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Abstract

Background: Influenza is a contagious respiratory disease responsible for annual seasonal epidemics in temperate climates.
An understanding of how influenza spreads geographically and temporally within regions could result in improved public
health prevention programs. The purpose of this study was to summarize the spatial and temporal spread of influenza using
data obtained from the Pennsylvania Department of Health’s influenza surveillance system.

Methodology and Findings: We evaluated the spatial and temporal patterns of laboratory-confirmed influenza cases in
Pennsylvania, United States from six influenza seasons (2003–2009). Using a test of spatial autocorrelation, local clusters of
elevated risk were identified in the South Central region of the state. Multivariable logistic regression indicated that lower
monthly precipitation levels during the influenza season (OR = 0.52, 95% CI: 0.28, 0.94), fewer residents over age 64
(OR = 0.27, 95% CI: 0.10, 0.73) and fewer residents with more than a high school education (OR = 0.76, 95% CI: 0.61, 0.95)
were significantly associated with membership in this cluster. In addition, time series analysis revealed a temporal lag in the
peak timing of the influenza B epidemic compared to the influenza A epidemic.

Conclusions: These findings illustrate a distinct spatial cluster of cases in the South Central region of Pennsylvania. Further
examination of the regional transmission dynamics within these clusters may be useful in planning public health influenza
prevention programs.
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Introduction

Each year significant resources are expended by public health

officials and health care providers to prevent and mitigate

influenza epidemics. Decisions on how to allocate resources for

prevention programs and vaccination campaigns often rely on

macro-level information and recommendations without regard to

spatially and temporally explicit illness patterns. Knowledge of

local geographic distribution would likely improve the ability of

public health agencies to allocate human and material resources

and allow improved targeting and timing of prevention and

control measures.

Despite the need for community-based influenza analyses, few

studies have explored the spatial and temporal dynamics of

incidence on a narrow geographic scale (state or county)

appropriate to inform local public health officials [1,2,3]. An

analysis of influenza hospitalizations in Colorado, United States,

noted differences in regional peak timing, influenza B temporality,

and age group-specific rates for influenza B hospitalizations [3].

Crighton et al. noted spatial heterogeneity in pneumonia and

influenza hospitalization rates within urban and rural counties

across age groups in Ontario, Canada [2]. These analyses help to

explain the regional spatiotemporal patterns of influenza within a

state or province; however, hospitalization data used for these

analyses often represents estimates of severe morbidity and may

not accurately reflect timing of either peak influenza activity or the

true incidence patterns.

Further evaluations of seasonal transmission dynamics have

concentrated on broad geographic scales such as a country or

continent, often using data aggregated at larger spatial scales

[4,5,6,7,8,9,10,11,12]. Analyses conducted at smaller spatial scales

may capture unique local trends in disease structure potentially

concealed in analyses of data aggregated at large scales. The

details of local spatial dynamics may reveal the effect of population

structure or environmental factors on influenza incidence.

In 2003, a new Pennsylvania law led to mandatory influenza

case reporting from all laboratories, providers and hospitals

resulting in a detailed spatio-temporal data source not previously
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available. As a result, a new opportunity exists to assess the local

trends in disease. We conducted an exploratory ecological study

evaluating the spatial and temporal patterns of laboratory-

confirmed influenza cases in Pennsylvania from six consecutive

influenza seasons (2003–2009) using Pennsylvania’s National

Electronic Disease Surveillance System (PA-NEDSS). Specifically,

we assessed spatial incidence clusters, predictors, and temporal

variation. Pennsylvania’s diverse geography and population

structure make it a unique locale to evaluate these dynamics.

Results

All 67 counties in Pennsylvania reported at least one case of

laboratory-confirmed influenza over the six year period and a total

of 57598 cases were reported to the Pennsylvania Department of

Health during the study period (Table 1). The greatest number of

reported cases occurred during the 2007/08 influenza season;

while the 2006/07 season reported the fewest. Co-circulation of

influenza A and B occurred during all 6 seasons; however in 2003/

04, the percentage of reported typed viruses that were B was

approximately 1%. This is in contrast to the 2008/09 season in

which 42% of all typed viruses were B; the most in any of the 6

seasons.

In the time series of reported influenza cases, only the 2003/04

season peaked prior to January 1 (Figure 1). Each of the

consecutive seasons peaked post-January 1 and the 2007/08

season had the greatest weekly magnitude. The 2006/07 season

exhibited the latest weekly peaks. Season 2003/04 experienced the

shortest peak epidemic length (2.33 weeks) which was significantly

shorter than the other 5 seasons (Table 2). Seasons 2004/05,

2007/08, and 2008/09 had confidence intervals and point

estimates that overlapped indicating that durations were not

different. Details of individual model fit including standard errors

are provided in Figure S1. Evaluation of the time series stratified

by influenza type yielded two important observations reflecting the

subtype epidemics (Figure 2). First, peak incidence of influenza B

epidemics lagged influenza A epidemics by approximately 3 weeks

(mean = 2.75). Second, the decline in weekly cases coincided for

both influenza A and B time series in each of the seasons reporting

significant influenza B cases even as surveillance systems were

maintained.

The Empirical Bayes smoothed cumulative incidence for the

seasonal spatial distributions revealed clusters of elevated incidence

in the Central and Northwestern portions of the state (Figure 3).

The Southeastern and Northeastern regions of the state experi-

enced consistently lower incidence for each season. The Moran’s I

statistic testing for global spatial autocorrelation of the cumulative

incidence was 0.4959 (P = 0.07) indicating that neighboring

counties have similar incidence, although not statistically signifi-

cantly. In the local autocorrelation analysis, the central portion of

the state was designated as ‘‘high-high’’ indicating clusters of

similar elevated incidence (Figure 4). These counties included:

Bedford, Centre, Fulton, Huntingdon, Juniata, Mifflin, Snyder,

and Union. The areas of Philadelphia and Delaware counties and

the Northeastern region were designated as ‘‘low-low’’ indicating

these counties had local correlation of a lower incidence. Analysis

of individual seasons demonstrated similar patterns as the

cumulative six season cluster. Specifically, each individual seasonal

cluster had a minimum of 3 counties similar to the six season

cumulative cluster. Details can be found in Figure S2.

Descriptive statistics and results of the generalized linear model

evaluating the relationship between membership in the elevated

cluster and the predictor variables were presented in Table 3. The

bivariate logistic regression found education.high school,

age.64, total miles within the county, number of physicians,

clinics, and hospitals, the rate of chronic lower respiratory disease,

and precipitation associated with membership in the cluster

(P,0.05). When including all predictors in a multivariable model,

Table 1. Characteristics of reported influenza cases in Pennsylvania, USA, 2003–2008 influenza seasons.

Influenza season, no. (%)

Variable Cumulative 2003–2004 2004–2005 2005–2006 2006–2007 2007–2008 2008–2009

Number of Cases 57598 8836 15.34% 11293 19.61% 8717 15.13% 3997 6.94% 16657 28.92% 8098 14.06%

Flu Type

A 35307 71.33% 5670 64.17% 8557 75.77% 6547 75.11% 3264 81.66% 11269 67.65% 4550 56.19%

B 8169 16.50% 59 0.67% 1369 12.12% 1692 19.41% 563 14.09% 4486 26.93% 3404 42.04%

Unknown 6023 12.17% 3107 35.16% 1367 12.10% 477 5.47% 170 4.25% 902 5.42% 144 1.78%

Gender

Male 23057 46.58% 4151 46.98% 5154 45.64% 4098 47.02% 1937 48.46% 7717 46.33% 3881 47.93%

Female 26395 53.32% 4683 53.00% 6135 54.33% 4616 52.96% 2055 51.41% 8906 53.47% 4196 51.82%

Unknown 47 0.09% 2 0.02% 4 0.04% 2 0.02% 5 0.13% 34 0.20% 21 0.26%

Age**

Mean 34 31 45 33 27 35 22

Median 27 19 46 24 19 31 17

Under 5 years 9396 16.32% 2871 32.50% 1253 11.10% 1338 15.35% 684 17.11% 2077 12.48% 1173 14.49%

5 to 19 years 14461 25.12% 1626 18.41% 1817 16.09% 2632 30.19% 1348 33.73% 3562 21.41% 3476 42.92%

20 to 44 years 14929 25.93% 1499 16.97% 2483 21.99% 1942 22.28% 1063 26.59% 5520 33.17% 2422 29.91%

45 to 64 years 8479 14.73% 866 9.80% 2216 19.62% 1224 14.04% 499 12.48% 2918 17.54% 756 9.34%

65 years and over 10314 17.91% 1972 22.32% 3524 31.21% 1581 18.14% 403 10.08% 2563 15.40% 271 3.35%

*Nineteen subjects have missing date of birth.
doi:10.1371/journal.pone.0034245.t001
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only mean monthly precipitation, age.64 and education.high

school remained significant (P,0.05) (Table 4). For a one percent

increase in the proportion of individuals aged over 64, the odds of

membership in the cluster decreased adjusting for the other

variables in the model (OR = 0.27, CI = 0.10, 0.73). Similarly the

odds of membership in the cluster decreased for a percent increase

in the proportion of individuals with more than a high school

decgree (OR = 0.76, CI = 0.61, 0.95). An inch increase in monthly

precipitation results in a 48% decrease in membership of the

cluster (OR = 0.52, CI = 0.28, 0.94).

A sensitivity analysis using the reduced data set, consisting of

only cases with a collection date (N = 50421) was performed to

assess whether the cases with missing dates displayed spatial and

temporal biases. The sensitivity analyses reported limited differ-

ences in the spatial and temporal entities and did not influence

membership in the cluster.

Discussion

This was the first study to evaluate the spatial and temporal

patterns of laboratory-confirmed influenza cases at the county

level within a single state. There was evidence of spatial

heterogeneity in the distribution of influenza in Pennsylvania.

Using a test of spatial autocorrelation, local clusters of elevated

incidence existed from Centre County in the central portion of the

state extending to the Southern border counties of Fulton and

Bedford. The extent of these elevated risks in this region persisted

in each season. A combination of both demographic (age and

education) and climatic variables (monthly precipitation) were

significantly associated with membership in the elevated incidence

cluster. Additionally, this study confirmed a previous finding that

influenza B epidemics occur later in the season than influenza A

[3,8].

Time series analysis of weekly influenza surveillance identified

by the World Health Organization and National Respiratory and

Enteric Virus Surveillance System (WHO/NREVSS) collaborat-

ing laboratories for the entire United States and the Mid-Atlantic

region (New York, New Jersey, Pennsylvania) showed similar

timing of influenza A peaks compared to the PA-NEDSS data for

most seasons under study [13]. Coinciding epidemic fade outs of

influenza A and B were observed on a national level and within

the Mid-Atlantic region from recent seasons: 2005/06 through

2008/09 (data not shown). Other regions of the country observed

similar patterns of simultaneous declines. The concurrent weekly

decline in reported cases for Pennsylvania may be the result of

several factors including environmental drivers, host factors,

diminished surveillance, and a small sample size. Changes in

temperature and humidity as the winter shifts to spring may alter

virus stability and influence patterns of crowding and host mixing

leading to a simultaneous decline in incidence [6,14]. Alterna-

tively, diminished state surveillance as providers stop collecting

and submitting specimens for influenza testing can lead to

unreliable case estimates at the end of an epidemic producing an

artifactual constraint on the epidemic time series. Seasonal time

series encompassing longer surveillance periods are needed to

control for the confounding effects of time in order to validate

these findings.

This study is consistent with previous findings that the influenza

B epidemic typically occurs later in the season than the influenza A

Figure 1. Weekly time series of influenza incidence in Pennsylvania (sum of all counties) superimposed for 6 influenza seasons
(2003–2009).
doi:10.1371/journal.pone.0034245.g001

Table 2. Epidemic width estimates and confidence intervals.

Season s* 95% Confidence Interval

Season 2003/04 2.33 2.26, 2.39

Season 2004/05 3.6 3.2, 4.0

Season 2005/06 4.89 4.58, 5.2

Season 2006/07 5.9 5.19, 6.60

Season 2007/08 3.72 3.56, 3.87

Season 2008/09 3.82 3.64, 4.01

*Sigma measures the epidemic length.
doi:10.1371/journal.pone.0034245.t002
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epidemic. Finkelman et al. aggregated weekly incidence values

over a nine year study period and demonstrated that influenza B

temporally lags both the A/H3 and A/H1 subtypes in the

Northern Hemisphere [8]. The degree of temporal similarity in

peak epidemic timing of influenza A and B across the geographic

scales (counties and continents) suggests that the factors driving the

timing of the subtype epidemics could be similar within the

Northern Hemisphere.

Figure 3. Cumulative incidence of six influenza seasons (2003–2009). Incidence presented using an Empirical Bayesian smoother to adjust
for small populated counties.
doi:10.1371/journal.pone.0034245.g003

Figure 2. Weekly incidence by influenza type in Pennsylvania for 6 consecutive seasons (2003–2009).
doi:10.1371/journal.pone.0034245.g002
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Comparing estimates of epidemic widths across seasons

provides a measure of the speed and strength of the epidemic in

the population. Estimates of the epidemic widths showed

similarities to the peak durations observed among larger seasonal

epidemics in Japan [11]. Differences in circulating influenza

subtypes, particularly the introduction of new A/H3N2 antigenic

variants in the Japan epidemics resulted in shorter peak activity

periods [11]. This result was in contrast to seasons without new

variants leading to epidemics that were smaller and displayed

longer periods to attain peak activity. When comparing seasonal

strain-specific information for the United States (not available for

Pennsylvania), seasons dominated by the introduction of a new A/

H3N2 virus (2004/05, and 2007/08) had shorter peak durations

than 2005/06; an A/H3N2 season without a new antigenic

variant season [15,16]. In 2003/04 the A/Fujian/411/2002 A/

H3N2 virus predominated and accounted for 88.8% of A/H3N2

isolates characterized which reported a less than optimal vaccine

match [17]. In 2008/09, approximately 42% of all Pennsylvania

cases were antigenically characterized by influenza B viruses.

Nationally, influenza A cases were predominated by A/H1N1

(pre-novel H1N1) [13]. The 2008/09 season was not dominated

by a new A/H3N2 variant, yet the epidemic length observed in

this study from 2008/09 is not significantly different than the

results from 2004/05 and 2007/08 when a new A/H3N2

antigenic variant appeared. In Pennsylvania, the first identified

illness due to 2009 pandemic influenza A/H1N1 virus did not

occur until the end of April and its appearance does not impact the

data in this analysis. During the 2008/09 season the circulating A/

H1N1 viruses were related to the vaccine component while less

than 49% of the circulating influenza B viruses were related to the

vaccine strain. Similar to the 2003/04 season, the vaccine

mismatch among the influenza B virus may have contributed to

the overall short epidemic duration. Nevertheless, the time period

under study may not be representative of other influenza seasons

and a longer time series is needed to confirm these results.

Discovery of the elevated incidence cluster in the central portion

of the state warranted further investigation. The logistic model was

designed to assess differences in characteristics for counties within

and outside of the cluster with the specific intent of answering the

question: what factors can explain the cluster of elevated

incidence. Only age, education, and precipitation remained

significant in the multivariable model.

The association of both age and education with membership in

the cluster may be a reflection of differences in vaccination

coverage between the counties. Poor vaccination coverage would

create upward pressure on seasonal incidence rates and mortality

[18,19,20]. Regional vaccination differences have been reported in

urban and rural areas, age groups, and with increasing levels of

education [21,22]. According to the Behavioral Risk Factor

Surveillance System, vaccination rates among the elderly

(Age,65) in Pennsylvania only recently have approached the

70% Healthy People 2010 threshold [23]. The proportion of

residents greater than 64 years and with more than a high school

education was significantly lower among the counties in the

cluster; which may suggest a lower vaccination rate in the cluster.

Without available county-explicit data estimating seasonal influ-

enza vaccination coverage, interpretation of the regional trends

should proceed with caution.

Environmental factors including temperature and humidity

have been long-associated as the driving force in the severity,

spread and seasonality of influenza [6,7,24,25,26]. More recently,

experimental and epidemiologic simulation studies have conclud-

Figure 4. Spatial autocorrelation of 6-year cumulative incidence for 67 counties in Pennsylvania. Local spatial clusters were determined
by the Local Indicator of Spatial Association (LISA) statistic. Regions designated as high-high (red) indicate clustering of similar values of higher
incidence. Regions designated as low-low (blue) indicate clustering of similar values of lower incidence.
doi:10.1371/journal.pone.0034245.g004
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ed that absolute humidity modulates influenza transmissibility

leading to the observed seasonality in temperate climates [27,28].

This report presented the results of multiple environmental factors

including temperature, precipitation, dew point and absolute

humidity. In this study we found a significant relationship with

precipitation but not with absolute humidity, nor with any other

environmental variables. The relationship of influenza incidence

and precipitation has been inconsistent across studies as the

associations tend to differ by country and influenza type

[29,30,31,32]. Associations of precipitation with the onset of

influenza B have been observed, though these associations have

not persisted with influenza A. For the climatic variables used in

this analysis, the monthly results were averaged over the study

period which is in contrast to previous studies that evaluated

monthly differences in an effort to estimate the timing of influenza

incidence or the onset of the influenza season which may have

contributed to the contrasting results. There is no notable spatial

correlation structure in the evaluation of influenza A and B in this

dataset; thus, these comparisons cannot be made.

The passive surveillance system of PA-NEDSS creates reporting

limitations. Even though Pennsylvania law mandates physicians,

providers, hospitals, and laboratories to report specific disease data

to PA-NEDSS, significant non-compliance has resulted in several

types of ascertainment biases. First, the expected annual number

of incident cases in the United States is estimated between 10%–

20% which is substantially higher than the reported number of

cases to PA-NEDSS [33,34]. Many cases of influenza go

Table 3. Descriptive statistics and results of logistic regression model (Dependent variable are counties designated HIGH-HIGH in
Moran’s LISA cluster analysis, counties = 8).

Variable
Cluster = Yes
Mean

Cluster = No
Mean Odds Ratio (OR) P-value

DEMOGRAPHICS (N = 11)

Household size 2.507 2.473 78.5707898 0.2940

Proportion of families w/1 child,18 years 0.4341 0.4394 0.00043812 0.5880

Proportion of families w/1 child,6 years 0.1745 0.1747 0.67139341 0.9850

Race (proportion white) 0.9647 0.9459 2.13165782 0.4890

Education.high school 0.3038 0.3778 2.6397E-08 0.0319*

Age.64 0.1448 0.1642 0.65856 0.0308*

Household income 35035 37467 0.99994100 0.3910

Population density per square mile 84.09 503.2 0.99133773 0.1010

Housing density per square mile 34.77 215 0.97170793 0.0795

Total road miles per area square miles 1.4892 3.1867 0.23015552 0.0102*

Highway miles per area square miles 0.08902 0.14375 0.00027550 0.1700

HEALTH INDICATORS (N = 8)

Active physicians 71.75 619.7 0.9938191 0.0144*

Active physicians per 1000 persons 1.13 2.151 0.5231432 0.2010

Rural clinics and hospitals 1.688 4.766 0.56254 0.0387*

Rural clinics and hospitals per 1000 persons 0.03656 0.04483 0.01993 0.6730

ILI Sentinel Physicians 0.625 0.8305 0.8376960 0.6470

ILI Submissions 0.9023 0.6601 193.05980 0.1990

P&I mortality 2.40E-04 2.67E-04 0.967113 0.5200

Chronic lower respiratory disease 0.0004663 0.0005414 0.904023 0.0423*

ENVIRONMENT (N = 6)

Elevation 1035.4 1227 0.999300 0.3370

Precipitation 3.174 3.501 0.591656 0.0097*

Minimum temperature 21.711 22.1358 1.209128 0.4438

Maximum temperature 8.963 8.502 1.252322 0.3945

Dew point 22.172 22.5419 1.488992 0.322

Absolute Humidity 868.9 848.5 1.00630 0.351

*Significance: P-value,0.05.
doi:10.1371/journal.pone.0034245.t003

Table 4. Multivariable logistic regression model from
bivariate results.

Variable Odds Ratio (OR) P-value

Age.64{ 0.27 0.0100*

Education.high school{ 0.76 0.0148*

Average precipitation (2003–2009){ 0.52 0.0319*

*Significance: P-value,0.05.
{Interpreted as a 1% units.
{Interpreted as a 1 inch units.
doi:10.1371/journal.pone.0034245.t004
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undetected because the patient fails to seek treatment or is not

tested for the disease. Spatial differences observed could also have

been affected by testing practices of health care providers; those

with access to free testing and a greater interest in influenza could

result in a surge of testing. Inclusion of variables reflecting spatial

location and submission history of influenza-like illness sentinel

providers, who have access to free testing, was not associated with

the cluster of elevated incidence; thus super testers are not likely to

affect the spatial results observed.

The future of longitudinal data analysis within this data system

is likely to be affected by the emergence of the H1N1 pandemic

influenza subtype. Shifts in age distributions of pneumonia and

influenza mortality have been noted in post-pandemic periods,

which may have implications for the spatial distributions

particularly in regions with younger populations [35]. Further-

more, there may be differences in the transmission parameters of

the newly emerged influenza A subtype and the previous A/H1

subtypes in circulation resulting in further longitudinal distortions

of the data. Despite these potential shortcomings, analysis of the

transitional pandemic period remains an essential area for further

exploration of these specific issues.

In conclusion, the epidemiology of influenza in Pennsylvania

can be defined by a distinguishing spatial pattern. County level

analysis revealed spatial patterns that would have been concealed

by state-level analysis; a strength of this study. State and county

public health officials should consider these findings in the

utilization of human and economic public health resources to

improve control strategies aimed at minimizing transmission

through targeted vaccinations, directed hygienic advertisements,

and informed surveillance. Additional research should focus on

extending the analysis to the states of Maryland, Virginia, and

West Virginia to determine if the spatial regime extends beyond

the administrative borders.

Methods

Seasonal Cases
Laboratory-confirmed cases of influenza from 2003–2009 were

obtained from Pennsylvania’s National Electronic Disease Sur-

veillance System (PA-NEDSS) managed by the Pennsylvania

Department of Health [36]. The Pennsylvania National Electronic

Disease Surveillance System is used to conduct surveillance of

reportable diseases including influenza. The passive surveillance

system began in 2003 and the system accepts PCR, culture and

antigen tests from laboratories, hospitals, clinics, and individual

providers in the form of online, electronic, paper or phone reports.

Case reports are sent to NEDSS on average 5 days post-specimen

collection date. The primary variables extracted from the database

for this report included temporal attributes (sample specimen

collection date, sample NEDSS report date), spatial attributes

(subject home address latitude, and longitude, and zip code),

influenza type, gender, reporting method, and date of birth.

For each season, the influenza season defined by the

surveillance system ranged from October 1 through April 30 of

the subsequent year. Cases were aggregated by week beginning

with October 1 and each subsequent 7 days formed the next week.

Specimen collection date was considered the date of diagnosis and

used for all temporal and spatial analyses. If this date was not

available (13% missing dates), a multiple imputation method used

a Poisson regression to model difference between the specimen

collection date and the NEDSS report data (100% complete data).

Variables considered to be associated with incomplete reporting

were included as covariates for the model (county, report method,

season). To determine whether the cases with missing dates

displayed spatial and temporal biases, a sensitivity analysis using a

reduced data set of only cases with complete temporal properties

was performed for all analyses.

Statistical Analysis
The cumulative incidence for all six seasons was compared

across counties. The total population of each county derived from

annual population estimates of the US census served as the

denominator [37]. For the presentation and spatial autocorrelation

of the cumulative incidence by county, an Empirical Bayesian

smoother was implemented to adjust for the inherent variance

instability of the small incidence estimates given the small

populations at risk [38,39].

To assess differences in the duration of epidemics, a Gaussian

distribution was fit to each epidemic using a non-linear least

squares regression. Estimates of sigma (the width of the peak of the

epidemic) for each epidemic were compared with 95% confidence

intervals from each season.

Global spatial autocorrelation of the 6 year cumulative

incidence was estimated by Moran’s I statistic. This measure

detects departures from spatial randomness; thus, a significant

positive value would suggest that neighboring counties have

statistically significantly more similar incidence than would be

found among randomly selected pairs of counties. A significant

negative statistic would indicate that neighboring counties have

different incidence. Because the Moran’s I statistic is a global test

of spatial autocorrelation, the local indicator of spatial association

(LISA) was used to detect local spatial clusters. Similar to the

Moran’s I statistic, the Local Moran statistic derives an estimate of

significance based on a Monte Carlo permutation of the

observations. The result is a thematic map which identifies the

type of local clustering. Regions designated high-high or low-low

indicated clustering of similar values; whereas, regions of high-low

or low-high indicated a county was an outlier in the cumulative

incidence relative to the neighboring counties [39,40].

To identify predictors of an elevated incidence cluster from the

LISA cluster analysis, a logistic regression modeled a binary

outcome which was 1 if counties were in the high incidence cluster

(N = 8) or 0 if not (N = 59). Each covariate was included separately

in the model. A stepwise selection approach was used to identify

significant predictors in the multivariable model Goodness of fit

for the multivariable model was assessed using Akaike’s Informa-

tion Criteria. All p-values were two-sided based on a 95%

significance level.

Covariates selected for the model reflected three broad

categories: socio-demographics, health indicators, and the envi-

ronment. Each variable has either previously displayed an

association with influenza incidence and seasonality or could be

a confounder in the relationship between spatial heterogeneity and

the observed incidence [5,6,41,42]. Social and demographic

variable data obtained from the US Census included: age

(proportion greater than 64), education (proportion greater than

high school), race (proportion white), household income, popula-

tion density (per square mile), and housing density (per square

mile) [37]. Additional demographic variables summarizing the

transportation networks in the region include highway miles (linear

miles/total county area square miles), and total road miles (linear

miles/total county area square miles) [43]. The health indicator

variables obtained from the Area Resource File included county

level data of active physicians (3 year mean 2005–2007/1000

persons), hospitals and rural health clinics (4 year mean 2003–

2006 [Hospitals]+5 year mean 2003–2007 [Rural Health Clinics]/

1000 persons), proportion pneumonia and influenza mortality

(2003–2005 mean/population), and proportion chronic lower

Influenza Dynamics

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e34245



respiratory disease mortality (2003–2005 mean/population), also

referred to as chronic obstructive pulmonary disease [44].

Distribution of influenza-like illness sentinel physicians (ILINet)

and mean number of specimen submissions by provider were

summarized for each county and included as a covariate. Climatic

variables including precipitation (per 10 inches), temperature (in

Celsius degrees) and dew point data were obtained for the study

period (October–April) of each year and averaged over the time

period [PRISM Climate Group, Oregon State University, http://

www.prismclimate.org, created 4 Feb 2004]. Absolute humidity

was calculated by converting the dew point temperature to vapor

pressure and then divided by temperature multiplied by the gas

constant for water vapor. Mean elevation (feet) was summarized

for each county [45,46,47]. While human mobility between

geographic regions has been shown to influence the spatiotempo-

ral spread of influenza [5], this analysis was specifically concerned

with risk factors for the elevated incidence cluster and not

diffusion, thus this variable was not included in the model.

Statistical analyses were performed using the R statistical

package (R Foundation for Statistical Computing, Vienna,

Austria). Smoothing, and spatial autocorrelation were performed

in STIS, (TerraSeer Inc., Crystal Lake, IL), and GeoDa

(University of Illinois Urbana-Champaign, Urbana, IL). Institu-

tional review board approval was obtained from the Pennsylvania

Department of Health and the University of Pittsburgh.

Supporting Information

Figure S1 Individual Gaussian distribution results
fitted to seasonal epidemics accompanied by the value
of the standard error for the epidemic width.

(TIFF)

Figure S2 Local autocorrelation results specific for each
influenza season (2003–2009). Interpretation of the clusters

are as follows: regions designated high-high (red) or low-low (blue)

indicate clustering of similar values; whereas, regions of high-low

(pink) or low-high (purple) indicate a county was an outlier in the

cumulative incidence relative to the neighboring counties.

(TIF)
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