFN-γ, TNF-α, MIP1-β, and/or CD107a) in infected patients and 

healthy controls (115).   

In healthy, HHV-8 seropositive individuals controlling infection, there are both 

monofunctional and polyfunctional CD8+ T cells present that are specific for HHV-8 proteins 

(158).   This could have important implications in the immunopathogenesis of HHV-8 and for 

HHV-8-related disease development. In fact, patients who control KS have more polyfunctional 

CD8+ T cells producing IFN-γ and TNF-α, while patients with progressive KS have weaker and 

less polyfunctional HHV-8-specific CD8+ T cells (19).  IFN-γ-producing CTL specific for some 

HHV-8 lytic and latency proteins also express CD107 and TNF-α (21). This is similar to 

polyfunctional CTL that produce multiple cytokines such as IFN-γ, IL-2 and MIP-1β that are 
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associated with enhanced control of HIV-1 infection (18, 173, 247). Also, CD8+ CTL specific for 

EBV lytic and latency proteins differ in phenotype, including expression of programmed death-1 

(PD-1) (127). PD-1 expression could act as a negative regulator of HHV-8 specific CD8+ T cells 

during disease progression. 

While both monofunctional and polyfunctional antiviral CD8+ T cells are present in 

healthy HHV-8 seropositive individuals, a week-long DC-enhanced system was required to 

reveal these responses to HHV-8 proteins (273).   Overall, the immune response to HHV-8 is 

relatively non-robust compared to T cell reactivity to other herpesviruses such as EBV (21, 

158).This suggests that the number and/or functional capacity of circulating anti-HHV-8 T cells 

are relatively low.  However, using direct, multimer staining, we have found that there is an 

average of 0.05-0.10% circulating, CD8+ T cells specific for single, immunodominant MHC 

class I epitopes of HHV-8 in healthy, HHV-8 seropositive individuals (158).  It is possible that 

these HHV-8-specific T cells are functionally down-regulated by T regulatory cells (Treg).  

Treg are operative in peripheral tolerance and beneficial in preventing autoimmunity and 

tissue damage, through such activities as inhibitory cytokine secretion and suppression of DC 

function (270).  However, Treg can also inhibit immunity needed to resolve infections. While 

little is currently known about Treg during HHV-8 infection and disease development, these cells 

have been found to be important during other viral infections, including EBV (162) and HIV 

(170).  During primary EBV infection, patients with mononucleosis have less Treg than healthy 

seropositive individuals (281).  In patients with Hodgkins lymphoma, Treg accumulated at tumor 

sites and those patients with higher Treg ratios had shorter disease-free survival (174, 236).   

Additionally, in these patients, several EBV epitopes stimulate Treg, and the increases in Treg 

numbers are associated with decreased EBV-specific CD8+ T cell IFN-γ production (175).   
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During HIV-1 infection, HIV-1 specific CD8+ T cell responses and cytolytic activity are 

repressed by Treg (145)  and an increased Treg frequency effect CD8+ T cell polyfunctionality 

that is restored with Treg depletion (171).   In patients with nasopharyngeal carcinoma, large 

numbers of Treg are found both at tumor sites and in circulation (155, 163).  As these cells could 

also be important in HHV-8-related disease development, such as KS, studies are needed to 

determine their exact role.   

To succeed, a pathogen must be able to evade immune surveillance. In this review, we 

have described the effect of HHV-8 infection on cells of the immune system, with particular 

emphasis on professional APC and the effect of HHV-8 infection on T cell responses, and their 

relationship to the development of KS. Recognition that DC-SIGN expressed on DC, 

macrophages and B cells acts as a major receptor for HHV-8 has enhanced our ability to assess 

the effect of HHV-8 infection of these primary cells. This has revealed two distinct replication 

patterns of HHV-8 in APC, i.e., non-productive and productive, which could have direct 

consequences on viral pathogenesis. Furthermore, this should enable studies of virus gene 

transcription cascade in cells capable of supporting productive infection that are natural targets 

of HHV-8. Studies have also begun to elucidate the effect of HHV-8 infection on DC and B cell 

functions, as measured by cytokine and chemokine production and impairment of antigen 

presenting functions. The direct effect of HHV-8 infection of professional APC and its indirect 

effect on T cell control of infection are being tied together in a more revealing fashion to define 

the magnitude and breadth of T cell responses to HHV-8 antigens. T cell responses to HHV-8 

antigens are not very robust as compared to EBV and CMV. This dampened immune response 

could be related to down regulation by Treg.  Although evident in HHV-8 infection, it is not 

clear whether polyfunctional T cells are required to control progression of associated diseases. 
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Given that the most common route of HHV-8 transmission is through saliva, and KS lesions 

predominate in the skin and mucosa, APC at the mucosal site are the most likely to be critical in 

controlling HHV-8 transmission and pathogenesis. Understanding how these events are 

influencing the ability of APC to induce an effective immune response is essential in the 

development of therapeutic and preventative vaccine strategies. 

 
This chapter was published as: Professional Antigen Presenting Cells in Human Herpesvirus 8 
Infection, E. Knowlton, L. Lepone, J. Li, G. Rappocciolo, F. Jenkins and C. Rinaldo. Frontiers in 
Immunology, 2013, 3 (427): 1-18. 

1.1 HYPOTHESIS 

Human herpes virus 8 is the causative agent of Kaposi’s sarcoma and is associated with two B 

cell cancers: Primary effusion lymphoma and multicentric Castleman’s disease.  The virus 

encodes 84 open reading frames, many of which represent human gene homologs, e.g., viral IL-

6, and viral proteins that promote the production of host cytokines, chemokines, and growth 

factors (88, 134). These soluble immune mediators,  including the host cytokines IL-6 and TNF-

α, and the chemokine IL-8, are thought to play an important role in KS pathogenesis, including 

tumor-cell proliferation, angiogenesis, and vascular permeability (86, 134, 179, 254, 283). 

Indeed, development of KS has been associated with increases in these soluble factors in blood.  

There is little information on the cellular source of these soluble host factors during 

HHV-8 infection, and how they might affect HHV-8 replication. Our lab has previously shown 

that HHV-8 infects two types of professional APC in vitro, i.e., monocyte-derived dendritic cells 

(216) and B lymphocytes (215), which are considered major targets of the virus in vivo. 

However, the virus undergoes productive infection in B cells but not DC.  
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I hypothesized that immune mediators produced by HHV-8 infected APC are unique 

between cell types and that HHV-8 infects a subset of B cells and initiates cytokine and 

chemokine production that contributes to HHV-8 replication, viral dissemination, and initiation 

of KS and HHV-8 lymphomas. Comparing the cytokine-chemokine response to the virus in these 

two cells following infection could be significant to our understanding the pathogenesis caused 

by HHV-8 infection, and could provide novel targets for vaccine development.  I therefore 

proposed to evaluate cytokine and chemokine production in APC targeted by HHV-8 infection, 

and their relationship to HHV-8 replication.   

1.2 SPECIFIC AIMS 

1.2.1 Specific Aim I 

We determined the cytokine and chemokine profiles in B cells compared to DC and defined 

HHV-8 replication within the B cells. MDDC and CD40L/IL-4-activated B lymphocytes were 

isolated from HHV-8 seronegative donors and infected with purified, live HHV-8 (“live” refers 

to fully replication competent virus). Supernatants were harvested at various time points up to 48 

hours post-exposure (hpe) and screened for cytokines and chemokines by Cytometric Bead Array 

(CBA) (BD). In addition, down-regulation of IL-12p70 production was further investigated by 

examining the effect of HHV-8 infection of DC in parallel with stimulation by the TLR agonists 

lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly-I:C).  Lytic HHV-8 

replication was assessed in B cell pellets and supernatants by PCR quantification of HHV-8 lytic 
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cycle ORF K8.1 DNA, lytic protein expression by flow cytometry and infectious virion 

production by 50% tissue culture infective dose (TCID50) assay.  

1.2.2 Specific Aim II 

We delineated the role of virus replication in B cell subsets in relation to HHV-8 induced 

cytokine and chemokine production.  HHV-8 exposed cells were stained intracellularly to 

determine cytokine and chemokine expression.  Live and ultraviolet light (UV-light) inactivated 

HHV-8, and soluble HHV-8 glycoprotein B were added to B cells to assess the role of viral 

replication in cytokine and chemokine production. The effect of IL-8 on HHV-8 replication in B 

cells was further studied by addition of recombinant IL-8 or neutralizing IL-8 mAb. The role of 

these immune mediators in the development of KS was also assessed in participants from the 

Pittsburgh Multicenter AIDS Cohort Study (MACS). 

1.2.3 Specific Aim III 

We determined B cell markers and signaling pathways that were activated/suppressed after 

HHV-8 infection in comparison to HHV-8 ORF expression.  RNA was isolated from HHV-8 

exposed and unexposed cells and used in microarray analysis and a qRT-PCR primer pair assay 

for HHV-8 ORFs (collaborative efforts with Dr. Jun Li of the Jenkins laboratory). The 

relationship between cytokine and chemokine signaling pathways and the host cell markers that 

were most significantly increased or decreased after HHV-8 infection were determined.  

Furthermore cellular gene activation was compared to the kinetics of HHV-8 gene expression by 

quantitative multiplex PCR. 
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2.0  HHV-8 INFECTION OF DENDRITIC CELLS 

2.1 ABSTRACT 

Human herpesvirus 8 induces a wide range of inflammatory immune mediators known to 

contribute to its associated cancer, Kaposi’s Sarcoma, as well as the B cell lymphomas, 

multicentric Castleman’s disease and primary effusion lymphoma.  As dendritic cells abundantly 

express the DC-SIGN receptor and are susceptible to HHV-8 infection, we sought to determine 

the immune mediator profile of monocyte derived dendritic cells in vitro.  We found significant 

increases of IL-10, MCP-1, MIP-1α, MIP-1β, RANTES and IP-10 in HHV-8 exposed DC that 

were initiated at the level of binding through HHV-8 glycoprotein B (gB). Furthermore, the Toll-

like receptor-4 signaling pathway was involved in the down regulation of the antiviral cytokine 

IL-12p70.  

2.2 INTRODUCTION 

Cytokines and chemokines are small cell-signaling proteins used for cellular communication 

during both homeostasis and an active immune response.  There are several families of these 

immune mediators, each with unique functions that make up a complex ‘cytokinome’(66).  

Disruption of the immune mediator balance can result in inflammation, autoimmunity and 
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immunopathology (269). Several pathogens take advantage of the cytokine and chemokine 

network, including the Herpesviridae family of viruses.  Herpes simplex virus (HSV) encode for 

proteins that interfere with chemokine function (269).  Also, levels of chemokines are elevated in 

cerebral fluid of patients with Herpes simplex encephalitis (228).  CMV induces a pro-

inflammatory cytokine response at the blood brain barrier, including up-regulation of RANTES, 

IL-8, IL-6, CXCL-11 and IL-1β, that contribute to neuropathology (7).  Both primate CMV and 

human EBV encodes for a viral IL-10 that serve several functions including; inhibition of DC 

maturation (213), down-regulation of MHC I on B cells (286), growth and transformation of B 

cells (186) and inhibition of Th1 cytokines (243).  

Cytokines and chemokines also play a crucial role in the development of Kaposi’s 

Sarcoma, a cutaneous tumor caused by Human herpesvirus 8 (188).  KS tumors are highly 

vascularized with abnormal angiogenesis, leading to enhanced blood flow to the tumor by 

expanding pre-existing blood vessels (182).  Inflammatory changes occur early in KS, prior to 

the detection of the cancer (182).  Pro-inflammatory processes drive early-stage KS to develop 

into mature, spindle cell lesions (222). The infiltrating cells produce large amounts of Th1 

polarizing, pro-inflammatory cytokines (e.g., IFN-γ, IL-1β, TNF-α and IL-6), chemokines (e.g., 

IL-8), and growth factors (e.g., VEGF), which can induce the KS-like phenotype observed in 

activated endothelial cells (87, 93, 187) Thus, imbalance of the cytokine and chemokine 

microenvironment created during HHV-8 infection appears to be closely linked to the outgrowth 

of KS endothelial cells.   

 When MDDC are infected in vitro with HHV-8, viral lytic proteins are produced with 

little viral DNA production (216), similar to abortive HHV-8 infection of vascular endothelial 

cells (5, 197, 214, 220, 267).  Although HHV-8 infection does not significantly alter MDDC 
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viability, it decreases MDDC function, i.e., lowers their capacity to activate antigen-specific 

CD8+ T cell responses.  Moreover, HHV-8 infected MDDC have impaired antigen uptake, with a 

significant decrease in endocytic capacity.  

Our lab has previously demonstrated that in vitro HHV-8 infection of MDDC secrete IL-

6, TNF-α, IP-10, MIP-1α and MIP-1β (123). Furthermore, bioactive IL-12p70 is not detected in 

HHV-8 infected MDDC (123).  We therefore sought to expand on previous findings and further 

evaluate the down-regulation of IL-12.  Here, we show a more detailed examination of the DC 

cytokine and chemokine profiles and a possible involvement of the TLR-4 signaling pathway in 

the down-regulation of IL-12.   

2.3 METHODS 

2.3.1 Preparation of monocyte derived dendritic cells from blood  

Peripheral blood mononuclear cells were isolated by Ficoll-Hypaque density gradient separation. 

To obtain monocytes, PBMC were incubated with anti-CD14 mAb-coated immunomagnetic 

microbeads according to the instructions of the manufacturer (Miltenyi Biotec).  CD14+ cells 

were cultured in AIM-V medium (GIBCO) and treated with 1,000 U/ml of recombinant human 

IL-4/ml (R&D Systems) and GM-CSF for 5 days at 37ºC in 5% CO2  to generate MDDC.  
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2.3.2 HHV-8 infection of MDDC 

MDDC were resuspended at 1x106 cells/ml in fresh AIM-V and left untreated or exposed to 

HHV-8 for 3 hours (h) at 37ºC in 5% CO2.  Unadsorbed virus was removed by washing the cells 

2 times in AIM-V.  Cells were resuspended at a final concentration of 1x106 cells/ml and 

cultured at 37ºC in 5% CO2, for up to 48 h.  In some studies, MDDC were treated with 1µg/ml 

soluble glycoprotein B (gB) containing an arginine-glycine-aspartate (RGD) integrin binding 

motif (271) or gB mutant (gBm) containing an arginine-glycine-glutamic acid (RGE) motif (gift 

from Dr. Bala Chandran) for 3 h and then washed and recultured as described above.  In some 

studies, purified HHV-8 was UV-light inactivated at 365nm wavelength at 10 cm for 20 minutes 

(m) and then treated with 1U/100µl DNase.  Inactivation was verified in parallel B cell studies 

by viral DNA quantification, lytic protein expression and TCID50 assay.  In some studies, HHV-

8 was passed through a 0.1µl filter and the resulting filtrate was used.  

2.3.3 Supernatant collection and cytokine and chemokine detection  

Supernatant samples were collected from unexposed and HHV-8 exposed MDDC at various 

times pre and post exposure.  Supernatant samples were screened for IL-1β, -2, -4, -6, -7, -8, -10 

and -IL-12p70, IFN-γ, TNF-α, lymphotoxin-α (LT-α), IP-10, MIP-1α, MIP-1β, MCP-1 and  

RANTES by CBA (BD) per manufacturer’s instructions.  Briefly, 50ul of cell culture 

supernatant was incubated with flex set kit capture beads for 1 h and then Phycoerythrin (PE) 

detection reagent for 2 h.  Samples were read on an LSR-II flow cytometer (BD 

Immunocytometry Systems) and analyzed with Flow Cytometric Analysis Program (FCAP)  

Array Software (BD).   



 36 

2.3.4 TLR stimulation 

MDDC were exposed to HHV-8 for 3 h and recultured in AIM-V supplemented with a TLR-2 

ligand Porphyromonas gingivalis LPS (Invivogen, 1µl/ml) and TLR-4 ligand LPS (Sigma,  

1µl/ml) or a TLR-3 ligand poly-I:C (Sigma, 1µl/ml).  Supernatant samples were collected and 

assayed by CBA to determine levels of IL-12p70 production.  

2.3.5 Statistical analysis  

We used the Student t test; assuming equal variance and paired for comparisons between groups, 

P ≤ 0.05. 

2.4 RESULTS 

2.4.1 Effect of HHV-8 concentration on cytokine production  

As DC are a target for HHV-8 infection and produce immune mediators known to be involved in 

KS, we sought to determine immune mediator production by HHV-8 infected DC. The induction 

of cytokines and chemokines was examined using primary MDDC and HHV-8 purified from 

BCBL-1.  DC were infected with HHV-8 for 3 h and then washed thoroughly to remove any 

unadsorbed virions. DC were recultured for up to 48 h. Supernatants were collected at various 

times post exposure and tested for multiple analytes with CBA, including the cytokines; IL-1β, -

2, -6, -7, -10, -12p70, IFN-γ, TNF-α, the chemokines; CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 
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(MIP-1β), CCL5 (RANTES),  CXCL8 (IL-8), CXCL10 (IP-10), LT-α and the growth factor 

VEGF, for a total of 17 immune mediators.  These cytokines, chemokines and growth factors 

were selected based on their known association with KS and their availability in a newly 

developed BD assay.  Of the 17 markers, 3 showed ≥ 2.5-fold increase at 24 (left) and 48 hpe 

(IL-6, MCP-1, MIP-1α) (Fig. 1a.).  Additionally, at 24 hpe (left) IL-7, IL-10 and IP-10 were 

enhanced, while IL-1β, MIP-1β, RANTES and IL-8 were enhanced by 48 hpe. Of the markers 

that showed at least a 2.5-fold increase, we selected IL-6, IL-10, MCP-1, MIP-1α, MIP-1β, 

RANTES, IL-8 and IP-10 due to their corresponding elevated levels above unexposed DC (Fig. 

1b).   

To assure that the purified HHV-8 lacked non-viral contaminants that could trigger a 

nonspecific cytokine or chemokine response, DC were treated with HHV-8 or the filtrate of 

HHV-8 that had been passed through a 0.1μm filter. As shown in Fig. 2, unexposed and filtrate 

treated DC produced similar levels of cytokine and chemokines, which was substantially less 

than DC exposed to HHV-8, indicating that cytokine and chemokine production seen above 

background was due to virus infection rather than non-viral contaminating particles.   

The effect of virus concentration on production of cytokines and chemokines was next 

investigated by infecting DC with 10-fold serial dilutions of HHV-8 to determine the optimal 

amount of virus required for maximum cytokine induction.  We determined that a concentration 

of 107 copies of viral DNA used to infected 1x106 MDDC generated the greatest analyte 

response by 24 hpe (Fig. 3) without causing cytopathic effects (viability >86%). This 

concentration was used for the remainder of experiments. 
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Figure 1: DC cytokine and chemokine screen 

DC were left untreated or exposed to HHV-8.  Supernatant samples were collected at 24 (left panels) and 48 (right 
panels) hpe and screened by CBA for 17 immune mediators. (A) Fold increase over unexposed DC and (B) 
normalized concentrations above unexposed DC (mean ± s.e.m., N = 1 [IL-1β, IL-12p40, VEGF], 2 [LT-α], 5 [IL-2, 
IL-7], 8 [TNF-α], 11 [IFN-γ], 16 [IL-12p70, RANTES], 17 [IP-10, IL-10], 18 [IL-6, IL-8], 21 [MCP-1, MIP1α] and 
22 [MIP-1β].  
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Figure 2: HHV-8 specific immune mediator response 

DC were exposed to HHV-8 or the filtrate of virus that was passed through a 0.1µm filter.  Supernatants were 
assayed by CBA at 3, 24 and 48 hpe.  Data are representative of 2 individuals tested.  

 

 

 

 



 40 

 

Figure 3: Immune mediator response is HHV-8 dose dependent 

DC were exposed to 107 HHV-8 DNA copies or three 10-fold dilutions (106, 105, 104).  Supernatants were assayed 
by CBA at 3, 24 and 48 hours post exposure (mean ± s.e.m., N =2). 
 
 
 
 
 

2.4.2 HHV-8 cytokine and chemokine production in DC  

As binding and entry of HHV-8 virions occurs rapidly in vitro and Hensler et al., (123) showed 

induction of cytokine and chemokine production in DC as early as 2 h post infection, we next 

compared the length of adsorption period that allowed for the greatest cytokine and chemokine 

response.  DC were exposed to HHV-8 for 1 or 3 h and supernatant samples were collected at 

various times post exposure (Fig. 4).  Although results between a 1 h and 3 h adsorption were 

very  similar, we  determined that a 3  hr adsorption  period resulted  in the strongest induction of  
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Figure 4: Three hour adsorption induces the best immune mediator response 

DC were exposed to HHV-8 for 1 or 3 hours.  Supernatants were collected at the end of each adsorption stage and at 
1, 3, 5, 7, 9, 24 and 48 hpe for CBA analysis.  Data are representative of 2 individuals tested.   
 
 
 
 
 
 
 

cytokines and chemokines that was sustained for up to 48 h.  Immediately following the 3 h 

adsorption period and prior to washing away unadsorbed virus, immune mediators production 

was enhanced, with significant levels of MIP-1α above unexposed DC cultures, consistent with 

previous reports (123), indicating a rapid immune mediator response upon HHV-8 exposure 

(Fig. 5).   
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After establishing the infection protocol and assay procedure that allowed for optimal 

detection of immune mediator production, we determined the cytokine and chemokine profiles of 

HHV-8 exposed DC.  Nearly all cytokine and chemokine levels continued to rise until the last 

time point, 48 h, with the exception of the MIP chemokines that peaked in the first 24 h (Fig. 6).  

There were significant increases in IL-10, MCP-1, MIP-1α, MIP-1β, RANTES and IP-10 at 24 

hpe with peak production of 24, 1,339, 282, 12,787, 80 and 62 pg/ml, respectively.  

 

 
 

 

 

Figure 5: HHV-8 rapidly induces immune mediator production in DC 

CBA was used to determine cytokine-chemokine production of HHV-8 infected DC after the 3 h virus adsorption 
period, prior to washing unadsorbed HHV-8 (mean ± s.e.m., N = 5, *P<0.05). 
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Figure 6: DC cytokine and chemokine kinetics 

Supernatants were collected after the adsorption phase and subsequent washes (3h) and at 24 and 48 h and assayed 
by CBA to determine cytokine-chemokine production of unexposed and HHV-8 exposed DC (mean ± s.e.m., N = 13 
[ RANTES], 14 [IP-10, IL-10], 15 [IL-6, IL-8], 16 [MCP-1, MIP1α] and 17 [MIP-1β],  *P<0.05.) 
 
 
 
 
 

2.4.3 HHV-8 replication not required for immune mediator induction  

 As HHV-8 does not replicate in DC (216), we next sought to determine the effects of a 

replication incompetent HHV-8 on cytokine and chemokine induction. DC were treated with live 

HHV-8 or a UV-inactivated ‘dead’ HHV-8.  To verify the success of the UV inactivation, UV-

HHV-8 were used to infect B cells in parallel studies.  B cells support lytic cycle replication and 

live HHV-8 showed increases in viral DNA, lytic protein expression and infectious virion 
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production, while dead HHV-8 did not (see Fig. 15a-c in Chapter 3).  As expected, there were 

no significant differences in cytokine and chemokine production between live and UV-HHV-8 at 

24 (left) or 48 h (Fig 7).  

 

 

 

 

Figure 7: UV-inactivated HHV-8 induces immune mediator response 

DC were exposed to live HHV-8 or UV-HHV-8.  Supernatants were assayed by CBA at 24 (left) and 48 hpe (mean 
± s.e.m., N =9).  

 

 

 

As both live and dead HHV-8 elicited an immune mediator response in DC, we 

hypothesized that binding of HHV-8 to DC was sufficient to initiate cytokine and chemokine 

signaling cascades.  To further elucidate the mechanism by which HHV-8 induces a cytokine and 

chemokine response in DC we used soluble HHV-8 gB.  HHV-8 gB contains an RGD motif, a 

peptide region known to interact with cell surface integrins (271). At both 24 (left) and 48 hpe, 

there were several cytokines and chemokines that were enhanced by gB above unexposed 

cultures, indicating that early binding of HHV-8 to DC may initiate cytokine and chemokine 

responses (Fig. 8).   
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Figure 8: Soluble glycoprotein B induces immune mediator response 

DC were exposed to HHV-8, soluble gB or soluble gBm and supernatants were assayed by CBA at 24 (left) and 48 
h.p.e.  (N =1) 
 

 

 

 

Interestingly, when a soluble gB mutant (gBm) with an RGE motif that will not bind 

surface integrins was added, immune mediator induction was rarely diminished.  Though gBm 

does not bind integrins, it maintains its ability to bind DC-SIGN (unpublished, Jenkins) and as 

DC-SIGN is prominently expressed on DC, this likely plays a key role in immune mediator 

induction.  

2.4.4 HHV-8 down regulates IL-12p70 production via TLR-4 pathway  

We have reported down regulation of IL-12 production by HHV-8 infected DC (123) assayed by 

ELISA, and in the present study confirmed this using CBA.  We next tried to rescue IL-12 

production using TLR agonists, as signaling through the TLR-4 pathway results in IL-12 

production.  As shown in Figure 9, DC treated with TLR-4 agonist LPS alone produced elevated 
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levels of IL-12p70 by 24 and 48 hpe. As expected, DC exposed to HHV-8 produced less than 20 

pg/ml.  Interestingly, production of IL-12 could not be restored when the DC were 

simultaneously exposed to HHV-8 and treated with the TLR-4 LPS, as levels remained less than 

20 pg/ml. This inhibitory effect was not seen in HHV-8 exposed DC treated with the TLR-2 

agonist LPS or the TLR3 agonist poly-IC, indicating that HHV-8 induced down-regulation of IL-

12 production was specific to the TLR-4 pathway.  Also, the production of IL-12 in the poly-IC 

treated HHV-8 exposed DC was higher than in poly-IC treated DC.  DC exposed to UV-

inactivated HHV-8 and then treated with TLR-4 agonist LPS also produced low levels of IL-

12p70 production (data not shown), suggesting that full cycle HHV-8 replication is not required 

to modulate this immune function.  

 

 

 

 

Figure 9: HHV-8 down-regulates IL-12p70 via the TLR-4 pathway 

DC were infected with HHV-8 for 3 hours. Cells were washed and then treated with a TLR-4 ligand (TLR4L) LPS, 
TLR2 ligand (TLR2L) LPS or TLR3 ligand (TLR3L) poly-I:C. Supernatants were analyzed at 24 and 48 hpe (N=3, 
mean ± s.e.m.). 
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2.5 DISCUSSION 

A delicate balance exists between protective immunity involving immune mediator production 

by host cells, and virus-driven induction of cytokines and chemokines that aid in the 

dissemination and spread of infection and mediate pathogenesis.  Several of the mediators that 

are essential to the immune response and activation of lymphocytes can exacerbate infection and 

cause clinical symptoms when over produced in response to HHV-8 infection.  

 Here, we show a pro-inflammatory immune mediator profile in HHV-8 exposed DC, 

with significant increases of IL-10, MCP-1, MIP-1α, MIP-1β, RANTES and IP-10.  The 

induction of these mediators occurred rapidly and was substantially elevated during the 3 hour 

exposure to HHV-8.  The rapid induction of immune mediators implies early steps in HHV-8 

infection may trigger an immune mediator response.  This hypothesis was supported by two 

additional observations generated from gB and UV studies.  Binding of gB to DC resulted in 

elevated levels of all 7 cytokines and chemokines above unexposed DC.  It is difficult to directly 

compare the quantity of immune mediator production between the HHV-8 exposed DC and the 

gB exposed as we are unable to normalize the amount of soluble gB to the gB associated with the 

purified HHV-8 virions.  Notably, the gB mutant that is unable to bind integrins could still 

induce a potent immune mediator response, indicating that there are other cell surface moieties 

involved in cytokine and chemokine signaling.  Interestingly, triggering of C-type lectins, 

including DC-SIGN, in combination with TLR triggering on DC induces signaling and cytokine 

responses, which in turn regulate T cell polarization that is central to host immune control of 

infections (264).  Furthermore, when UV-HHV-8 was used, production of the 7 immune 

mediators was nearly identical.    This was expected as DC do not support lytic infection. These 
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data imply that binding of HHV-8 to DC surface receptors triggers an immune mediator response 

that does not require lytic replication.  

 The role of each cytokine/chemokine in HHV-8 infection and KS likely varies 

depending on their quantity and origin of production.  In our study, with the exception of the 

MIP chemokines, immune mediator production increased over 2 days, with a peak on day 2.  

MCP-1 (3.8 fold increase) and IL-8 (3.6 fold increase) was greatly enhanced.  These chemokines 

are also elevated in serum of KS patients and have been implicated in many cancers (179, 254).  

Additionally, when bound to its CCR2 receptor on endothelial cells, MCP-1 results in 

chemotaxis and has been shown to mediate angiogenesis in vitro (100, 179).   IL-1β, TNF-α, IL-

8 and IL-6 had 3.6, 2.2, 3.6, 32 fold increases, respectively and can enhance tumor cell growth 

and vascularization (84, 86, 93) by inducing the expression of two angiogenic mediators, i.e., 

VEGF and fibroblastic growth factor (FGF) (58, 62, 84, 187).  IL-6 is also found at very high 

levels in both KS lesions and in circulation of patients with MCD (8). 

In epidemic or AIDS-related KS, the immune dysregulation and induction of 

inflammatory cytokines acts to further enhance KS tumor growth.  Indeed, serum and cell 

samples taken from KS lesions of HIV-1 infected individuals co-infected with HHV-8 show 

markedly increased levels of inflammatory cytokines, growth factors and angiogenic mediators 

(86, 209).   Furthermore, treatment of KS patients with IFN-γ, IL-2 and TNF causes KS 

progression (187).  The results of this study support an intentional skewing of cytokine 

production in HHV-8-infected MDDC towards induction of a pro-inflammatory response that 

could enhance development of KS. 

  We demonstrated a down-regulation of IL-12p70 production in DC, consistent with 

previous reports (123).  IL-12 is a critical antiviral cytokine produced by DC to initiate a natural 
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killer and CD8+ cytotoxic T cell responses. A decrease in IL-12 production is detected in 

chronically infected HIV-1 positive individuals upon in vitro stimulation (51), resulting in a loss 

CD8 T cell cytotoxicity.    Specifically, down-regulation of IL-12p70 is linked with HIV-1 Vpr 

(172). In addition, Herpesviruses, such as cytomegalovirus and HHV-6, down-regulate this 

cytokine as an immune evasion strategy.   

HHV-8 down-regulates TLR-4 mediated signal transduction (150), a known pathway for 

induction of IL-12, in lymphatic endothelial cells.  TLR-4 mRNA expression is decreased upon 

live and UV-killed HHV-8 infection with over 50% decrease in surface expression (150).   The 

viral encoded G-protein coupled receptor (vGPCR) and interferon regulatory factor (vIRF1) 

decreases TLR-4 mRNA in a dose dependent manner (150).  To determine if the down-

regulation of IL-12 in our in vitro DC model was related to TLR-4 down-regulation,  DC were 

exposed to HHV-8 and then treated with either a TLR-4 agonist LPS, a TLR-2 agonist LPS or 

the TLR-3 agonist poly-IC.  Production of IL-12 could not be restored when DC were 

simultaneously exposed to HHV-8 and TLR-4 LPS.  There was not a down-regulation observed 

for the other TLR agonists, indicating specificity for the TLR-4 pathway. Interestingly, addition 

of HHV-8 and poly-I:C increased IL-12 production nearly 2-fold, which supports findings by 

West et al., that TLR-3 expression is up-regulated during primary infection of monocytes (277).  

Additional studies to determine the proteins HHV-8 targets in these TLR pathways could provide 

valuable insight to the immune evasion strategies employed by this virus.  

In conclusion, we determined that HHV-8 elicits a significant induction of pro-

inflammatory cytokines and chemokines that could drive a Th2-skewed immune response 

resulting in a dampened CTL activation and HHV-8 persistence.   
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3.0  HHV-8 INFECTION OF B LYMPHOCYTES 

3.1 ABSTRACT 

The role of human herpesvirus 8 infection of B lymphocytes in development of Kaposi’s 

sarcoma is poorly defined. Here we found that cytokines and chemokines produced during HHV-

8 infection of B cells were associated with development of KS. HHV-8 targeted activated, DC-

SIGN expressing, IgM memory and naive B lymphocytes for complete, lytic replication.  B cells 

infected with HHV-8 were predominately polyfunctional, producing combinations of 2-5 

cytokines and chemokines. We observed corresponding elevated levels of these immune 

mediators in plasma and B cells of HIV-1-infected persons with KS compared to those without 

KS.  Production of multiple cytokines and chemokines by HHV-8 lytic infection of IgM memory 

and naïve B cells could have a key role in viral dissemination and cell proliferation in KS. 

3.2 INTRODUCTION 

Infection of B lymphocytes with human herpesvirus 8 is significant to the development of 

Kaposi’s sarcoma (8, 85, 86, 219) and the lymphoproliferative B cell cancers, primary effusion 

lymphoma (205) and multicentric Castleman’s disease (8, 261). Cell proliferation, angiogenesis, 

and vascular permeability that are essential for development of these cancers could be driven at 
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least in part by cytokines and chemokines produced by B cells (85, 86, 209). Moreover, a 

recently described HHV-8-associated inflammatory cytokine syndrome without 

lymphoproliferation is defined by elevated levels of IL-6 and other cytokines (206). 

The predominant association of HHV-8 with cells of its related cancers has been in the 

form of latent virus infection. Latent HHV-8 episomal DNA is present in a large percentage of 

cells within KS lesions (B cells, monocytes, and endothelial cells) (261) and B cells of HHV-8 

lymphomas (38). Indeed, HHV-8 establishes latent infection in vitro in a subset of tonsillar 

IgMλ-expressing B cells with a plasmablast phenotype characteristic of MCD (119). 

Accumulating evidence, however, has incriminated lytic HHV-8 infection in driving HHV-8-

associated cancers (103, 206). Thus, persistence of latent HHV-8 infection in KS cells is 

associated with ongoing lytic virus replication (113, 205, 245).  Furthermore, many HHV-8 

proteins encoded during lytic replication could have profound effects on inflammation and 

angiogenesis (102).  HHV-8 viremia predicts subsequent development of KS (133), with 

persistence of HHV-8 requiring ongoing lytic replication and infection of new cells. Finally, 

therapy with monoclonal antibody rituximab that depletes CD20+ B cells has profound antitumor 

effects in MCD (106), while antiviral drugs that block cytomegalovirus DNA synthesis decrease 

HHV-8 titers and prevent development of KS (103).    

B cells from blood and tonsils of healthy adults that are pre-stimulated with surrogates of 

activated helper T cells, i.e., CD40L and IL-4, are permissive for HHV-8 lytic infection in vitro 

(215). However, evidence of lytic HHV-8 infection and induction of immune mediators in B 

cells and their relationship to HHV-8 cancers is lacking. In the present study we therefore 

examined the hypothesis that cytokine and chemokine production is enhanced upon lytic HHV-8 

infection of B lymphocytes using a combined battery of new assays for viral DNA, protein, and 
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infectious virions.  To link this to the immunopathogenesis of HHV-8 infection, we determined 

the state of B cell differentiation targeted during primary lytic HHV-8 infection in vitro by a 

newly developed, polyfunctional cytokine and chemokine profile.  Here, we offer the first 

comprehensive evidence of HHV-8 lytic replication and cytokine and chemokine production in 

primary B cells. We show that HHV-8 predominately infects IgM+ memory-like and naïve B 

cells that express DC-SIGN, and induces polyfunctional immune responses with  combinations 

of IL-6, IL-8, TNF-α, MIP-1α and MIP-β. We found corresponding, elevated levels of HHV-8 

DNA and all of these immune mediators except IL-6 in plasma of HIV-1-infected adults with KS 

compared to those without KS. CD19+ B cells isolated from KS cases had elevated RNA levels 

of IL-6, MIP-1α, MIP-1β, IL-8 and VEGF compared to KS controls. Lastly, HHV-8-infected 

polyfunctional B cells were detected in the KS+ cases. These data support that immune mediators 

induced by lytic HIV-1 infection of memory and naïve B cells are important in driving KS and 

HHV-8-associated B cell lymphomas. 

3.3 METHODS 

3.3.1 Preparation of B cells from blood  

PBMC were isolated by Ficoll-Hypaque density gradient separation. CD19+ B cells were 

collected by negative selection (B-Cell Isolation Kit II - Miltenyi Biotec) and cultured in Roswell 

Park Memorial Institute (RPMI)-1640 (GIBCO) medium supplemented with 10% heat-

inactivated fetal calf serum (FCS) (GemCell).  B cells were activated for 48 h at 37ºC, with 1 µg 

of soluble trimeric Mega CD40L/ml (Alexis) and 1,000 U of recombinant human IL-4/ml.  
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3.3.2 HHV-8 purification  

HHV-8 was purified from body cavity based lymphoma (BCBL-1) cells latently infected with 

HHV-8 as previously described (41) with modification.  Prior to sucrose cushion 

ultracentrifugation, supernatants were pooled and treated with 1U/100µl DNase (Sigma).  Virus 

pellets were resuspended in 1 ml phosphate-buffered saline (PBS) (GIBCO) with 0.1% bovine 

serum albumin (BSA).    DNA copies/ml (HHV-8 titer) was determined by PCR (described 

below). 

3.3.3 HHV-8 infection of primary activated B cells  

Activated B cells were suspended at 1x106 cells/ml in fresh RPMI, with 10% FCS.  B cells were 

left unexposed or exposed to 107 DNA copies of HHV-8 or UV-light inactivated HHV-8 DNA 

for 3 h at 37ºC in 5% CO2.   Cells were washed in fresh medium and centrifuged twice to remove 

any unadsorbed virus. Cells were resuspended in fresh RPMI with 10% FCS at 1x106 cells/ml 

and cultured at 37ºC in 5% CO2, for up to 48 h. For UV-inactivation, B cells were treated with 

equivalent doses of UV-HHV-8 as live HHV-8. In some experiments, B cells were treated with 

1µg/ml soluble gB (271) for 3 h and then washed and recultured as described above. 

3.3.4 HHV-8 K8.1 qRT-PCR in activated B cells   

B cells were collected at various times post exposure and pelleted.  500,000 cells and 500ul of 

culture supernatant were assayed by PCR as previously described (210, 244).  Samples were 

treated with 1µl DNase in 10 µl DNase buffer (Sigma) for 15 minutes then lysed in easyMAG 
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buffer (NucliSENS) and DNA was extracted on an easyMAG automated extractor (bioMérieux).  

Phocine herpesvirus (PhHV) was used as an internal control for DNA extraction (201).   DNA 

was mixed with a primer set specific for HHV-8 K8.1(210) and the real-time PCR reaction was 

carried out on 7000 or 7500 ABI (Applied Biosystems). For KS¯ and KS+ MACS samples, DNA 

was extracted from plasma and the reaction was carried out on ViiA7 (Applied Biosystems). 

3.3.5 Microarray for B cell gene activation   

B Cells were left unexposed or exposed to HHV-8 for 3 h, washed and recultured. 1 million cells 

per treatment were collected after the wash (3 h) and at 4, 6, 9, 15 and 27 hpe.  Genomic DNA 

was digested by RNase free DNase and RNA was extracted using RNeasy Mini Kit (QIAGEN) 

and total concentration (ng/µl) were determined by NanoDrop 1000 Spectrophotometer (Thermo 

Scientific).  1µg RNA of each sample was given to the University of Pittsburgh Genomics and 

Proteomics Core Laboratory for RNA labeling and direct hybridization to Illumina HT12v4 

microchips. Samples were run in duplicates to determine yield RNA expressions.  Fold increases 

in HHV-8 exposed over unexposed B cells were calculated. 

3.3.6 Supernatant collection and cytokine and chemokine detection   

Supernatant samples were collected from unexposed and HHV-8-exposed B cells at various 

times post exposure.  Supernatant samples were screened for IL-1β, -2, 4, -6, -7, -8, -10, IL-

12p70, IFN-γ, TNF-α, IP-10, MIP-1α, MIP-1β, MCP-1, RANTES and VEGF by CBA (BD) as 

per manufacturer’s instructions.  Samples were read on an LSR-II flow cytometer (BD 

Immunocytometry Systems) and analyzed with FCAP Array Software (BD).   
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3.3.7 Flow cytometry and intracellular staining  

1x106 cells were resuspended in 100 µl PBS per well in a 96 well V-bottom plate. Staining for 

various immune mediators was performed as previously described (18, 152) with modifications.  

For intracellular cytokine expression, cells were treated with Brefeldin A (5 µg/ml; Sigma) for 4 

h at 37◦C and then 20µl ethylenediaminetetraacetic acid (EDTA) (2mM) (GIBCO) for 10 m at 

room temperature. Cells were washed and resuspended in PBS containing 50 μl/ well of aqua 

viability dye (1ul dye in 500ul PBS) (Invitrogen) for 30 m in the dark, washed and resuspended 

in 5 µl of CD20-PE-Cy7 (BD) and 20µl of CD209-PerCP-CY5.5 (BD) for 30 m in the dark.  

After washing, cells were resuspended in 4% paraformaldehyde (PFA) for 10 m, washed and 

resuspended in 1x fluorescence-activated cell sorting (FACS) lysis solution (BD) for 10 m. Cells 

were washed and permeabilized for 10 m using 1X Perm solution (BD). Cells were washed 3 

times and blocked with Super Blocking Buffer (Pierce) for 30 m.  Cells were stained with 

5µl/well of MIP-1β-allophycocyanin-H7, IL-6-V450, TNF-α-allophycocyanin and MIP-1α-PE 

and 20µl of IL-8-fluorescein isothiocyanate (FITC) (BD) for 30 m in the dark, then fixed in 1% 

PFA and analyzed with an LSR II flow cytometer.  

To determine HHV-8 lytic protein expression, cells were additionally stained with anti-

K8.1 or anti-ORF59 PF-8 mAb conjugated to Alexa fluor (AF)-680 using the Zenon conjugation 

kit as per manufacturer’s specifications (Invitrogen). Purified mouse IgG1 or IgG2B (Sigma) were 

also conjugated with AF680 and used as controls.  Isotype controls were used to gate for ORF59 

PF-8 positive cells (consistently gated at approximately 1% background positivity).  

For B cell phenotypic staining, cells were stained with CD20-AF405, DC-SIGN-AF488, 

IgD-PE, IgM- allophycocyanin, CD27- allophycocyanin-H7 CD23-PE, CD138- PerCPCy5.5 

and/or CD38-PerCPCy5.5 (BD) for 30 m prior to fixing in 4% PFA.  
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3.3.8 Tissue culture infectious dose 50% (TCID50) assay   

A TCID50 assay was developed using T1H6-DC-SIGN cells (Nadgir, submitted for publication, 

see Appendix D).  293T cells transfected with a pβgalBasic plasmid containing an RTA 

responsive element under a polyadenylated RNA promoter (130) were subcloned to express DC-

SIGN and selected by hygromycin resistance. T1H6-DC-SIGN cells were harvested and 

resuspended in DMEM (Lonza) and 100μg/ml hygromycin (Clontech) at 4x104 cells/100 μl and 

plated in a 96 flat bottom well plate.  Supernatants at 3, 24, and 48 h post-B cell exposure were 

collected and diluted 1:10 in PBS for up to 5 10-fold dilutions.  30 µl of supernatant was added 

per well in sixlets.  At 48 h cells were collected and centrifuged at 13,000 rpm for 1 m. Cells 

were washed with PBS 3 times and resuspended in lysis buffer (K2HPO4 +KH2PO4 + DTT) 

followed by 3 rapid freeze-thaw cycles.  Cells were spun at 13,000 rpm for 10 m at 4◦C.  

Supernatants were collected and 20 µl were plated with 196 μl β-galactosidase (β-gal) detection 

kit II buffer (Clontech) and 4 μl substrate per well.  After 1 h, β-gal luminescence was 

determined using a Fluostar OPTIMA luminometer with a sensitivity of 200 at 5 second light 

intervals. Mean luminescence was determined by subtracting the mean of the control well (no 

virus added) + 2 standard deviations. 

3.3.9 SPICE analysis of polyfunctional B cells   

Flow cytometry data were analyzed using the FloJo (Tree Star) Software.  Polyfunctional B cell 

responses to HHV-8 infection was assessed using the simplified presentation of incredibly 

complex evaluations (SPICE) program (Version 4.3, M. Roederer, Vaccine Research Center, 

National Institute of Allergy and Infectious Diseases [NIAID], NIH). 
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3.3.10 Study participants and samples  

The in vitro studies were done using anonymous, adult blood donors who were determined to be 

HHV-8 antibody negative by an immunofluorescence microscopy assay (133). For in vivo 

studies, participants were chosen from the Pittsburgh site of the MACS, a longitudinal study of 

the natural history of HIV-1 infection in men who have sex with men that began in 1984 (140). 

Thirty MACS participants were chosen based on HIV-1 and HHV-8 status, as well as the 

presence or absence of Kaposi's sarcoma. An indirect immunofluorescence assay was used to 

detect HHV-8 serum antibodies (273). HHV-8 viral load was determined by PCR as described 

above. HIV-1 viral load in the plasma was determined using Roche Ultrasensitive RNA PCR 

assay (Hoffman-LaRoche). T cell levels were determined using flow cytometry (234). The 30 

participants were classified into two HIV-1-positive/HHV-8-positive and KS-negative or KS-

positive groups, with fifteen participants in each group. Serum samples were chosen within a 

year of KS development and the corresponding time point for the controls that did not develop 

KS. Two additional time points were chosen 2-5 and 6-10 years prior to KS development. All 

participants were Caucasian men, with an average age of 32.1 (range of 23 to 46) at the first 

visit. 

3.3.11 Serum biomarker assay  

Serum samples were tested for the presence of several biomarkers using an 

electrochemiluminescence Meso Scale Discovery (MSD) multi-array assay. Ultra-sensitive kits 

for human IL-6, IL-8, TNF-α, MIP-1β and MIP-1α and a human serum kit for VEGF (MSD) 

were used according to the manufacturer's protocol for serum samples. Both samples and 
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standards were performed in duplicate. Plates were read on a SECTOR Imager 2400 

electrochemiluminescence machine (MSD) and data were analyzed using the Discovery 

Workbench (version 3, MSD). 

3.3.12 cDNA synthesis and real-time RT-PCR 

A two-step RT-PCR assay was used to measure the levels of expression of immunomodulatory 

host mRNAs as previously described (233).  Gene expression was normalized to the endogenous 

control mRNA, β-glucuronidase, and the values presented were calculated as 2-ΔCt 

3.3.13 Statistical Analysis 

We used the Student t test; two-sample assuming equal variance and paired for comparisons 

between groups. 

3.4 RESULTS 

3.4.1 B cells support HHV-8 lytic replication  

B cells infected with HHV-8 could be a major source of cytokines and chemokines.  To examine 

this in depth, we developed new, multiparameter assays to measure HHV-8 infection of B cells. 

We first established a flow cytometry assay for measuring production of HHV-8 lytic proteins 

K8.1 and ORF59 PF-8 using DC-SIGN transfected RAJI and K562 cell lines. We have 

previously shown that DC-SIGN is predominately found on a subset of B cells (ranging from 8-
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18%) after activation. Moreover, we showed that DC-SIGN serves as an entry receptor for HHV-

8 on B cells using fluorescent microscopy to detect DC-SIGN+ cells expressing HHV-8 proteins 

(215). To our knowledge, there is no published method for detection and quantization of HHV-8 

lytic protein expression by flow cytometry in primary cells. We used K562 cells stably 

transfected with DC-SIGN (K562DC-SIGN cells) and exposed these to varying concentrations of 

purified HHV-8.  At 48 hpe K562DC-SIGN cells were collected and stained for viability, as well as 

permeabilized and stained intracellularly for HHV-8 using mAb specific for ORF59 PF-8.  With 

the undiluted pool of virus (107 DNA copies), 11% of K562DC-SIGN cells were positive for ORF59 

PF-8 (Fig. 23a in Appendix B).  As the number of HHV-8 DNA copies used to infect K562DC-

SIGN cells decreased, so did the detection of HHV-8 ORF59 PF-8, with undetectable levels at 102 

DNA copies.  

  Next, we used a different cell line, RAJIDC-SIGN cells, to further explore the sensitivity of 

the flow cytometry assay.  RAJIDC-SIGN cells were mixed with non-DC-SIGN transfected RAJI 

cells at 5:1, 1:1 and 1:5 ratios.  DC-SIGN surface expression of each ratio was measured by flow 

cytometry (Fig. 23b in Appendix B).  Cells were exposed to HHV-8 and stained for K8.1 at 48 

hpe (Table 2 in Appendix B).  As the surface expression of DC-SIGN was diluted using non-

transfected RAJI cells, the percent of HHV-8 K8.1+ cells diminished. Taken together, these data 

indicate that our flow cytometry method is a suitable assay to quantify HHV-8 infected cells, 

using both ORF 59 PF-8 and K8.1 as markers for lytic infection.  

 We next applied the intracellular staining (ICS) and flow cytometry assay to blood-

derived B cells.  Initial studies showed that peak levels of lytic virus proteins of 6.9(±2.06)% 

(mean±se) for K8.1 and 8.6(±4.8)% for ORF59 PF-8 were detected at 48 h (Fig. 10a). Based on 

this, we continued our experiments focusing on ORF59 PF-8 expression, detecting 7(±1.6)% 
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ORF59 PF-8+ B cells at 48 h (n = 18)  (Fig. 10b).  Notably, these flow cytometry studies were 

done by gating on viable B cells, with a viability of 79%±5.3 by 48 h in the HHV-8 exposed B 

cells. However, as herpesvirus lytic replication leads to cell lysis, we also examined the dead 

singlet lymphocyte population.  Similar to viable B cells, 7.2%±1.5 of HHV-8-exposed, dead B 

cells were positive for ORF59 PF-8 (data not shown), indicating that full lytic cycle replication 

had occurred in a subset of HHV-8 infected cells.  

Production of lytic cycle proteins proves that HHV-8 can infect B cells, but is not 

definitive evidence that the cells produce infectious virus. We therefore next assessed HHV-8 

DNA production by quantitative PCR as a parameter of HHV-8 lytic virus replication.  We found 

a broad range of cell-associated DNA levels in the infected B cell cultures, with a mean fold 

increase of 16.2 in cell associated DNA copies and 19.7 of non cell-associated DNA (in the 

supernatant), of 9 donors (Fig. 10c). To verify that HHV-8 DNA detected in the B cell cultures 

corresponded to infectious virions, we developed a TCID50 assay using T1H6-DC-SIGN cells.  

Briefly, T1-H6 cells contain a T1.1 polyadenylated nuclear RNA promoter (PAN) controlling β-

gal (130).  Therefore, if a productive infection occurs, the number of β-gal positive cells can be 

enumerated and used to calculate a TCID50 (Nadgir, submitted for publication).  B cell 

supernatants were tested at 5 dilutions in 6 different wells to calculate the TCID50 (Fig. 10d).  

Production of infectious virus was evident in B cell cultures from 100% (8/8) donors, with peak 

virus titers ranging from 1.52x104 to 3.33x106 TCID50 by 48 h (Fig. 10e). Collectively, these 

data indicate that B cells from healthy, HHV-8 seronegative adults can be lytically infected with 

HHV-8 and produce infectious virus.  
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Figure 10: HHV-8 lytic proteins K8.1 and ORF59 PF-8 detected by flow cytometry 

B cells were infected with HHV-8 for 3 h then washed repeatedly.  Cells and supernatants were collected at 3, 24 
and 48 hpe (A-E). (A) Cells were stained intracellularly for HHV-8 proteins K8.1 and ORF59 PF-8 and percentages 
of HHV-8 K8.1 or ORF59 PF-8 (mean±s.e.m., N=6) positive B cells were determined. (B) Percentages of HHV-8 
ORF59 PF-8 (mean±s.e.m., N=18) positive B cells at 2 days post infection. (C) Cell pellets and supernatants were 
treated with DNase and lysed to determine HHV-8 K8.1 DNA copies by qRT-PCR.  The mean fold increase in 
HHV-8 DNA are shown. (N=9).  (D) T1H6-DC-SIGN+ cells were infected for 48 h with supernatants collected at 3, 
24 and 48 h from HHV-8 exposed B cells.  Each supernatant was assayed in 10- fold dilutions in 6 wells. T1-H6-
DC-SIGN+ cells were collected, lysed and treated with β-galactosidase substrate for 1 h and read on a luminometer.   
The number of infected wells was determined by subtracting luminescence of control wells.  Representative data are 
shown for the number of infected wells for each dilution, with TCID50 calculated for each time point. (E) TCID50 
(mean±s.e.m.) was determined (N=8) (P values as shown; one and two tailed, paired two sample for means t-test). 
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3.4.2 HHV-8 lytic infection rapidly induces a cytokine-chemokine response       

To evaluate immune mediators induced by HHV-8 infection of B cells, we quantified protein 

levels using a fluorescent bead-based immunoassay and determined mRNA expression using a 

genome-wide microarray.  We initially screened levels of 16 cytokines, chemokines and growth 

factors, i.e., IFN-γ, IL-1β, 2, -4, -6, -7, -10, -12, TNF-α, MCP-1, MIP-1α, MIP-1β, RANTES, IL-

8, IP-10 and VEGF.  These immune mediators were selected based on their known association 

with KS and their availability in a newly developed BD assay.   Of the 16 markers, 6 showed ≥ 

4-fold increase at 24 (left) and 48 hpe (Fig. 24a in Appendix B), with significant production of 

IL-6, IL-10 (24 hpe only), TNF-α, MIP-1α, MIP-1β and IL-8 above unexposed B cells (Fig. 24b 

in Appendix B).  In addition, mRNA analysis by microarray revealed ≥1.5 fold increase in 8 of 

these immune mediators (Fig. 11 and continued in Appendix C).  We continued our study 

examining the cytokines and chemokines that had a ≥ 2-fold increase in RNA expression or ≥ 4-

fold increase in secreted protein levels, i.e., IL-6, TNF-α, MIP-1α, MIP-1β and IL-8.   

Microarray data showed that TNF-α, IL-6 and MIP-1α had a ≥2 fold increase in mRNA 

by 4-6 h post-HHV-8 exposure compared to unexposed B cells, with peak fold increases of 2.06, 

2.13 and 10.8, respectively (Fig. 12a)  The CCL-3-like (CCL3L) and CCL-4-like (CCL4L) 

genes also had enhanced expression after infection with HHV-8 (7.6, 16, 10.4 and 7-fold for 

CCL3L1, CCL3L3, CCL4L1, CCL4L2, respectively).  The increases in mRNA levels 

corresponded with increases in protein levels detected in the supernatant of HHV-8 exposed 

cultures.  During virus adsorption, HHV-8-exposed B cells produced significant levels of  TNF-

α,    IL-6 and the 2 MIP chemokines (P<0.05) (Fig. 12b),  implying  a rapid induction upon virus 
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Figure 11: B cell cytokine and chemokine screen 

B cells left untreated or exposed to HHV-8 were collected after 3 h of HHV-8 exposure and 4, 6, 9, 15 and 27 h post 
exposure.  RNA was extracted and hybridized to Illumina HT12v4 microchips. Samples were examined in duplicate. 
Fold increases in RNA expression in HHV-8 exposed over unexposed were calculated (<1.0, 1.0, 1.5, 2.0, >2.5).  
Genes examined in parallel CBA studies are depicted in the heat map. 
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Figure 12: Kinetics of immune mediator production in HHV-8 infected B Cells 

(A) B cells left untreated or exposed to HHV-8 were collected after 3 h of HHV-8 exposure at 4, 6, 9, 15 and 27 hpe.  
RNA was extracted and hybridized to Illumina H12Tv4 microchips. Samples were examined in duplicate. Fold 
increases in RNA expression in HHV-8 exposed over unexposed were calculated (mean±s.e.m.) and shown for 
cytokines/chemokine selected from screening. (B) Supernatants were collected prior to and after the 3 h adsorption 
phase and at 24 and 48 hpe and used in an immunobead fluorescence assay to determine cytokine-chemokine 
production of unexposed and HHV-8 exposed B cells (mean ±s.e.m., N=23, *P<0.05). 

 

 

 

 

exposure. Results at 24 and 48 hpe revealed significant increases of all 5 mediators above 

unexposed B cell cultures (P<0.05).  To confirm the induction of immune mediators was specific 
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to HHV-8 rather than non-viral contaminating particles, we conducted an HHV-8 dose response 

(see Fig. 25 in Appendix B) and used a 0.1µm filter (see Fig 26 in Appendix B) to determine 

cytokine and chemokine levels.  As detected with DC, 107 HHV-8 DNA copies induced the 

greatest immune mediator response that was not detected when the virus filtrate was used.  

Taken together, these results indicate that HHV-8 generates a rapid, selective cytokine 

and chemokine response in HHV-8-exposed B cells that is sustained for 48 h post-infection, 

parallel to the lytic cycle replication of HHV-8 in B cells. 

3.4.3 HHV-8 lytically infected B cells are polyfunctional 

We next examined the induction of cytokine and chemokines in relation to the average 6-to-9% 

of B cells that support HHV-8 lytic infection at the single B cell level. CD40L/IL-4 activated B 

cells were left unexposed or exposed to HHV-8 for 48 h, then stained extracellularly for CD20 

and intracellularly for IL-6, IL-8, TNF-α, MIP-1α and MIP-1β and the two lytic markers, HHV-8 

K8.1 or ORF59 PF-8 (representative  gating  strategy,  Fig. 13).  Data were analyzed to 

determine the percentage of single cells that were monofunctional (cells that only produce one of 

the 5 mediators) and polyfunctional (cells that produce combinations of 2-to-5 mediators).   

Comparing the entire B cell population by this method showed similar percentages of 

cells producing one or more immune mediators in the unexposed versus the HHV-8-exposed 

cultures (Fig. 14a). We next focused on the immune mediator production within the HHV-8 

exposed virus positive (ORF59 PF-8+ or K8.1+) and exposed virus negative (ORF59 PF-8¯ or 

K8.1¯) populations.  HHV-8-exposed B cells that were negative for ORF59 PF-8 or K8.1 shared 

an immune mediator functional pattern similar to the unexposed B cells, whereas B cells positive 

for ORF59 PF-8 or K8.1 were far more polyfunctional.  Indeed, >99% of the exposed, HHV-8 
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positive B cells were producing at least one cytokine or chemokine, compared to 80% in the 

exposed  HHV-8  negative  B cells.  A  larger  portion of the exposed virus negative B cells were 

monofunctional  ( 28% ± 3 )  compared   to  the  exposed  virus   positive  B cells  ( 5.7% ± 0.5 ).   

 

 

 

 

 

Figure 13: Representative cytokine gating strategy 

Singlet populations were determined by forward scatter height (FSC-H) and area (FSC-A), then gated against FSC-
H and side scatter-area (SSC-A) to select the lymphocyte population.  Singlet lymphocytes were gated against an 
aqua viability dye (AF-430) to determine live cells.  Live singlet lymphocytes with no stains were used to set the 
gate for cytokine and chemokines (middle panel).  Live singlet lymphocytes were also gated against AF680 for 
ORF59 PF-8 or K8.1 expression.  An IgG control conjugated with AF-680 (not shown) was used to set the gate for 
ORF59 PF-8 or K8.1 positive cells.  The HHV-8 (K8.1 or ORF59 PF-8) positive cells were gated against each 
cytokine (bottom panel) and compared to exposed-HHV-8 negative cells (data not shown) for SPICE analysis.  Each 
cytokine was gated against FSC-H (representative data). 
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Figure 14: HHV-8 infected B cells are polyfunctional 

B cells were left unexposed or exposed to HHV-8 for 3 hours and then cultured for 48 h. B cells were intracellularly 
stained for HHV-8 K8.1 or ORF59 PF-8 and the 5 immune mediators.  Responses were measured by polychromatic 
flow cytometry for unexposed and HHV-8 exposed B cells.  HHV-8 exposed cells were further separated into HHV-
8 ORF59 PF-8 or K8.1 positive and negative cells and the percentage of each cytokine producing cell was 
determined using Flow Jo software.  Data are representative of N=4. (B) Percent responses diagrams were generated 
using SPICE (mean±s.e.m., N=4, *P<0.05 for comparison between exposed pos. and exposed neg. within brackets). 
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Importantly, 93%±1.1 of the HHV-8-exposed, virus positive B cells were polyfunctional, 

compared to only 52%±1.0 of exposed virus negative B cells.  Moreover, 7.4 %±2.9  of  HHV-8- 

exposed, virus positive B cells produced all 5 mediators compared to the <1% of HHV-8-

exposed, virus negative cells. These polyfunctional patterns were similar between K8.1+ and 

ORF59 PF-8+ B cells, further validating the specificity of this assay for lytic protein detection.   

To further assess B cell production of immune mediators in relation to HHV-8 infection, 

multiparameter analysis was performed.  HHV-8-exposed, virus positive responses were heavily 

weighted to combinations of 3-to-5 immune mediators, whereas most responses for the HHV-8-

exposed,   virus negative   B   cells   had   1-to-2   immune mediators   (Fig. 14b).   A significant 

percentage of exposed-positive cells produced 5 (P=0.03) or 4 (P=0.02) mediators (or a 

combination, P=0.01) compared to exposed-negative cells.  Conversely, exposed-negative cells 

were significantly more monofunctional (P=0.01) or lacked cytokine production (P=0.02).  

Several combinations of immune mediator production were detected within the HHV-8-exposed, 

virus positive group, including the combined 5 immune mediators that accounted for ≥5% of the 

B cell responses. Nearly 21% of cells produced a foursome combination of IL-6, TNF-α, MIP-1α 

and MIP-1β, while nearly 10% of cells produced a triad of IL-6 and the 2 MIP chemokines.  In 

the HHV-8-exposed, virus negative group, the highest responses were detected as production of 

single immune mediators, including 21% for IL-6 and 15% for MIP-1α alone.  This is the first 

evidence of polyfunctional B cells within or without the context of virus pathogen-exposure. 

These intracellular data extend evidence derived from our quantitation of extracellular cytokines 

and chemokines by revealing that a significant subpopulation of HHV-8-exposed B cells is 

highly polyfunctional in direct relation to lytic virus infection.  
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3.4.4 Immune mediator induction in B cells exposed to inactivated HHV-8 

We next determined the mechanism of induction of immune mediators by HHV-8-exposed, 

uninfected B cells. We reasoned that binding of virus alone, or paracrine effects of the virus-

infected B cells, could initiate signaling cascades in uninfected B cells resulting in cytokine and 

chemokine production. B cells were therefore exposed to replication competent HHV-8 or UV-

HHV-8, (replication incompetent).  We observed a mean increase of 6.4x106 copies/ml of B cell-

associated DNA for HHV-8 and no increase for UV-HHV-8 over 48 h (Fig. 15a).  TCID50 

results revealed a 4 log10 increase over 48 h for HHV-8 (Fig. 15b), and very low, background 

levels (<5x102) for the UV-HHV-8 that did not increase over time.  Intracellular staining data 

showed 8.6% ORF59 PF8-positive cells for HHV-8 and 0.6% positive cells for the UV-HHV-8 

at 48 hpe (Fig. 15c). These data support that UV-HHV-8 did not replicate in B cells.   

We next determined bulk production of cytokines and chemokines in response to HHV-8 

and UV-HHV-8. We found decreases of 35%, 34%, 35%, 46% and 21% in immune mediator 

production in supernatants of UV-HHV-8-exposed B cell cultures compared to HHV-8-infected 

cultures for IL-6, TNF-α, MIP-α, MIP-1β and IL-8, respectively (Fig. 15d). These data support 

that HHV-8 replication accounts for a portion of the production of cytokines and chemokines in 

B cells, while B cell activation with CD40L/IL-4 and non-replicating virus particles are 

associated with the residual production of these immune mediators. 

We postulated that the mechanism by which inactivated, replication incompetent HHV-8 

induced immune mediator responses in B cells was related to virus binding to the cells. To 

examine this, we studied recombinant HHV-8 gB, containing an RGD motif.  By 48 h post-

treatment, soluble gB induced levels of cytokines and chemokines above that in untreated B cells 

and similar to cells exposed to HHV-8 (Fig. 15e).   
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These data imply that the initial binding step between HHV-8 and cell surface receptors 

is sufficient to induce an immune mediator response, and supports our results with UV-

inactivated virus.  They also indicate that binding of HHV-8 (active or inactivated) via gB to B 

cells initiates an immune mediator response that is enhanced upon HHV-8 entry and replication.  

 

 

 

Figure 15: UV-light inactivation results in reduced immune mediator production 

B cells were exposed to HHV-8 or UV-HHV-8 and cells and supernatants were collected at various time points post-
exposure.  (A) HHV-8 K8.1 DNA Copies were determined in cell pellets for HHV-8 and UV-HHV-8 exposed B 
cells over 48 h (mean±s.e.m., N=4).  (B) TCID50 was determined for T1H6-DC-SIGN+ cells infected with both 
HHV-8 and UV-HHV-8 exposed B cells. TCID50 could not be determined above background for UV-HHV-8 
exposed B cells due to sporadic positivity (mean±s.e.m., N=4).  (C) B cells exposed to Live or UV-HHV-8 were 
collected at 48 hours post infection and stained for intracellular HHV-8 K8.1 or ORF59 PF-8. (mean±s.e.m., N=5).  
(D) Supernatants collected from HHV-8 or UV-HHV-8 exposed B cells at 48 hpe were assayed by CBA (mean±s.e., 
N=4).  (E) Supernatants collected from HHV-8 or soluble gB exposed B cells at 48 hpe were assayed by CBA 
(mean±s.e.m., N=4, *P≤0.05). 
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3.4.5 IL-8 enhanced HHV-8 replication 

As there was a 4-fold increase in IL-8 in HHV-8-exposed B cells and IL-8 can serve as ligand for 

HHV-8 vGPCR, resulting in VEGF, IL-6, GRO-α and additional IL-8 production (54, 283), we 

sought to determine the role of IL-8 on HHV-8 replication. We therefore added IL-8 or 

neutralizing IL-8 antibodies to B cell cultures at the time of HHV-8 exposure.  As a mean of 3 

individual experiments, detection of HHV-8 K8.1 or ORF59 PF-8 expression by flow cytometry 

was enhanced by 4% when IL-8 was added to cultures compared to HHV-8 alone (Fig. 27a in 

Appendix B).  A 4% decrease was observed when neutralizing antibodies were added 

(mean±s.e., N=3).  Also, cell-associated DNA increased from 0 to 48 hours in the HHV-8 treated 

B cells, but the addition of IL-8 resulted in an increase in viral DNA, indicating IL-8 was 

contributing to viral replication (Fig. 27b in Appendix B).  This was not observed for 

supernatant levels as addition of IL-8 resulted in the lowest amount of supernatant levels of 

HHV-8 DNA.  B cells treated with neutralizing IL-8 antibodies showed a large spike in cell-

associated DNA at 24 hours that was 3.5 million copies more than in cells treated with IL-8.  

There were also elevated levels of supernatant HHV-8 DNA.  The increase in viral DNA and 

percent of HHV-8 lytic protein positive B cells in cultures treated with IL-8 suggest that the 

chemokine may contribute to HHV-8 replication through the vGPCR enhanced expression of the 

ORF50 promoter.    

3.4.6 HHV-8 lytic cycle replication in DC-SIGN+ IgM+ B cells.   

We next determined the B cell subset targeted for HHV-8 lytic infection and immune mediator 

production.  B cells were exposed to HHV-8 and stained at 48 hpe for IgD and IgM heavy chain 
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isotypes, as well as CD20, CD27, CD38, DC-SIGN and intracellular ORF59 PF-8 expression.  

We first gated on ORF59 PF-8 positive cells, followed by delineation of immunoglobulin 

expression (Fig. 16a).  Cells expressing IgM and IgD were then gated on CD27  

to delineate naïve and memory B cells (147).  47±16% were detected in the IgM memory 

population (IgM+IgD+CD20+CD27+) compared to 38±13% (mean±s.e.) of ORF59 PF-8 positive 

cells in the naïve B cell population (IgM+IgD+CD20+CD27¯) (Fig. 16c).  We found that some 

CD27+ cells lacked CD20, a B cell pan marker that is lost upon plasma cell differentiation.  We 

reasoned that these were early stage plasmablasts.  Indeed, CD27+CD20¯ cells also expressed the 

plasma-stage marker CD38. Finally, we quantified the DC-SIGN+ cells within each of these 

populations and found that 71%, 95% and 100% of naïve, IgM memory and plasmablasts 

ORF59+ cells expressed DC-SIGN (Fig. 16b and c).  

As HHV-8-exposed pos. B cells were the major polyfunctional B cells detected; we next 

determined polyfunctional cytokine and chemokine production in B cell subsets.  We stained the 

B cells for surface expression of CD20, CD27, IgM and DC-SIGN and intracellular expression 

of ORF59 PF-8, IL-6, IL-8 and MIP-1β.  Both the IgM+CD20+CD27+ (IgM memory) and 

CD20+IgM+CD27¯ (naïve) populations expressing DC-SIGN showed enhanced expression of 

IL-6, IL-8 and MIP-1β compared to the HHV-8-exposed neg. population (Fig. 16d). Likewise, 

polyfunctional analysis revealed that both the HHV-8 pos. naïve and IgM memory cells 

displayed polyfunctional properties, whereas the majority of HHV-8 exposed neg. cells lacked 

cytokine or chemokine production (Fig. 16e).    

These data indicate that subsets of DC-SIGN+ B cells expressing IgM and variable levels 

of the CD27 memory marker are responsible for both monofunctional and polyfunctional 

cytokine and chemokine production in HHV-8-exposed, virus infected B cells.  
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Figure 16: HHV-8 targets DC-SIGN+IgM+ naïve and memory B cells 

Cell samples were collected at 48 h post-infection and stained for B cell surface marker expression and intracellular 
HHV-8 ORF59 PF-8. (A) Flow cytometry gates were set using HHV-8 infected B cells stained for control IgG.  
HHV-8 positive cells were first gated on IgM/IgD expression. Double positive cells were then gated against 
CD20/CD27. (B) IgM+IgD+CD20+CD27¯ (naive) and IgM+IgD+CD20+CD27+ (IgM memory) were next gated 
against DC-SIGN expression. IgM+IgD+CD20¯CD27+ were further gated against CD38/DC-SIGN (plasmablasts); 
data are one representative of 4 individuals tested. (C) Total percentages of naïve, IgM memory and plasmablasts 
(sum of black and gray bars) and DC-SIGN expression from each population (gray bars) were determined (mean,  
N=4). (D-E) B cells were stained for DC-SIGN, IgM, CD20 and CD27 surface expression and then ORF59 PF-8, 
IL-6, IL-8 and MIP-1β intracellular expression. ORF59 PF-8+ B cells expressing DC-SIGN, IgM, CD20 and either 
CD27+ (IgM memory) or 27¯ (naïve) were selected and the expression of IL-6, IL-8 and MIP-1β were determined 
compared to ORF59 PF-8¯ populations (D).  Percentages of cells producing 3, 2, 1, or no immune mediators were 
determined (E). Data are one representative of 4 individuals tested. 
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3.4.7 B cell immune mediators are enhanced in patients with KS  

To investigate the role of B cell immune mediators in HHV-8 disease development, we 

examined serum levels of TNF-α, IL-6, MIP-1α, MIP-1β and IL-8,  as well as the KS-related 

growth factor VEGF(10),  in participants from the Multicenter AIDS Cohort Study (MACS) who 

were co-infected with HIV-1 and HHV-8 for similar periods of time, and who did (cases) or did 

not (controls) develop KS prior to the advent of effective antiretroviral therapy (ART). The 

MACS controls were classified as slow progressors, based on their CD4 counts, to represent an 

opposite extreme in the natural history of HIV-1 infection and AIDS. There were lower numbers 

of CD4+ T cells, and higher numbers of CD8+ and CD3+ T cells in KS cases compared to 

controls 2-5 years before KS development (Fig. 17a). Plasma viral loads for HIV-1 (P=0.007) 

and HHV-8 (P= non-significant [NS]) were higher within the year prior to KS development in 

cases compared to controls (Fig. 17b).  

We noted a similar pattern of lower levels of IL-8, MIP-1α, MIP-1β and VEGF at 6-10 

years pre-KS diagnosis in cases compared to controls, with a progressive increase in levels of 

these immune mediators in cases 2-5 years pre-KS and within 1 year of KS diagnosis (Fig. 17c). 

IL-8 and MIP-1α levels were nearly 2-fold higher and significantly increased (P=0.01 and 0.008, 

respectively) in KS cases compared to controls within the year prior to KS diagnosis.  Levels of 

MIP-1β and VEGF increased over time in the KS cases and decreased in the controls, with 

higher levels evident in the cases the year prior to KS diagnosis (P=NS). TNF-α levels were 

higher at all time points in the KS cases compared to the controls. Both TNF-α and VEGF 

approached significance (P=0.07) in cases.  In contrast to these 5 immune mediators, IL-6 levels 

were slightly higher in the controls than cases over the total 6-10 years of follow-up.  
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Figure 17: T cell counts, viral loads and serum biomarkers in MACS participants 

15 HIV-positive, HHV-8-positive, KS-negative (controls) and 15 HIV-positive, HHV-8-positive, KS-positive 
(cases) subjects were selected from the Pittsburgh MACS. 3 visits were chosen, with one visit within a year of KS 
development in the cases and the corresponding visit in the controls, a second visit 2-5 years prior to KS and a third 
visit 6-10 years prior to KS. (A) CD3, CD4 and CD8 T cell counts at each visit were determined by flow cytometry. 
(B) HHV-8 and HIV viral loads at each visit were determined by PCR. (C) For each visit, frozen serum samples 
were thawed and concentrations of TNF-α, IL-8, MIP-1α, IL-6, MIP-1β and VEGF were determined at 3 time points 
using an electrochemiluminescence MSD assay (mean±s.e.m., N=10 at years 2-10 prior, N=15 at years 0-1 prior, per 
group, *P<0.05.) 

 

 

 

Collectively, these data show that levels of IL-8, TNF-α, MIP-1α, MIP-1β and VEGF, but 

not IL-6, are increased within a year of KS diagnosis. We next determined whether B 

lymphocytes were producing these biomarkers.  We conducted cross sectional studies on 3 KS 
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cases and controls at the time of KS diagnosis (cases) or corresponding times in the controls.  

CD19+ B cells were purified from PBMC and assayed for viral DNA and immune mediator 

mRNA.  KS controls and two KS case had undetectable levels of HHV-8 in their CD19+ B cells, 

while one KS case had a viral load of 183,306 copies/100,000 cells.  Expression of IL-6, MIP-

1α, MIP-1β, VEGF and IL-8 mRNA was elevated in KS cases compared to controls, with 1.6, 

4.1, 2.7 and 3.5 and 2.1-fold increases, respectively (Fig. 18).  TNF-α was enhanced in KS 

controls. These data indicate that HHV-8 infected B cells produce more pro-inflammatory 

cytokines, chemokines, and growth factors in HIV-1 infected individuals who are developing KS 

compared to those without KS.   

 

 

 

 

Figure 18: Cytokine and chemokine B cell RNA    

CD19+ cells were isolated from PBMC of 3 HIV-positive, HHV-8-positive, KS-negative (controls) and 3 HIV-
positive, HHV-8-positive, KS-positive (cases) subjects from the Pittsburgh MACS at 0-1 years prior to KS 
development.  RNA was extracted and used in a real-time RT-PCR assay to determine mRNA expression of 
immune mediators (mean±s.e.m., N=3 per group, *P≤0.05).   
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We next determined the polyfunctional profile of the CD19+ B cells from the 3 KS+ 

cases.  HHV-8 ORF59 PF-8 negative and positive cells were selected and the intracellular 

expression for each cytokine and chemokine was determined.  We detected 6.61, 1.14 and 2.91% 

ORF59+ cells among KS cases (Fig. 19a) with a mean ORF59+ population of 3.73% (±1.47) 

(data not shown).   There were a higher percentage of polyfunctional B cells detected in the 

HHV-8 infected cells compared to the uninfected cells, with a mean of 72% of HHV-8 infected 

cells producing 2 or more immune mediators compared to only 36% of uninfected cells (Fig. 

19b),  supporting our in vitro model.  

Taken together, these data indicate that HHV-8 infected B cells of individuals that 

develop KS produce more pro-inflammatory cytokines, chemokines, and growth factors than 

individuals that do not develop KS.   
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Figure 19: Polyfunctional B cells in KS cases 

CD19+ cells were isolated from PBMC of 3 HIV-positive, HHV-8-positive individuals with KS (cases) from 
the Pittsburgh MACS at 0-1 years prior to KS development.  Cells were stained for ORF59 PF-8 and the 5 
immune mediators previously used in the in vitro studies. Percentages of cells producing 1-5 immune mediators 
within the ORF59 PF-8 negative and positive populations were calculated. 

 

 
 
 
 
 
 



 80 

3.5 DISCUSSION 

HHV-8-infected B cells are likely a major source of infectious virus and immune mediators that 

drive the oncogenic process of KS and the HHV-8-associated B cell lymphomas MCD and PEL. 

However, there is little direct evidence linking HHV-8 infection of B cells and induction of 

soluble immune mediators to HHV-8 pathogenesis and oncogenesis. To address these 

relationships in depth, we developed new measures for HHV-8 proteins, DNA and infectious 

virions, and B cell mRNA and protein analysis for quantitation of immune mediator production.  

Here we show that activated B cells derived from the blood of healthy, HHV-8 seronegative 

adults, supported lytic replication of HHV-8 as demonstrated by increases in HHV-8 DNA, 

ORF59 PF-8 or K8.1 positivity, and infectious virus. An in depth examination of the cytokines 

and chemokines produced by the infected B cells revealed multiple characteristics that could be 

important in HHV-8 pathogenesis and oncogenesis. Overall, we found that HHV-8 infection of B 

cells induced the greatest amounts of mRNA and protein for 2 cytokines (IL-6 and TNF-α) and 3 

chemokines (MIP-1α [and CCL3L], MIP-1β [and CCL4L] and IL-8) among 16 different immune 

mediators screened.  Production of these immune mediators occurred at three different levels, 

i.e., first level: B cell activation by CD40L and IL-4, surrogates of activated CD4+ T cells; 

second level: exposure of the activated B cells to HHV-8 and binding of virus to cell surface 

moieties; third level: HHV-8 infection and lytic replication (Fig.20).   

The first level of immune mediator induction by HHV-8 was polyfunctional activity and 

relatively low level of production of the 5 immune mediators in activated B cells.  This level 

represents production of cytokines and chemokines during T-B cell activation and host 

inflammation.  The second level was a result of HHV-8 binding to B cell surface moieties, with 

non-replication-dependent induction of cytokines and chemokines.  In some cases, cytokine and 
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chemokine mRNA and protein levels were elevated at the earliest time measured, i.e., 3 h after 

exposure to HHV-8.  This implies that binding of HHV-8 very early in B cell infection initiates 

signaling cascades involved in immune mediator production.  This was supported by our data 

that both UV-HHV-8 and soluble  HHV-8 gB elicited  similar  cytokine-chemokine  profiles  and  

levels above the unexposed, activated B cells as did replication competent HHV-8.  Notably, the 

amount of gB associated with our purified HHV-8 and the soluble gB was not normalized in the  

B cell cultures, so comparisons of cytokine and chemokine levels among these different B cell 

cultures must be viewed with caution.   

We defined the third level of immune mediator production among the lytically  infected 

B cells as modeled on studies of HIV-1 antigen-stimulated T cells (152). This revealed for the 

first time B cells producing HHV-8 lytic proteins while distinguishing virus exposed-infected 

and exposed-uninfected B cells, and determining among these which cells were producing 

combinations of each cytokine and chemokine.  We found that approximately 8% of the HHV-8-

exposed B cell cultures were lytically infected with virus as shown by expression of the lytic 

proteins K8.1 or ORF59 PF-8. Remarkably, within this virus positive B cell population, 99% of 

cells produced at least one cytokine or chemokine, with 76% of cells being polyfunctional, i.e., 

producing 2-to-5 immune mediators.  Among the remaining 92% of the B cells that were HHV-8 

exposed and virus negative, 80% produced at least one immune mediator, but only 52% were 

polyfunctional. This concurs with our findings that binding of HHV-8 or gB to B cells elicits 

monofunctional and polyfunctional immune mediator responses, albeit at lower levels than 

lytically infected B cells.   Thus, HHV-8 lytically infected B cells have the broadest range in 

polyfunctional cytokine and chemokine activity.  
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Figure 20: Three tiers of B cell immune mediator production 

Activation (red outline) of B cells results in immune mediator production and upregulation of DC-SIGN on a subset 
of cells (~10%).  HHV-8 binding to heparin sulfate, integrins and DC-SIGN upon exposure initiates a more 
substantial production of immune mediators.  Subsequent HHV-8 infection and lytic cycle replication in DC-SIGN+ 
naïve and memory B cells induces a polyfunctional cytokine and chemokine response.  
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At present, the role of these polyfunctional B cells is unclear. The term “polyfunctional” 

has been used to describe T cells that are important in control of HIV-1(18) and in the 

progression of HHV-8 infection and related cancers (21, 115, 158).  The presence of 

polyfunctional B cells in HHV-8 infection could have detrimental rather than beneficial 

outcomes. In response to HHV-8 infection, B cells produced elevated levels of MIP-1α and β, 

which are chemokines involved in B cell recruitment, activation and immunoglobulin production 

(143, 257).  MIP-1α and β could increase the activated B cell population most capable of 

replicating HHV-8 both locally and systemically. Enhanced IL-6 production, a B cell 

proliferation factor, could also increase targets for HHV-8 replication (237) as well as block the 

suppressor effect of CD4+CD25+ T regulatory cells (78).  Furthermore, IL-6 is a 

proinflammatory cytokine that enhances TNF-α, which together can create a rich inflammatory 

microenvironment, promoting KS tumor growth and vascularization (183). The generation of 

anti-HHV-8 effector T cells and subsequent production of IFN-γ could also be influenced by 

TNF-α (180).   

Finally, there was a four-fold increase in IL-8 in HHV-8-exposed B cells.   Bottero et al. 

(28), showed that vGPCR expression can up-regulate the promoter for the lytic switch protein, 

leading to ORF50 expression in PEL cells. We speculate that IL-8 can act as an autocrine or 

paracrine factor to enhance HHV-8 replication via vGPCR signaled enhancement of the ORF50 

(Fig. 28 in Appendix B).  Interestingly, IL-8 was shown to enhance the replication of another 

herpesvirus, cytomegalovirus (CMV) when added to cultures of human endothelial fibroblasts 

(HEF).  Furthermore, neutralizing IL-8 mAb reduced CMV replication (189).  Addition of IL-8 

in this study resulted in an increase in HHV-8+ cells as well cell-associated DNA.  The  increase  

in supernatant and cell-associated HHV-8 DNA in the cultures treated with neutralizing 
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antibodies does not necessarily dispute this finding as vGPCR signaling is constitutive, meaning 

that even in the absence of IL-8, vGPCR can still signal and enhance ORF50.  The presence of 

IL-8 would therefore be sufficient to enhance replication rather than necessary. Further studies to 

determine the effects of IL-8 in combination with other synergistic growth factors, such as 

VEGF should be conducted.  

Given that B cells are a primary target for very few human viruses, and that B cell subsets 

have a variety of specialized functions, we examined B cell phenotypic characteristics to 

determine if specific subsets were lytically infected with HHV-8 and if this was related to 

production of cytokines and chemokines. We found that the majority (47%) of ORF59 PF-8+ 

cells were detected in the IgM+IgD+CD20+ CD27+ IgM-memory (or marginal zone [MZ]-

like(275)), compared to 38% IgD+IgM+CD20+CD27¯ naïve B cell population and 2% 

plasmablasts.   Our findings fit with classic KS where the pre-immune/natural effector B cell 

compartment, including MZ-like (IgD+IgM+CD27+) and naïve (IgD+IgM+CD27¯CD5¯) B cells, 

is expanded compared in healthy controls, with a resting state of activation. (70)  Of note is that 

most of the HHV-8-infected IgM memory and naïve B cells expressed DC-SIGN. This 

corresponds to our previous evidence that binding of HHV-8 to DC-SIGN is an essential step in 

productive infection of B cells (215).  Expansion of such B cell populations would provide 

targets for initial HHV-8 infection and full lytic cycle replication.  

HHV-8 lytic cycle replication was coupled with monofunctional and polyfunctional 

immune mediator production in IgM memory and naïve B cells. Thus, there were a greater 

proportion of ORF59 PF-8+ IgM memory B cells producing various combinations of IL-6, IL-8 

and MIP-1β compared to ORF59 PF-8¯ B cells. A similar predominance of polyfunctional 

activity was observed in the HHV-8-infected naïve B cells.  Memory B cells are known to 
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produce more IL-6, TNF-α, LT-α (77, 78) and MIP-1α and MIP-1β (3) than naïve B cells, which 

produce greater amounts of IL-10.  Overall, our data indicate that HHV-8 targets DC-SIGN+ 

IgM+ B cells expressing variable levels of CD27 to create a cytokine and chemokine milieu 

conducive to oncogenic cell proliferation. 

It is believed that HHV-8 infection drives B cells to an early plasmablast-like state in 

MCD and a preterminal plasma cell stage of differentiation in PEL (45, 119, 146, 237).  In our 

study, 2% of the ORF59 PF-8+CD27+ B cells lacked expression of CD20, which is lost as B cells 

differentiate into plasmablasts or plasma cells.  These cells also expressed the plasmablast 

marker CD38.  Hassman et al.,(119) determined that cells expressing the HHV-8 latency gene 

LANA also expressed IgM and the λ light chain at 60-84 h post-infection. These cells were 

considered plasmablast-like, as a high proportion were blasting or dividing and had increased IL-

6R expression. We examined HHV-8 infection at an earlier time point in vitro when lytic 

replication predominates (215). Our detection of HHV-8 lytic infection in what appear to be 

early stage plasmablasts extends the Hassman et al. (119) findings and offers evidence of a 

memory or naïve B cell target for lytic virus replication (Fig.21). Further studies are needed to 

determine transitional states among these lytically and latently infected B cells. 

A balance exists between protective immunity initiated by host cells via cytokine and 

chemokine production and virus-driven induction of cytokines and chemokines that serve to 

disseminate virus infection and mediate pathogenesis.  Several of the immune mediators that are 

essential to the immune response and activation of lymphocytes can exacerbate infection and 

cause clinical symptoms when over produced in response to HHV-8 infection.  In assessing 

clinical correlates of these in vitro data, we found elevated levels of TNF-α, MIP-1α, MIP-1β, 

and IL-8,  as  well as  VEGF,  in  the  plasma  of   HIV-1/HHV-8   co-infected   MACS  subjects 



 86 

 

Figure 21: HHV-8 targets B cell subpopulations for infection 

The B cell target for HHV-8 infection is unknown. However, evidence suggests that naïve and/or IgM memory B 
cell subsets are susceptible to HHV-8 infection. HHV-8 is endocytosed after binding to cell surface entry receptors.  
The virus then enters latency (left) or initiates lytic replication (215). Latently infected cells drive differentiation 
toward a plasmablast phenotype that is responsive to the proliferative cytokine, IL-6.  The alternative pathway is the 
entry of HHV-8 into the lytic cycle to begin transcription of lytic-associated proteins in activated B cells (red 
outline). The lytic cycle may stop prior to virion production, resulting in an abortive replicative cycle as seen in DC, 
endothelial cells and fibroblasts.  The virus in these cells likely enters latency or may result in B cell apoptosis.  
Some cells, however, will support full lytic cycle replication, resulting in lytic protein synthesis and increases in 
viral DNA that correspond to infectious HHV-8 progeny and subsequent release through cell lysis.  
 
 
This chapter was published as: Professional Antigen Presenting Cells in Human Herpesvirus 8 
Infection, E. Knowlton, L. Lepone, J. Li, G. Rappocciolo, F. Jenkins and C. Rinaldo. Frontiers in 
Immunology, 2013, 3 (427): 1-18. 
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coincident with their diagnosis of KS, but not during many years prior to KS. These data support  

a role for these immune mediators in development of KS. Interestingly, circulating levels of IL-6 

were low throughout the course of HIV-1/HHV-8 co-infection in MSM who eventually 

developed KS and those that did not. This is in agreement with previous studies in the MACS 

showing very low levels of IL-6 in the blood of HIV-1 infected subjects (32).  The function of 

these cytokines and chemokines in HHV-8 infection and KS likely varies depending on the 

quantity and origin.   

Using HHV-8 seronegative B cells, we detected a major shift toward polyfunctionality 

upon HHV-8 infection in vitro that could be critical in viral replication and dissemination, 

proliferation of target cells, and induction of KS and HHV-8-related lymphomas.  Indeed, we 

found enhanced mRNA expression of 5 immune mediators in circulating B cells of KS cases 

compared to non-KS controls within 1 year prior to KS diagnosis. Furthermore we detected 

ORF59-PF-8+ B cells by flow cytometry that had enhanced polyfunctional activity in the KS+ 

cases.  These data imply HHV-8-driven B cell production of immune mediators contributes to 

development of KS and provide a foundation for more in depth studies of polyfunctional 

cytokine and chemokine production by B lymphocytes in disease.    

In conclusion, our study shows for the first time that activated, DC-SIGN expressing, 

IgM memory and naïve B cells serve as prime targets for HHV-8 lytic replication with 

production of infectious virus. The HHV-8 infected, IgM memory and naïve B cells exhibited 

enhanced production of multiple pro-inflammatory cytokines and chemokines that have been 

linked to viral pathogenesis, KS and HHV-8-associated lymphomas. Several of these immune 

mediators were elevated in the plasma and CD19+ B cells of HHV-8/HIV-1 co-infected 

individuals who developed KS.  These polyfunctional B cells likely play a significant role in 
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viral replication, dissemination of HHV-8, and proliferation of target cell populations that drive 

HHV-8 cancers. 
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4.0  DISCUSSION 

HHV-8 infection of professional APC could demonstrate an evolutionary mechanism to establish 

viral latency in cell types responsible for initiating T cell adaptive immune responses.  Although 

valuable conclusions have been drawn from immortalized cell lines as surrogates for these APC, 

a primary cell model such as blood and tonsil B lymphocytes provides a more natural accounting 

of the quality of HHV-8 infection, better reflecting the mechanisms of latency and abortive and 

non-abortive virus replicative cycles.    

I expanded on the B cell replication model introduced by Rappocciolo et al., to include 

additional methods of virus replication quantitation.  I enumerated HHV-8 lytic protein positive 

cells using intracellular staining and flow cytometry, and incorporated a newly developed 

TCID50 assay to verify infectious virion production by HHV-8 infected B cells.  These data, in 

conjunction with a qRT-PCR assay showed that in vitro infection of primary B lymphocytes 

from HHV-8 seronegative donors resulted in an increase in HHV-8 DNA, lytic protein 

expression and infectious particle production. 

The question remains as to why HHV-8 infection can result in an abortive replicative 

cycle for some cell types, such as DC, and full-lytic cycle replication, as observed in B cells. As 

an in vitro model of HHV-8 replication in B cells has been established, a genome-wide study to 

determine cellular gene activation and/or suppression was conducted. One aspect under 

examination is the induction of immune mediators that could contribute to HHV-8 replication. 
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I hypothesized that immune mediators produced by HHV-8 infected APC is unique 

between cell types. Utilizing several techniques, I showed exposure of B cells to HHV-8 results 

in a large-scale production of several immune mediators, including significant levels of IL-6, 

TNF-α, MIP-α, MIP-β and IL-8, which is distinct from immune mediators induced during 

parallel infections of MDDC, which resulted in significant levels of IL-10, MIP-α, MIP-β, MCP-

1, RANTES and IP-10.  Whether the production of these immune mediators may aid or hinder 

virus replication is the focus of future studies.  

 Three levels of immune mediator production were detected in the B cell model, using a 

CBA assay for secreted proteins.  CD40L/IL-4 activated B cells produced low levels of immune 

mediators, which likely represent production of cytokines and chemokines during T-B cell 

activation and host inflammation.  The second level occurred upon virus binding to cell surface 

receptors as demonstrated by UV-HHV-8 and the soluble HHV-8 glycoprotein B.  The third and 

highest level occurred upon HHV-8 entry and subsequent lytic replication.  These data were 

further supported using a highly sensitive flow cytometry assay that allowed for quantification of 

the percentage of cells that produce 0, 1, or a combination of 2-5 immune mediators.  Activated, 

uninfected B cells demonstrated low levels of polyfunctional activity, whereas the majority of 

the HHV-8 infected population was polyfunctional.  This represents the first data regarding 

polyfunctional B cells in response to pathogen exposure and further supports the notion that B 

cells are not simply antibody producing cells, but rather, play an integral role in shaping the 

immune response via production of effector cytokines and chemokines.  

A delicate balance exists between protective immunity involving cytokine and chemokine 

production by host cells, and virus-driven induction of cytokines and chemokines that aid in the 

dissemination and spread of infection and mediate pathogenesis.  Several of the mediators that 
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are essential to the immune response and activation of lymphocytes can exacerbate infection and 

cause clinical symptoms when over produced in response to HHV-8 infection.  The role of each 

cytokine/chemokine in HHV-8 infection and KS likely varies depending on their quantity and 

origin of production, which in turn is controlled by signaling pathway activation states.  We 

observed activation of several pathways upon HHV-8 exposure, including B cell receptor 

signaling, and the JAK/STAT, MAPK/ERK and NF-κB pathways. Activation of these pathways 

occurred immediately after exposure to HHV-8 (3 hours) and contained the most up-regulated 

genes at either 6 or 9 hours post HHV-8 exposure.  Every immune mediator within the observed 

DC and B cell cytokine and chemokine profiles can be transcribed via the NF-κB pathway, while 

several are also produced by the JAK/STAT pathway (reviewed in Table 1).  In addition, one of 

the most frequently observed canonical pathways that were activated upon virus exposure 

included the communication between innate and adaptive immune cells, further supporting the 

significant role of immune mediators upon HHV-8 infection.  

I also hypothesized that HHV-8 infects a subset of B cells and initiates cytokine and 

chemokine production that contributes to HHV-8 replication, viral dissemination and initiation of 

KS and HHV-8 lymphomas.  In this study, I showed an in vivo correlation with the in vitro work 

using specimens from the Multicenter AIDS Cohort Study.  I showed that levels of 4 cytokines 

and chemokines ( TNF-α, MIP-α, MIP-β and IL-8), as well as VEGF were enhanced in the 

plasma of individuals who are HHV-8+, HIV+ who developed KS compared to those individuals 

who are HHV-8+, HIV+ and did not develop KS.  These data suggest that up-regulation of these 

immune mediators may aid in driving the development of the cancer.  Furthermore, B cells 

isolated from the individuals who did develop KS had elevated levels of IL-6, MIP-α, MIP-β, IL-

8 and VEGF RNA, compared to those who did not develop KS, indicating that B cells were 
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directly contributing to the production of the enhanced levels of immune mediators detected in 

the plasma.  Lastly, I determined that the HHV-8 infected B cells from these individuals were 

polyfunctional by flow cytometry, further supporting the importance of HHV-8 driven immune 

mediator production in B cells.  

From these studies we propose that latently infected DC and lytically infected B cells 

produce several proinflammatory cytokines and chemokines that can spread HHV-8 infection, 

enhance HHV-8 driven plasmablast formation and IL-6 receptor expression and enhance spindle 

shaped endothelial cell growth and vascularization (Fig. 22).  

4.1 PUBLIC HEALTH SIGNIFICANCE 

Although there is an abundance of data regarding HHV-8 pathogenesis, lytic replication and 

cytokine production from cell lines that utilize vector over expression systems, genetically 

mutated recombinant viruses and chemically induced reactivation events, I provide a 

comprehensive study focusing on two cell types naturally targeted by HHV-8 and the 

replicative/abortive replicative events that follow.  I have used the information obtained from the 

in vitro studies to evaluate a relationship to the progression of KS in the patient population.   

This is the most extensive natural model to date regarding lytic infection to determine natural 

reactivation events and the cascade of HHV-8 gene activation in transition from latency to lytic 

replication. This is also the first evidence of polyfunctional B cells in the context of pathogen 

exposure.  Therefore, the role of polyfunctional B cells in other diseases can now be explored. A 

more defined role of polyfunctional B cells in KS development could be achieved using 

additional MACS groups.  
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Figure 22: Model for immune mediator responses in latent and lytic HHV-8 infections  

HHV-8 uses DC-SIGN as an entry receptor on both activated IgM memory and naïve B cells as well as MDDC. 
Upon infection, HHV-8 can enter a latent state in both B cells and DC, resulting in the expression of LANA.  In B 
cells, latent HHV-8 infection drives the formation of plasmablasts, with enhanced expression of the IL-6 receptor 
(119).  However, HHV-8 can also enter a lytic replication cycle in B cells that result in viral DNA synthesis, lytic 
protein expression and production of infectious virions. Within the lytically infected B cells there are a significant 
percentage of polyfunctional B cells that result in enhanced production of IL-6, TNF-α, MIP-1α, MIP-1β and IL-8.  
This is in contrast to the immune mediator profile detected in latently infected MDDC, in which significant 
quantities of IL-10 and the MIP1α, MIP-β, MCP-1, IP-10 and RANTES chemokines are secreted.  Production of 
these immune mediators by HHV-8 infected B cells and DC within KS lesions may contribute to KS growth and 
vascularization. Furthermore, chemokines produced by HHV-8 infected cells could attract monocytes and 
macrophages to the KS lesion to help spread latent infection and maintain viral persistence, while IL-6 and TNF-α 
drive could plasmablast formation and IL-6 receptor expression on latently infected plasmablast-like cells (119).  
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This is also the first extensive, multiparameter, longitudinal study of HHV-8 infection of 

B cells and immune mediators in development of KS.  Finally, this model for HHV-8 infection 

of B cells resulting in cytokine and chemokine production could be adapted to create an in vitro 

model for KS spindle cell formation.  B cell derived, HHV-8 driven-immune mediators may 

initiate KS spindle cell formation from normal endothelial cells, which could have implications 

in studying the development of this cancer.  These data may provide several new models and 

targets of HHV-8 infection and induction of immune mediators for assessing anti-HHV-8 

therapies and vaccines. 
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APPENDIX A: ABBREVIATIONS 

AIDS: Acquired Immunodeficiency Syndrome 
AF:  alexa-fluor 
APC:  antigen presenting cells 
ART: antiretroviral therapy  
BCBL-1:  body cavity based lymphoma cells  
BCR:  B cell receptor 
β-GAL: beta galactosidade 
BSA: bovine serum albumin 
CBA:  cytometric bead array 
CCL: chemokine (c-c motif) ligand 
CCL-L: CCL-like 
cT: cycle threshold 
CXCL: chemokine (C-X-C motif) ligand 
CXCR:  C-X-C chemokine receptor 
CD40L:  cluster differentiation 40-ligand 
CIITA:  class II transactivator 
CMV:  cytomegalovirus 
CTL:  cytotoxic T lymphocyte 
DC: dendritic cells  
DC-SIGN:  type II C-type lectin, DC-specific ICAM-3 grabbing nonintegrin 
DOX:  doxycycline  
EBV:  Epstein Barr virus  
EDTA: ethylenediaminetetraacetic acid 
ERK: extracellular signal-regulated kinase 
FACS: fluorescence-activated cell sorting 
FCAP:  flow cytometric analysis program   
FCS: fetal calf serum 
FGF: fibroblast growth factor 
FITC:  fluorescein isothiocyanate 
FLICE: FADD-like interferon converting enzyme  
FSC-A: forward scatter-area 
FSC-H: forward scatter-height 
gB:  glycoprotein B 
gBm: glycoprotein B mutant 
h: hours 
hpe: hours post exposure 
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HGF/ SF: hepatocyte growth factor/ scatter factor 
HHV-8:  Human herpesvirus-8  
HIV: Human Immunodeficiency virus   
HSV: Herpes simplex virus 
HLA:  human leukocyte antigen 
ICAM: intercellular adhesion molecule 
ICS: intracellular staining 
iDDC: interstitial-dermal DC 
IFN: interferon 
Ig:  immunoglobulin 
IL: interleukin 
IP-10:  interferon inducible protein 
JAK/STAT: Janus kinase-signal transducer and activator of transcription 
KS:  Kaposi’s Sarcoma  
KSHV:  Kaposi’s sarcoma associated herpesvirus 
LANA: latency associated nuclear antigen 
LC: langerhans cells 
LCL: lymphoblastoid cell line 
LPS:  lipopolysaccharide 
m: minutes  
mAb: monoclonal antibody 
MACS:  Multicenter AIDS cohort study  
MCD:  multicentric Castleman’s disease  
MDDC:  monocyte derived Dendritic cells  
MDM: monocyte-derived macrophages  
MAPK:  mitogen activated protein kinase 
MCP-1: monocyte chemoattractant protein-1 
MHC: major histocompatability complex 
MIP:  macrophage inflammatory protein 
MSD: meso scale discovery 
MZ: marginal zone 
NIAID:  National Institute of Allergy and Infectious Diseases 
NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells  
NS:  non-significant 
NIH: National Institutes of Health 
ORF: open reading frame 
PAN: polyadenylated nuclear RNA promoter  
PBMC: peripheral blood mononuclear cells 
PBS: phosphate buffered saline 
pDC:  plasmacytoid DC 
PD-1:  programmed death 
PE:  phycoerythrin 
PEL:  primary effusion lymphoma 
PFA: paraformaldehyde 
PGE2:  prostaglandin E2 
PhHV: Phocine herpesvirus  
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Poly-I:C:  polyinosinic:polycytidylic acid  
P: significance 
RANTES:  regulated upon activation, normal T-cell expressed, and secreted 
RPMI: Roswell Park Memorial Institute  
RT-PCR:  real-time PCR 
rKSHV.219: recombinant HHV-8  
RTA: replication transactivator protein 
S.E.M.: standard error of the mean 
SOCS: suppressor of cytokine signaling  
SPICE:  simplified presentation of incredibly complex evaluations 
SSC:  side scatter 
TCID50:  50% tissue culture infective dose  
TCR:  T cell receptor 
Th: T helper 
TNF:  Tumor necrosis factor  
TPA: 12-O-tetradecanoylphorbol-13-acetate  
TLR:  Toll-like receptor 
TREG:  T regulatory cells 
UV:  ultraviolet  
VEGF:  vascular endothelial growth factor 
vFLIP:  viral FLICE-inhibitor protein 
vGPCR:  viral G-protein coupled receptor 
vIRF3:  viral Interferon regulatory factor 
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APPENDIX B. SUPPLEMENTAL FIGURES 

 

Figure 23: Detection of HHV-8 in DC-SIGN transfected RAJI and K562 cell lines  

(A) K562DC-SIGN+ were exposed to 107 copies of HHV-8 and 5 subsequent 10-fold dilutions.  The percentage of 
ORF59 PF-8+ cells were determined by flow cytometry at 48 hpe (mean±s.e.m., N=3).  (B) RAJI and RAJI DC-SIGN+ 

cells were mixed in different ratios and expression of DC-SIGN was determined by flow cytometry.  
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Table 2: DC-SIGN dependent detection of K8.1 

 

Different ratios of RAJI and RAJI DC-SIGN+ cells were exposed to HHV-8 for 3 h.  Cell samples were collected 48  
hpe and stained intracellularly for HHV-8 K8.1 (mean, N=3). 
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Figure 24: B cell cytokine and chemokine screen 

B cells were left untreated or exposed to HHV-8.  Supernatant samples were collected at 24 (left panels) and 48 
(right panels) hpe and screened by CBA for 16 immune mediators. (A) Fold increase over unexposed B cells and (B) 
normalized concentrations above unexposed B cells (mean ± s.e.m., N = 1 [IL-1β, IL-4, IL-7], 3 [IL-2, MCP-1, IL-
12p70, IP-10], 7 [RANTES, IFN-γ], 9 [IL-10], 11 [VEGF], 22 [IL-8], 23 [TNF-α, IL-6, MIP1α and MIP-1β].  
 
 
 
 
 
 
 
 
 

 

 

 

 



 101 

 

Figure 25: Immune mediator induction is HHV-8 dose dependant 

B cells were exposed to 107 copies of HHV-8 and 3 subsequent 10-fold dilutions.  The concentration of immune 
mediators were determined by CBA 24 (left),   and 48 h.p.e. (mean±s.e.m., N=3).   

 

 

 

 

 

 

 

Figure 26: HHV-8 filtrate does not induce immune mediator response 

B cells were exposed to HHV-8 or HHV-8 that had been passed through a 0.1µm filter.  The concentration of 
immune mediators were determined by CBA 24 (left) and 48 hpe (mean±s.e.m., N=4, *P<0.05).   
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Figure 27: IL-8 enhanced HHV-8 replication 

B cells were exposed to HHV-8 alone or in the presence of recombinant IL-8 or IL-8 neutralizing antibodies (anti-
IL-8).  (A) B cells were stained at 48 hpe for ORF59 PF-8 or K8.1 expression (mean±s.e.m., N=3).  (B) Cells were 
collected at 3, 24 and 48 hpe and assayed by qRT-PCR for K8.1 DNA (data are representative of 2 individuals 
tested).  
 
 
 
 
 
 

 
Figure 28: Model for IL-8 induced HHV-8 replication 

Hypothetical role of IL-8 in HHV-8 replication binding to HHV-8 vGPCR to enhance ORF50 promoter expression 
resulting in virion formation 
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APPENDIX C. MICROARRAY DATA 

We exposed B cells to HHV-8 for 3h and then washed unadsorbed virus from the culture using 2 

centrifugations as described in section 3.2.5.  Cells were collected at 3 (immediately after the 

wash), 4, 6, 9, 15 and 27 h post HHV-8 exposure. RNA was extracted and used in an Illumina 

HT12v4 whole-cellular genome microarray and a quantitative real-time PCR assay using primer-

pair sets for HHV-8 open reading frames.  

Microarray data was received from the Genomics and Proteonomics Core Lab as absolute 

gene values on duplicate slides.  Fold increases in gene expression from unexposed to HHV-8 

exposed B cells was calculated for both slides and averaged.  Raw data for 34,592 genes is 

linked as an xcell file.   To minimize the number of genes in focus, a filter was placed on the data 

to determine the number of genes that had at least a 1.5-fold increase or decrease in gene 

expression for each of 6 time points (Fig. 29). A total of 2,030 genes were up regulated upon 

HHV-8 exposure over the course of one day compared to unexposed B cells, whereas less than 

32 were down regulated.  Genes displaying ≥1.5-fold increase were used in additional analysis 

using through the use of IPA (Ingenuity Systems, www.ingenuity.com) to determine the most 

prominent biological functions, canonical pathways, molecules and upstream regulators for each 

time point post virus-exposure.  Graphs and tables were generated in IPA software.  A summary 

for each time point in described in Tables 3-8. 
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Figure 29: Fold change in B cell gene expression upon exposure to HHV-8  

Unexposed and HHV-8 exposed B cells were used in an Illumina HT12v4 microarray for cellular gene expression at 
6 time points.  A 1.5-fold cutoff was placed on the data to determine the number of genes up or downregulated upon 
HHV-8 exposure.  

 

 

 

Many of these top pathways included direct links to immune mediators, such as; 

communication between innate and adaptive immune cells, immune cell trafficking, cellular 

movement, inflammatory response and inflammatory disease.  As immune mediator signaling 

was the focus of this aim, we determined the activation states of various pathways known to 

interact with or result in cytokine and chemokine production (reviewed in Table 1).   A 1.5 fold 

filter was placed on all genes and applied to the Janus Kinase-Signal Transducer and Activator of 

Transcription (JAK/STAT) signaling pathway.  The JAK/STAT pathway is a signaling 

mechanism for a wide array of cytokines and growth factors. JAK activation stimulates cell 

proliferation, differentiation, cell migration and apoptosis. At 6 hours post HHV-8 exposure, the 
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most molecules within the JAK/STAT pathway was enhanced, including, STAT, SHP1, PI3K, 

STAT3, c-FOS and IL-6 (Fig30).   At the same time post HHV-8 exposure, the ERK/MAPK 

signaling pathway also possessed the highest number of enhanced molecules (Fig. 31). The 

ERK/MAPK signal transduction pathways respond to various extracellular stimuli, ranging from 

growth factors and cytokines to cellular stress.  Genes that were up-regulated within the 

ERK/MAPK pathway included PKA, PKS, Src, PI3K, PAC1, MKP 1/2/3/4, c-MYC/N-Myc, 

NFATc1, MP1, ATF-1, CREB, cFOS and STAT 1/3.   There was also enhanced expression of 

molecules in the NF-κB pathway, several of which are activated by other herpesviruses (EBV, 

HSV), including PKC, PI3K, HVEM and IκB   (Fig 32).   NF-κB is involved in cellular 

responses to stimuli such as stress, cytokines and bacterial or viral antigens.   

As expected, B-cell receptor signaling was activated, with 7, 9 and 11 molecules 

enhanced in HHV-8 exposed B cells at 4, 6, and 9 hours, respectively (Fig. 33-35).  CD19, 

MEKK, Bam32, SHIP, CaM, Egr-1 and Bcl-6 were up-regulated at 4 hours, SHP-1, PI3K, SHIP, 

MALT1, RP2B, NFAT, IκB, Egr-1 and CREB were up-regulated at 6 hours, while CD22, SHP1, 

BCAP, SHP2, MEKK, MKK3/4/6, MKK4/7, MALT1, Cam, IκB and Egr-1 were up-regulated at 

9 hours.  

As we originally determined proteins levels of 16 different cytokines, chemokines and 

growth factors in our CBA assay, we determined the relative fold increase for each of these 

markers at the RNA level (Fig. 12a).  The majority of genes, including; IFN-γ, IL-1β, IL-2, IL-4,  
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Table 3: 3h microarray analysis 
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Table 4: 4h microarray analysis 
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Table 5: 6h microarray analysis 
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Table 6: 9h microarray analysis 
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Table 7: 15h microarray analysis 
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Table 8: 27h microarray analysis 
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Figure 30: JAK/STAT signaling activation at 6 hours 
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Figure 31: ERK/MAPK signaling activation at 6 hours 
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Figure 32: NF-κB signaling activation at 6 hours 
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Figure 33: B cell receptor signaling at 4 hours  
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Figure 34: B cell receptor signaling at 6 hours 
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Figure 35: B cell receptor signaling at 9 hours 
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IL-7, IL-12A/B, CCL2 (MCP-1), CCL4 (MIP-1β), CCL5 (RANTES), CXCL8 (IL-8), CXCL10 

(IP-10) and VEGF-A/B/C, did not have ≥1.5-fold increase in expression in the HHV-8 exposed 

compared to unexposed B cells.  For most genes this was consistent with protein assays.  

However, RNA levels for IL-8 and MIP-1β were not enhanced, whereas protein levels were 

greatly enhanced above background levels.  Interestingly, there was a 1.5, 2 and >2.5 fold 

increase detected in the two MIP-1β like genes, CCL4-L1 and CCL4-L2.  There is approximately 

95% homology shared between the CCL4 and CCL4-Like genes at both the genomic and amino 

acid level (60), implying the CBA protein assay may detect CCL4 as well as the CCL4-Like 

genes.   The same sequence identity homology is found between the CCL3 and CCL3-Like genes 

(60).  CCL3 and its like genes had enhanced RNA expression of ≥1.5-fold for all time points, 

with the highest fold increase detected for CCL3-L3 of 16 fold (Fig. 12a.)  Enhances were also 

detected for IL-6, TNF-α and IL-10.   

C.1 APPENDIX SECTION 

Parallel studies on unexposed and HHV-8 exposed B cells were conducted by Dr. Jun Li of the 

Jenkins Laboratory, University of Pittsburgh, Department of Pathology.  HHV-8 ORF primer-

pair quantitative RT-PCR (89) was used to determine the kinetics of HHV-8 gene expression in 

B cells. The axis is represented as ΔCt.  This refers to the normalized value between the target 

gene and the internal control gene, β-actin. The smaller the cT value, the more abundant the gene 

expression. ORF59 and K8.1 gene expression were elevated immediately after HHV-8 exposure, 

peaking at 4 hours (Fig. 36).  The expression of these genes is consistent with  
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Figure 36: HHV-8 K8.1 and ORF59 gene expression kinetics  

B cells were exposed to HHV-8 for 3 h and then collected after 2 washes and at 4, 6, 9, 15 and 27 hpe.  RNA was 
extracted from B cells and used in a qRT-PCR assay using primer pairs for ORF K8.1 and ORF59.  
 
 
 
 
 
 
 
the detection of HHV-8 K8.1 and ORF59 PF-8 proteins by intracellular staining and flow 

cytometry as early as 24 hpe.   

As cytokine and chemokine induction was one of the main focuses of this study, it is 

important to note that HHV-8 encodes for a cytokine (vIL-6), 3 chemokines (vCCLI, II, III) 

(200) and a chemokine receptor (vGPCR) (12).  Expression of vIL-6 increased over time with 

peak expression at 9 hours (Fig. 37). There is no primer pair for HHV-8 vCCL-III and vCCL-II 

only had detectable cT values at 6 h, but vCCL-I showed peak expression at 3 hours. vGPCR, 
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which greatly contributes to cytokine and chemokine induction and is a homologue of the IL-8 

receptor(43), CXCR2, had peak expression at 4 hours post HHV-8 exposure.  

 

 
 

 

Figure 37: HHV-8 cellular homologue gene expression kinetics 

B cells were exposed to HHV-8 for 3 h and then collected after 2 washes and at 4, 6, 9, 15 and 27 hpe.  RNA was 
extracted from B cells and used in a qRT-PCR assay using primer pairs for ORF K2, ORF K6 and ORF74.  
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APPENDIX D. TCID50 ASSAY DEVELOPMENT 

A reliable assay to determine the infectivity of HHV-8 virion preps is lacking. A 293T cell line 

previously described (130) (see section 2.3.8) was transfected with DC-SIGN by Dr. Hensler of 

the Jenkins laboratory, resulting in T1-H6 DC-SIGN+ cells. T1-H6 DC-SIGN+ cells were next 

used to develop a TCID50 assay to determine the number of infectious particles per HHV-8 DNA 

copies by Sagar Nadgir as his master’s thesis.  A TCID50 is defined as the median tissue culture 

infective dose that produces pathological change in 50% of cell cultures inoculated.  For purified 

HHV-8 preparations, a TCID50 was first calculated using the Reed-Muench (218) formula for 

purified HHV-8 preparations.  HHV-8 was then used to infect DC at 1 or 2 TCID50 to shown a 

difference in infectivity (Fig. 38).  

 

 

 

 

Figure 38: TCID50 in DC 

Expression of HHV-8 ORF59 protein in immature dendritic cells infected with (A)1 TCID50 or (B) 2 TCID50 of 
HHV-8. 
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Table 9: Validation of TCID50 values 

 

MDDC from 2 donors were used to determine TCID50 validity. Each donor was exposed to two different HHV-8 
viral preparations and β-gal positive cells (% infected) were determined. 

 

 

 

 

A summary of the percentage of infected cells per TCID50 used is shown for 2 viral 

preps and 2 donors in Table 9. The TCID50  resulted in means of 56, 52, 49 and 52 infected cells, 

while two times the TCID50 (#2) resulted in 92, 95, 98, and 92 infected cells. These data validate 

the use of the T1-H6 DC-SIGN+ cells in a TCID50 assay.  

To test the application of the TCID50 assay, supernatants from B cells exposed to HHV-8 

or UV-HHV-8 were transferred to the T1-H6 DC-SIGN+ cells for detection of infectious virions 

released as a result of lytic infection. Supernatants collected at 3 time points from 2 individual 

experiments were used and Β-galactosidase luminescence for 5 dilutions was determined (Fig. 

36a, c).  Does responses were evident at all 3 time points for both donors in supernatants 

collected from HHV-8 treated B cells, whereas supernatants collected from UV-HHV-8 treated 
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B cells resulted in sporadic β-gal. production at various dilutions.  Due to this, a TCID50 could 

not be calculated for the UV samples.  Live virus, however, showed a 2-log increase between 0 

and 48 hours (Fig. 39b) and a 4-log increase between 0-24 hours (Fig. 39d).  Additional samples 

were tested using this method and the mean of 8 donors is shown in Figure 10e.  

 

 

 

 

Figure 39: B cell supernatants used to determine TCID50 application 

(A, C) Supernatants collected at 3, 24 and 48 hpe from HHV-8 and UV-HHV-8 exposed B cells from 2 separate 
donors were used to infect T1-H6 DC-SIGN+ cells at 5 10-fold dilutions.  β-gal luminescence was determined at 48 
hpe for each donor (mean ± s.e.m. of 6 wells for each dilution).  (B, D) The number of β-gal positive wells per 
dilution was used to calculate a TCID50 for each donor . 
 
 
Submitted for publication:   TCID50 Assay for titering infectious human herpesvirus 8 (HHV-8).  
S. Nadgir, H. Hensler, E. Knowlton, C. Rinaldo and F. Jenkins. 
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