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Computer-aided drug design (CADD) has become an indispensible component in modern drug 

discovery projects. The prediction of physicochemical properties and pharmacological properties of 

candidate compounds effectively increases the probability for drug candidates to pass latter phases of 

clinic trials. Ligand-based virtual screening exhibits advantages over structure-based drug design, in terms 

of its wide applicability and high computational efficiency. The established chemical repositories and 

reported bioassays form a gigantic knowledgebase to derive quantitative structure-activity relationship 

(QSAR) and structure-property relationship (QSPR). In addition, the rapid advance of machine learning 

techniques suggests new solutions for data-mining huge compound databases. In this thesis, a novel 

ligand classification algorithm, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps 

(LiCABEDS), was reported for the prediction of diverse categorical pharmacological properties. 

LiCABEDS was successfully applied to model 5-HT1A ligand functionality, ligand selectivity of 

cannabinoid receptor subtypes, and blood-brain-barrier (BBB) passage. LiCABEDS was implemented 

and integrated with graphical user interface, data import/export, automated model training/ prediction, 

and project management. Besides, a non-linear ligand classifier was proposed, using a novel Topomer 

kernel function in support vector machine. With the emphasis on green high-performance computing, 

graphics processing units are alternative platforms for computationally expensive tasks. A novel GPU 

algorithm was designed and implemented in order to accelerate the calculation of chemical similarities 

with dense-format molecular fingerprints. Finally, a compound acquisition algorithm was reported to 

construct structurally diverse screening library in order to enhance hit rates in high-throughput screening. 
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1 PREFACE 

Modern drug discovery and development involve a set of organized processes, including drug target 

identification and validation, lead compound discovery, early ADMET-oriented optimization, clinic 

phases, etc. Studies have shown that the cost of the whole drug discovery and development process varies 

from 500 million to 2 billion dollars 1-3. The development of a new drug typically takes 10 to 15 years. 

Among all, clinic testing is the most extensive and expensive phase. The recent trend shows that the 

failure rate of clinic Phase II and Phase III has been rising4-5. The failure of passing clinic experiments 

denies drug candidate compounds and turns the significant amount of investment fruitless.  

The investment on drug discovery is highly risky but highly rewarded. Hence, substantial efforts have 

been devoted to the investigation of novel and economical approaches with the intention to boost the 

productivity of pharmaceutical industry and deliver more products to the market. State-of-the-art high-

throughput screening (HTS) technology points out a potential solution for lead compound identification. 

Modern HTS technology is capable of screening 100,000 compounds per day 6. Furthermore, HTS 

facilities that were exclusively owned by drug discovery enterprise are becoming readily available to 

research institutions. Nevertheless, screening the vast number of compounds is still challenging in 

absence of sufficient funds. 

Nowadays, virtual screening has been integrated into the pipeline of drug discovery process (Figure 

1-1). The whole discovery process approximately costs 800 million dollars and 7 to 12 years, depending 

on the types of disease 7. Virtual screening is a generic computational technique that explores large virtual 

chemical libraries in order to assess the interaction between ligands and a hypothetical protein receptor or 

enzyme. Broadly speaking, computer-assisted ADMET property prediction and lead optimization are also 

part of virtual screening. Virtual screening exhibits two obvious advantages over traditional high-

throughput screening 8. First, virtual screening software is able to evaluate compound collections that do 

not physically exist. Second, the predictions from virtual screening programs refine the scope of to-be-

explored chemistry space and drastically reduce the cost of bioassays.  
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Figure 1-1: The diagram of drug discovery pipeline and associated cost. 
The whole drug discovery project typically includes early-stage research phase, preclinical study phase 
and clinical phase. It takes approximately 10 ~ 15 years and 500 million ~ 2 billion dollar to develop a 

marketable drug. 
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Currently, there are two categories of approaches in virtual screening: ligand-based virtual screening 

and structure-based virtual screening. Ligand-based approaches rely on the assumption of “similarity 

principal”, which states that structurally similar compounds usually exhibit similar biological activity. 

Nevertheless, the definition of molecular similarity is still ambiguous up to now. A specific pair of 

compounds may have different similarity score according to various criterions, for example, 3D similarity, 

maximum common structure, fingerprint-based Tanimoto coefficient, etc. On the other hand, structure-

based approaches imitate ligand-receptor interaction, in which ligands are “docked” into a hypothetical 

receptor, and scores are calculated to estimate binding affinity. Thus, the scoring function or ligand 

ranking mechanism is an important component of this methodology. Unfortunately, the performance of 

scoring functions in most “docking” software is far from perfect. Furthermore, the availability of high-

quality protein structures also restricts the application scope of structure-based virtual screening. Despite 

certain limitations, both categories of approaches have been successfully applied to solve practical 

problems in computer-aided drug design (CADD). In this thesis, the reported algorithms and software are 

ligand-based. 

Regardless of ligand-based or structure-based drug design, virtual screening emphasizes on the 

discovery of lead compounds that can bind to a protein receptor or enzyme. Besides bioactivity, lack of 

desired pharmacological and physicochemical properties is another important factor that rejects drug 

candidates from further development. As a complement to modern high-throughput screening, one of the 

primary goals of computer-aided drug design is to explore the enormous chemical and biological 

properties in a time-efficient manner as well as to reduce the cost of experimental screening 9-11. 

Particularly, great emphasis is placed on the “drugability” or “drug-likeness” of compounds using 

cheminformatics tools in the early stages of drug development, with the hope of increasing the probability 

of “lead” compounds, or their derivatives, to pass through the later phases of drug clinical trials12. Thus, 

generic and robust tools are demanded for the prediction of various ligand properties.  
 Modern information technology and software engineering methodology produce many high-

performance programs for cheminformatics and computer-aided drug design. Due to growth of computer 

hardware industry, it is widely assumed that in silico virtual screening and CADD programs are fast and 

high-throughput. On the contrary, the speed of these programs is sometimes achieved at the sacrifice of 

model quality and prediction accuracy. Molecular docking programs may take several seconds or tens of 

minutes to fit a ligand into a binding pocket, depending on searching algorithms and searching parameters. 

Thorough examination of numerous possible conformations of both ligand and binding pocket tends to 

yield convincing binding hypotheses, which has exponential time complexity in the degree of freedom. 

Casual docking strategies, such as rigid-body docking, hardly reveal reliable ligand-receptor binding 
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mode. Moreover, some algorithms require large amount of subjective intervention, resulting in relatively 

low level of automation and unsatisfactory efficiency. The famous field-based pharmacophore algorithm, 

Comparative Molecular Field Analysis (CoMFA)13, is a typical example. CoMFA predicts ligand binding 

affinities or other molecular properties according to the goodness-of-fit between the ligands and 

predefined CoMFA model, which specifies favored and disfavored pharmacophore groups in a three-

dimensional grid. One of the prerequisites of CoMFA is manually searching for the bioactive 

conformations that can be fitted into a developed CoMFA model. Given the same ligand, different 

CoMFA predictions are assigned to different conformations, and the conformation search is usually 

subjective. Therefore, 3D bioactive conformation search still remains as one of its limitations 14 and as a 

barrier for high-throughput virtual screening. 

Despite the development of cheminformatics methodology, it is a challenge to develop reliable, 

interpretable and high-throughput computational algorithms for the automation of modeling assorted 

molecular properties. The success of developing high-throughput algorithms will effectively accelerate 

the process of computer-aided drug design, and produce consistent and objective predictions. Most of the 

developed algorithms in CADD are based on physical models and empirical rules. The solutions are 

generally found by exhaustive search, approximation, or simulation. Physical models are straightforward 

and effective to some extent. Meanwhile, machine learning methodology is gaining popularity in the 

community of computer-aided drug design. In the current decade, machine learning has been successfully 

applied for image analysis, natural language processing, speech and handwriting recognition, etc. 

Informally, machine learning is a branch of artificial intelligence, aiming at identifying complex patterns 

and making intelligent decisions according to presented observations15. The advantage of machine 

learning approaches is the capability to discover certain correlations, the rule of which remains unknown. 

The methods and algorithms reported in this thesis are the instances of machine learning algorithms in 

cheminformatics and computer-aided drug design.  

Recently, the computation power of single-core CPUs is reaching a bottleneck. Going parallel is the 

theme nowadays. Supercomputers and clusters, formed by a set of integrated processing units, were not 

strangers to scientists even 20 years ago. To speed up calculation, scientists usually distribute 

computationally intensive tasks to many “computer nodes”. It is known that the computation time does 

not reduce linearly as the number of computer nodes increases. Molecular dynamics (MD) is a common 

computational technique in structural biology. Performance gain of MD simulation is not obvious by 

adding more computer nodes, when hundreds of nodes have already been utilized. Meaningful MD of 

DNA and proteins simulates a process spanning nanoseconds to microseconds. Unfortunately, CPU-days 

to CPU-years are required to complete the simulation16.   
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With the emphasis on “green high performance computing”, the development of modern graphics 

processing units (GPU) suggests a substitute strategy for scientific computing. GPUs are specialized 

microprocessors for graphics rendering. Modern GPUs feature higher memory bandwidth and more 

floating point operations per second (FLOPS) than CPUs (see Figure 1-2). These days, general-purpose 

computing on graphics processing units (GPGPU) is an active research field. The computation power of 

GPUs resides in their highly parallel architecture. As GPUs are mainly built for graphics rendering, 

developing GPU programs is not as flexible as traditional CPU programs. For example, high memory 

bandwidth is only achieved when global memory (video memory) access is coalesced. In addition, 

execution divergence reduces the degree of parallelism and device utilization. Therefore, extra attention 

should be paid to the design and implementation of GPU algorithms. In this thesis, a novel GPU 

algorithm and its implementation are introduced for fingerprint-based chemical similarity calculation and 

compound database comparison.  

 

 

 
 

Figure 1-2: Performance comparison of CPU and GPU  
This figure compares theoretical computation power and memory bandwidth of CPU and GPU 

models from 2001 to 2010. Computation power (left figure) is measured in Giga FLoating-point 
Operations per Second (GFLOP/s), and memory bandwidth (right figure) is given in Giga-Byte per 

Second (GB/s) 17 
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2 INTRODUCTION 

2.1 OVERVIEW OF QUANTITATIVE STRUCTURE-ACTIVITY 
RELATIONSHIP (QSAR) 

 
 
 
 
About 20 years ago, comparative molecular field analysis (CoMFA) was almost equivalent to 

Quantitative Structure-Activity Relationship (QSAR). Modern machine learning algorithms and 

cheminformatics techniques brought up various methods to model not only biological affinity but also 

pharmacological properties. Significant efforts have been devoted to developing reliable, adaptive and 

robust QSAR algorithms. Although successful QSAR studies have been reported in many fields of 

computer-aided drug design, their true predictability is still questioned by many practitioners 18. The 

development of robust quantitative structure-activity relationship is far beyond automated model training 

from some commercial software. A robust model requires extensive investigation of molecular descriptor 

selection, mathematical model training and, most importantly, model validation. Furthermore, scientists 

should understand the prediction risk when structurally diverse compound collection is involved. In this 

section, the methodologies involved in QSAR, including descriptor generation, statistical modeling, 

model validation and the limitation of QSAR, are briefly discussed.  

 
 
2.1.1 The Basic Concept of QSAR 

 
 

The fundamental goal of computer-aided drug design (CADD) is to predict biological activity and 

pharmacological properties of drug candidates in order to enhance the productivity and reduce the cost of 

drug development project. To certain extent, any CADD project can be reduced to a decision-making 
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process, for example, the prediction of binding affinity, LogP value, toxicity, etc. In general, such 

decision-making can be carried out through two classes of methods: rule-based method and knowledge-

based method. In rule-based method, prediction is made according to widely validated and accepted 

theories. One example is the estimation of ligand-receptor binding energy using force field. In the current 

stage, no complete set of theories are established to handle diverse challenges in rational drug design. 

Then, knowledge-based method becomes a practical approach in these unexplored fields. In one word, 

knowledge-based method attempts to derive an empirical correlation between the observations and 

molecular properties of interest, without understanding their underlying mechanisms. Illustration is given 

in Figure 2-1. In CADD, knowledge is the compound libraries annotated with molecular properties of 

interest, for example, the results from HTS experiments. The knowledge is then presented to a “learner”. 

The learner’s job is to detect patterns that are statistically correlated with properties of interest, and solve 

parameters in mathematical models. Finally, the learner outputs a prediction scheme for future testing 

samples. 

 

 
Figure 2-1: The illustration of knowledge-based inference  

In this diagram, a learner aims at solving a mathematical model (generalization) from training data 
(knowledge) through numerical optimization (learning phase) 

 

Advanced high-throughput screening (HTS) technologies generate great amounts of bioactivity data, and 

this data needs to be analyzed and interpreted with intension to understand how these small molecules 

affect biological systems. As such, there is an increasing demand to develop and adapt cheminformatics 

algorithms and tools in order to predict molecular and pharmacological properties based on these large 

datasets. These techniques belong to an active research area, called quantitative structure-activity 

relationship (QSAR). Figure 2-2 summarizes the major steps of a QSAR study: molecular descriptor 
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generation, variable selection and numerical optimization. Finally, the QSAR model is validated 

retrospectively or prospectively before integrating the model into drug development pipeline. 

 
 

Figure 2-2 : The general steps of modeling molecular properties  
In ligand-based drug design, compound structures are represented in high-dimensional molecular 

descriptors. This is followed by a step called variable selection to choose predictive features. The 
predictive features are used to statistically correlate with molecular properties of interest. 19 

 
2.1.2 Molecular Descriptor Generation and Variable Selection 

 
 
In QSAR, compound structures are usually plugged into mathematical models implicitly. Structures can 

be treated as weighted graphs. Unfortunately, most successful statistical and machine learning algorithms 

adopt numerical vectors as input. In addition, manipulating numerical vectors and matrices is more 

efficient compared to graph operations. Thus, mapping chemical structures to high-dimensional descriptor 

vectors is the recommended strategy for high-throughput virtual screening programs. Another advantage 

of performing pattern recognition on molecular descriptors instead of chemical structures is the 

incorporation of hypotheses and assumptions into the mathematical model. In this case, data mining can 

be restricted in relevant hypothesis space, instead of exploring combinations of noisy structural 

information. Descriptor generation is the foundation for any QSAR studies. A comprehensive review on 

prevailing molecular descriptors will be given later.  

Variable selection targets at removing redundant and irrelevant molecular features, but preserving 

predictive and informative variables. A large number of descriptors may increase model complexity, but 

developed models may be vulnerable to over-fitting. In statistics, parameterization may become 

intractable as the dimensionality of feature space increases, because enormous data are required to depict 

the probability density of combinations of input variables. This phenomenon is called “curse-of-
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dimension”. Modern machine learning algorithms are not as sensitive as traditional statistical models, 

regarding high-dimensional feature space. Some robust pattern recognition methods possess built-in 

mechanism to attenuate the negative effect of irrelevant features. Margin maximization and parameter 

regularization are two common approaches. Therefore, variable selection is not strictly demanded in 

QSAR anymore, but it is still recommended in many cases.  

2.1.3 Mathematical Optimization 

Solving parameters and variables in a quantitative model is the follow-up step of a QSAR study. 

Regardless of mathematical models, the parameterization procedure is equivalent to the optimization of 

an object function. The object function penalizes prediction errors and rewards predictions that are 

consistent with observations. The parameters that optimize the object function become the solution. This 

procedure is also referred as “model training”, and the collection of annotated compounds that the 

solution is derived from is usually called “training set”. In other words, model training is conducted to 

search for an optimal mapping function, ƒ, ƒ ϵ ℱ: x → y, where x is the descriptor vector and y is a 

response value. If y is a discrete scalar, representing compound labels, the inference belongs to 

classification, for example, predicting whether a compound is active or not. If y is a continuous scalar, the 

inference belongs to regression, for example, predicting the binding affinity of a compound. Broadly 

speaking, there exist three schemes for modeling the correlation between x → y 20: 

 

1. Modeling the join probability density p(x, y). This is the most comprehensive solution of estimating 

the generalization error and confidence interval, as the function p(x, y) reveals the distribution of 

descriptor vector x. Furthermore, the conditional probability, p(y|x), can be easily derived to give 

prediction y from input x. Modeling p(x, y) requires vast observations when vector x is high 

dimensional, because of “curse-of-dimension” described above. On the other hand, this scheme is still 

feasible under certain circumstance. In Naive Bayes classifier, the independence assumption 

simplifies the estimation of p(x, y) by formulating it as a product, 𝑝(𝐱, y) = ∏ 𝑝(xi, y)i .  

2. Modeling the conditional probability p(y|x). Knowing the distribution of x is sometimes impractical, 

but the conditional probability p(y|x) is sufficient to make inference on y according to descriptor 

vector x. Given any predefined cost function, g(y�, y), the object function is Ey|x(g(y�, y)) where 

y� =ƒ(x). This approach neglects the distribution of x and only focuses on the distribution of y|x, so it 

is more robust than scheme 1. Yet, the generalization error, i.e. Ex(Ey|x(g(y�, y)), is unsolvable because 

p(x) remains unknown. Logistic regression is one example of this scheme. 
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3. Find function y� =ƒ(x) without modeling probability density function. This scheme is adopted by 

most machine learning algorithms. Since no assumptions are made on the distribution of x and y, this 

method is the most robust of all. Without probability and distribution, the generalization error is 

empirically estimated by 1
N
∑ g(y�i, yi)i . Furthermore, no confidence interval can be guaranteed for any 

prediction, y�i. Famous Support Vector Machine and Artificial Neural Network belong to this scheme. 

 

    Correct model assumptions drive parameters to converge faster compared to the case in which little 

information is known. Figure 2-3 demonstrates this principal through a toy model. N training observations 

ti ϵ {(x1, x2): x1, x2 ϵ [-6, 6]}. The corresponding class or label, yi, for observation, i, is generated 

according to the following rule: yi = 1, if �x12 + x22 ≥ 4;  or yi = −1  otherwise. To make it more simple, 

the data points outside the yellow circle in Figure 2-3 belong to one class, while the data points inside the 

circle belong to another class. In reality, the mechanism of data generation is probably unknown. The goal 

is to find a mapping function y = ƒ(t) that emulates the true mechanism according to the observations y 

and t. Two types of classifiers are trained. One is famous support vector machine (SVM) with polynomial 

kernel of second degree. Theoretically, the SVM classifier is capable of fitting any quadratic functions, 

which definitely covers the true “circle” classifier. The other classifier is y = 2I ��x12 + x22 ≥ r� − 1. I(S) 

is an indicator function, which will be used frequently later. I(S) =1 if the statement S is true, or I(S) = 0 

otherwise. For the second classifier, it is clear that the label is assigned according to the distance to the 

origin, but the threshold value, r, remains unknown. The training procedure aims at making inference on r 

according to the training data.  

The SVM classifier is solved using SVMPath package 21. More details regarding SVM will be given 

in the following chapters. The radius r of the “circle” classifier is solved using the equation r =
1
2

(mini,yi=1‖𝐭i‖2 + maxi,yi=−1‖𝐭i‖2). ‖𝐭i‖2 is the L2 norm of 𝐭i. Its value is equal to �x12 + x22 of the ith 

data point. As shown in Figure 2-3, the “circle” classifier colored in black converges fast to the yellow 

circle, according to which the labels are assigned. When N =35, the black circle starts to overlap with the 

yellow one. The SVM decision boundary is represented by the thick green curve. The thin green curve 

represents the soft margin in SVM. As N increases, the SVM decision boundary gets closer and closer to 

the yellow circle, but noticeable discrepancy between the two exists. Even if SVM is a robust and flexible 

classifier, its convergence speed is much slower. In practice, the correct assumption helps us to develop a 

high-quality QSAR model with only limited training data, however most topics in CADD are not well 

explored, and the assumptions might be wrong. Figure 2-4 gives one example resulted from wrong model 

assumption. The mechanism of data generation is the same except that the yellow circle is centered at 
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point (1, 1). Both classifiers are trained using the same algorithm. The “circle” classifier in this case is 

inaccurate as it is always centered at the origin. In Figure 2-4, SVM classifier is undoubtedly superior to 

the “circle” classifier. Thus, a general-purpose classifier is a good choice if the assumptions are uncertain 

or little is known about the solution.  

 
N=15 

 
N=25 

 
N=35 

 

 
N=60 

 
Figure 2-3: Evolution of two classifiers as the amount of training data increases. 

Each figure shows the developed classification boundaries with different training data sizes (N). Yellow 
circle is the true boundary that is used to generate training data. Green lines represent the decision 
boundary and soft margin of support vector machine. And the black line represents trivial “circle 

classifier” 
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In CADD, the amount of training data is usually limited, and labeling novel compounds is remarkably 

expensive and time-consuming, but an accurate prediction model is still desired in practice. Prior 

assumptions restrict the search space of training algorithms, so limited training data may be still sufficient 

for statistical inference. As illustrated in the toy model, the “circle” classifier only represents a tiny 

fraction of the complete quadratic SVM solutions. Therefore, the parameter in the “circle” classifier 

converges faster than SVM because the training algorithm does not necessarily explore all the quadratic 

solutions. Conversely with incorrect assumptions (Figure 2-4), the true solution actually lies outside of 

the search space, and finally parameters converge in a wrong direction. To conclude, the balanced 

tradeoff between a general-purpose model and a problem-specific model should be well maintained for a 

QSAR study. 

 

 

 
 

Figure 2-4: Specific model with incorrect assumption versus general purpose model 
The yellow circle, centered at (1, 1), represents the true decision boundary. Support vector machine 

converges reasonably well to the yellow circle, and outperforms the trivial “circle classifier” that is 
centered at origin. 

2.1.4 QSAR Validation 

The validation of a quantitative structure-activity relationship is probably the most important step of all. 

The validation estimates the reliability and accuracy of predictions before the model is put into practice. 

Poor predictions misguide the direction of drug development and turn downstream efforts meaningless. 

Validation can be performed either retrospectively or prospectively 22. In retrospective validation, a 
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QSAR model is developed without being exposed to some annotated compounds (testing set). To verify 

model quality, predictions are made on the testing set in order to check the agreement between the 

theoretical values and experimental values. In prospective validation, the model is applied on an external 

unlabeled compound set. Then, physical experiments are carried out to validate the predictions. 

Prospective validation imitates the scenario of actual drug development, which is more trust-worthy. 

Nowadays, prospective validation is required in major cheminformatics journals for QSAR publications 

reporting existing methods. Nevertheless, it is necessary to essay a large number of testing compounds in 

order to draw statistically convincing conclusion, but prospective validation, as a costly and time-

consuming approach, is impractical in many cases.  

Cross-Validation is probably the most popular technique for estimating generalization error of QSAR 

models. Generalization error of QSAR models measures their average performance when the models are 

generalized to the entire possible chemistry space. Thus, generalization error is an important indicator 

showing the risk of utilizing the models in drug development process. Define an error function  ƒM, ƒM ϵ ℱ: 

x → ℝ, where x represents a compound . ƒM(x) returns the prediction error for compound x with model M. 

Precisely, the generalization error of a specific model M is equal to Ex(ƒM(x)). In almost all the cases, the 

analytical solution to Ex(ƒM(x)) does not exist due to the astronomical number of possible compound 

structures for x. In statistics, the law of large numbers (LLN) is a theorem, stating that X�n → μ for n → ∞ 

where X�n = 1
n
∑ Xin
i=1  and μ = E(Xi) , i = 1, 2, …, n. X1, X2, X3, …  are  i.i.d. random variables. By 

applying LLN, generalization error Ex(ƒM(x)) can be approximated by Ex(ƒM(x)) ≈ 1
n
∑ ƒM(𝐱𝐢)n
i=1 . 𝐱𝐢 are 

independent testing samples. There are four basic requirements for 𝐱𝐢: (1) the experimental property value 

of 𝐱𝐢 is attainable in order to calculate the cost function ƒ; (2) 𝐱𝐢 are independent training samples, upon 

which QSAR models are developed; (3) 𝐱𝐢  are true random samples without oversampling a specific 

region of chemistry space. (4) n is large and there exist ample testing samples.  

      In reality, these requirements are hardly achieved due to the high expense in acquiring experimental 

values of many testing compounds. Thus, a fraction of annotated compounds is “left-out” from training 

data set for estimating the generalization error, which is called cross-validation. Figure 2-5 illustrates 

some popular cross-validation techniques. In Scheme A, certain percentage of annotated compounds 

(training set) is used to develop QSAR models. Then, the models are evaluated on the remaining 

compounds (testing set). Usually, a set of model candidates are evaluated on the testing set and the one 

with lowest prediction error is selected as the optimal model. This scheme is straightforward but not 

flawless, because the testing set might be overfit. A model overfits a data set when it captures random 

noise instead of the underlying relationship. An overfit model usually shows poor prediction performance. 

In Scheme B, the annotated compound data set is split into k subsample sets and the testing calculation is 
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repeated for k times. Each time, one of the k subsample sets is left out as testing set and the remaining k-1 

subsample sets are used as the training set. The generalization error is simply approximated by the 

average prediction error on the k testing sets. Although the possibility of overfitting still exists, the chance 

is lower compared to Scheme A, because more testing samples are involved in the approximation of 

generalization error. This technique is called k-fold cross-validation. Scheme C, which is also known as 

leave-one-out cross-validation (LOOCV), is a special case of k-fold cross-validation. As suggested by the 

name, each time one annotated compound is kept from the remaining training data as testing sample. The 

procedure is repeated until every compound is used once as testing data. For some statistical models, such 

as linear regression, analytical solution exists for estimating LOOCV error. Generally, LOOCV error is 

calculated by repeating model training and testing for N times (N is the total number of annotated 

compounds), which is computationally expensive. 

 

 

 
 

Figure 2-5: Popular cross-validation schemes 
In scheme A, certain proportion of annotated data (training set) is used to develop a predictive model, 

and the model is validated on the remaining data (testing set). In scheme B (k-fold cross-validation), 1/k 
of annotated data is reserved as testing set, and the remaining is left for model training. This procedure is 
repeated k times. In scheme C (leave-one-out cross-validation), every data entry has chance to serve as 

testing data, leaving the remaining data as training set. 
 



10 
 

Besides cross-validation techniques, error function should be rationally designed for risk estimation and 

model selection, depending on different CADD applications. Regression and classification are two major 

methodologies involved in QSAR. Regression analysis aims at predicting real values, such as dissociation 

constant, boiling point, LogP, etc. The goal of classification is to predicting the categories of compounds, 

for example, active or inactive, selective or unselective, toxic or nontoxic, etc.  

In regression analysis, R2 or correlation coefficient (r) is used to measure the goodness of fit. Let yi 

denote the experimental value for compound i and y�i  denote the corresponding predicted value from 

regression model. The total variance can be decomposed as 23:  

∑ (yi − y�)2n
i=1 = ∑ (yi − y�i )2n

i=1 + ∑ (y�i  − y�)2n
i=1 . 

SStotal          =           RSS         +          SSreg 

SStotal: total sum of squares; RSS: residual sum of squares; SSreg: sum of squares for regression. yi − y�i is 

the difference between observed value and predicted value, which is also called residue. 

According to this decomposition, R2 = 1 − RSS
SStotal

= SSreg
SStotal

. Thus, R2 can be understood as the ratio 

of variance explained by the regression model to the total variance. In other words,  R2 indicates the 

proportion of total variance, traced by the regression model. In an ideal case, a regression model can 

predict 100% of uncertainty and variance of y, then R2 = 1. In the worst case, a regression model is 

uncorrelated with y, then R2 = 0. Sometimes R2 calculated on the cross-validation set can be negative 

when RSS is greater than SStotal. Criteria for judging whether an R2 is satisfactory or not remains flexible. 

Normally for QSAR studies, an R2  value above 0.5 indicates good predictability 24. Another way to 

illustrate the goodness of fit is by plotting experimental value versus predicted value, as shown in Figure 

2-6. 

 

 
Figure 2-6: Demonstration of the goodness-of-fit  

Figure adopted from reference 25 
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In compound classification, compound labels or categories, such as “active” or “inactive”, are represented 

by some integers. One effective measure of prediction quality is the ratio of the number of correct 

predictions to the total number of testing compounds. This measurement was applied in modeling drug-

likeness with binary classifiers 26. Nevertheless, the percentage of correct prediction is meaningless when 

the testing set is overwhelmed by one category of observations or the category of interest is minority, for 

example virtual screening. In virtual screening, a few active compounds are immersed in the sea of 

inactive ones. A classifier that blindly assigns “inactive” label to any testing compound probably achieves 

99% prediction accuracy. The classifiers in sole pursuit of high prediction accuracy probably will never 

recover any active compounds. Therefore, a few other indices have been proposed for unbalanced data 

sets. Take virtual screening as an example, in which a classifier attempts to distinguish active compounds 

from inactive ones. Define the following quantities: 

True Positives (TP): the number of active compounds that are also predicted as active  

True Negatives (TN): the number of inactive compounds that are also predicted as inactive 

False Positives (FP): the number of inactive compounds that are incorrectly predicted as active  

False Negatives (FN): the number of active compounds that are incorrectly predicted as inactive 

Matthews correlation coefficient (MCC) is frequently adapted as a measure of the quality of binary 

classifiers for unbalanced data sets. MCC is calculated according to the following equation: 

MCC =
TP × TN − FP × FN

�(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

The example below demonstrates the difference between MCC and prediction accuracy. Suppose that 

a collection of 1000 compounds has 10 active compounds and 990 inactive compounds. The outcome of 

classifier A and classifier B is listed in Table 2-1 and Table 2-2 respectively. 
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Table 2-1: Imaginary outcome of classifier A 

 

Experimental 

Predict 

Positive Negative 

Positive 8 22 

Negative 2 968 

 

Table 2-2: Imaginary outcome of classifier B 

 

Experimental 

Predict 

Positive Negative 

Positive 2 16 

Negative 8 974 

 

 

 

Classifier A and B have identical prediction accuracy as they produce the same number of TP and TN. So 

the simple classification accuracy is 976/1000 = 97.6%. Nevertheless, classifier A is far superior to 

classifier B because A discovers 8 true positives (true active compounds or hits) and B only has 2. 

Furthermore, classifier A is more precise than B. Among the positives identified by A, 8 out of 30, which 

is 26.7%, are truly active; while only 11.1% of positives identified by B are truly active. According to 

Matthews correlation coefficient, the MCC for classifier A is 0.454, while the MCC for classifier B is 

0.138. Thus, MCC is more informative than simple classification accuracy for unbalanced data sets. 

Besides MCC, sensitivity (or recovery rate, recall rate) and precision (purity) are frequently 

mentioned in scientific articles: 

Sensitive = TP / (TP + FN) 

Precision = TP / (TP + FP) 

More formally, classifier A is more sensitive than classifier B, based on Table 2-1 and Table 2-2. The 

classifier that brings more true active compounds or “hits” is always desirable since it is more likely to 

develop a lead compound out of it. In addition, classifier A is more precise than classifier B. A high-

precision classifier brings more true “hits” in experimental validation and saves the cost of bioassay. 

Sensitive and precision are usually contradictory. Sensitivity can be increased by labeling more testing 
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compounds as active. Sensitive can reach 1.0 by label all testing compounds as active, since FN = 0. On 

the other hand, enhancing the sensitivity usually sacrifices precision as the classifier brings in more false 

positives and increases the cost of experimental validation. Thus, a balanced trade-off should be 

determined between these two quantities. Based on this, it is inappropriate to judge the quality of a 

classifier by simply investigating either sensitivity or precision.  

 

 

 
 

Figure 2-7: Sample ROC curve.  
ROC curve plots sensitivity versus 1-specificity by adjusting decision boundaries. This figure 

illustrates the ROC curves of different virtual screening models. 27 

 

 

ROC curve (receiver operating characteristic) is commonly plotted to measure the performance of several 

models graphically.  

Figure 2-7 shows a typical ROC curve for evaluating several virtual screening models. The X-axis of a 

ROC plot is false positive rate, and the Y-axis is sensitivity. False positive rate (FPR) is equal to FP/ (FP 

+ TN). ROC curve tells how false positive rate responds to the change in sensitivity. For a specific virtual 

screening model, the sensitivity can be only enhanced by reducing prediction threshold (such as docking 

score) and predicting more compounds as active. This approach usually increases FP but reduces TN, 

resulting in higher FPR. Thus, false positive rate monotonically increases with sensitivity. A random 

classifier will show a diagonal ROC curve, while an effective classifier can enrich positives and achieve 

high sensitivity at low false positive rate. A typical characteristic of a ROC curve from an effective 

screening model is the relative large accumulated area under the curve. Therefore, AUC (area under curve) 

is a common measure to assess the performance of a screening model.  
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 Many metrics are currently used to assess the performance of ligand classification models, but no one 

is perfect. For example, ROC curve is a poor indicator for early enrichment of active compounds 28. The 

performance metric should be carefully selected in order to distinguish optimal models effectively.  

2.1.5 Limitation of QSAR 

Although quantitative structure-activity relationship (QSAR) has been widely applied in drug discovery, 

ranging from virtual screening for lead compound identification, to early-stage drug development for the 

optimization of ADMET properties, the reliability and predictability of QSAR models are still under hot 

debate 28. As pointed out by Truchon et al, the major reason why QSAR fails is attributed to the vast 

number of equivalent models and deficient external validation. In other words, it is because QSAR 

overfits the training data without detecting the true structure-activity relationship.  

QSAR models retain a limited scope of application. The uncertainty and variance are expected for 

predictions made beyond the scope. Figure 2-8 illustrates this concept through another “toy” model. In 

Figure 2-8, X-axis and Y-axis are imaginary descriptor and property of interest, respectively. The data 

points in Figure 2-8 (A) are generated according to the following equation: y = 2 × sin(x + 0.75) + ε, 

where ε ~ Norm(0, 0.5). Three candidate functions are developed to fit the data points: 

a) Quadratic function: y = ax2 + bx + c 

b) Cubic function: y = ax3 + bx2 + cx + d 

c) Sine function: y = a sin(x + b) 

Parameters in quadratic and cubic functions are solved using standard linear regression analysis, with 

fitted R2 being 0.65, 0.85 respectively. The parameters in the sine function are solved using Newton–

Raphson method, with fitted R2 being 0.89. In Figure 2-8 (A), the data points are well fitted by the cubic 

function where x ∈ [0, 6], but neither cubic nor quadratic function shows relevant predictions on the 

testing data set (x, y) where x ∈ [6, 12] in Figure 2-8 (B). 

In QSAR, good predictions are expected for testing compounds that are similar to the training set. For 

example, testing compounds are supposed to be aligned with the training set in CoMFA. In fact, testing 

compounds usually do not share similar scaffold or substitutes with the training compounds. In this case, 

not much knowledge is accessible regarding these new structures. Similar to the case described in Figure 

2-8, QSAR model may fail when it is applied on the chemistry space beyond it modeling scope. 
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Figure 2-8: A “toy” mathematical model illustrating model applicability  
X-axis denotes certain variable to predict the property value along Y-axis. The property value is 

generated by adding random noise to the orange line (real model). Then, quadratic model, cubic model 
and sin wave are used to fit the training data in the left figure. Even if cubic model fits training data well, 

its prediction is irrelevant when the testing data is beyond the range of training data (right figure). 

2.2  REVIEW OF MOLECULAR DESCRIPTORS 

Molecular descriptors transform chemical structures to numerical vectors, upon which QSAR models are 

developed. Hundreds of molecular descriptors have been proposed for solving physicochemical and 

biological properties. The descriptors can be grouped according to dimension invariance, ranging from 

0D to 4D descriptors. The invariance of molecular descriptors in N-dimension means that any structural 

changes in higher dimension do not affect the structural representations in N-dimension. For example, 

conformational isomers have identical 2D representations and descriptors. 0D descriptor is calculated 

based on molecular formula. To calculate 1D descriptor, a structure is represented by a set of linearly 

connected structural fragments, e.g. A-B-A-C where A, B, C denote certain fragments. In 2D descriptor 

generation, a chemical structure is transformed into a connectivity matrix, in which the diagonal elements 

describe atom types and the off-diagonal elements describe nominal bond types. Then topological or 

connectivity indices can be calculated conforming to the matrix. 3D descriptors require 3D coordinates of 
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each atom, so they are sensitive to 3D conformations. 4D descriptors characterize 3D molecular 

conformations as time evolves. They may be calculated from the trajectories of molecular dynamics 

simulation or ensemble sampling. The table below lists some representative descriptors for each 

dimension. 

 

 

Table 2-3: List of representative molecular descriptors 

  

Dimensionality Example Reference 

0D Molecular weight, Number of bonds, Atom 

counts 

29 

1D The count of functional groups, such as H-

bond donors, heterogeneous ring, etc. 

29 

2D Topological indices, Atom paths, Burden 

eigenvalues 

30-32 

3D Polar surface area, Volume, Electrostatic 

field, 3D-MoRSE 

33 

4D Volsurf, 4D-fingerprints 34 35 

 

 

Another way of classifying molecular descriptors rests on the depicted structural characteristics, including 

constitutional descriptor, geometric descriptor, topological descriptor and electrostatic/quantum-chemical 

descriptors. The following subsections will focus on the theory and application of these descriptors. 

2.2.1 Constitutional Descriptor 

Constitutional descriptors depict the composition of a compound structure and capture the properties of 

the elements that constitute the structure. Generally regarded as 0D, constitutional descriptors are 

independent on the geometry and topology of a structure. They are calculated either based on the 

occurrence of different types of atoms, bonds, x-member rings, or as a mathematical function of these 

elements. Table 2-4 lists some popular constitutional descriptors involved in QSAR studies. 
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Table 2-4: List of representative constitutional descriptors 

 

Molecular Weight Number of X-member Rings  

Total Number of Atoms Number of Aromatic Rings 

Numbers of Atoms of Different Identity Number of H-bond Donors 

Number of Bonds Number of H-bond Acceptors 

Number of Rotatable Bonds Sum of Atomic Polarity 

Numbers of Double, Triple or Aromatic 

Bonds  

Sum of Atomic van der Waals Volumes 

 

 

A significant advantage of constitutional descriptors is the ease of calculation and interpretation. Despite 

their simplicity, constitutional descriptors exhibit relevance to many pharmacological properties. 

Particularly, descriptors characterizing oxygen and nitrogen atoms have been shown effective for deriving 

ADMET models, because these atoms affect hydrogen bonding and molecular polarity that are related to 

solvation and absorption 36. Constitutional descriptors are usually insufficient to build any QSAR or 

QSPR model independently. Instead, they serve as complement to 2D or 3D descriptors in modern data 

mining algorithms. Table 2-5 lists some constitutional descriptors and their application for the prediction 

of physiochemical properties, binding affinity and ADMET properties.  
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Table 2-5: List of constitutional descriptors and their applications 

 

Descriptor Application Reference 
number of carbon atoms partition coefficients of 

barbituric acids 

37 

relative number of nitrogen atoms pKa for neutral and basic drugs 38 
relative number of benzene rings 
number of carbon atoms 
relative number of double bonds 

biological activity of carbonic 
anhydrase CA II inhibitors 

39 

number of sulfur atoms 
number of H-bond donors 
number of hydroxyl groups 

general solubility 40 

number of fluorine atoms gas chromatographic retention 
index 

41 

number of acceptor atoms for H-
bonds 

Henry’s law constant 42 

the relative number of single 
bonds 

logk of peptides in HPLC 43 

number of Cl atoms boiling point 44 
atom number in the 
hydrophobic–hydrophilic segment 

critical micelle concentration 45 

relative number of aromatic 
bonds 

classification of the oxindole-
based inhibitors of cyclin-
dependent kinases 

46 

number of all atoms  
number of all bonds 
number of aromatic atoms  
number of hydrophobic atoms 
fraction of rotatable bonds 

Caco-2 permeability 47 

47 constitutional descriptors 
involved in principal component 
analysis 

carcinogenic activity 48 

number of carboxylic acids drug intestinal absorption 49 
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2.2.2 Geometric Descriptor 

The relevance between molecular geometric configuration and bioactivity or physiochemical properties is 

well recognized. For receptor-ligand interaction, the geometric arrangement of ligands influences whether 

the ligands can fit into the receptor pocket. To capture these molecular features, geometric descriptors are 

designed to be a set of mathematical functions of molecular size, shape, position and properties in space. 

The calculation of geometric descriptors is not as straightforward as constitutional descriptors, since it 

involves mathematical integration and numerical approximation. The interpretation of some descriptors 

requires thorough understanding of underlying theories. Table 2-6 shows some prevailing geometric 

descriptors for the investigation of molecular conformation and ligand-receptor interaction.  Brief 

introduction to some of these descriptors is given below. 

 

 

Table 2-6: List of representative geometric descriptors 

 

Molecular Volume Molecular Surface Area 

Charged Partial Surface Area Solvent-accessible Molecular Surface Area 

Gravitational Indices Electric Quadrupole Moments 

Principal Moments of Inertia  Spherisity/Asphericity Index 

Shadow Areas of a Molecule Linearity Index 

Distance Between Atom Pairs WHIM shape index 

 

 

Molecular volume, as suggested by its name, is the total volume enclosed by van der Waals surface. 

Molecular volume calculation is not simply the summation of the volume of every atom, since covalently 

bonded atoms have significant volume overlapping. Thus, the overlapping volume of adjacent atom pairs 

(atom identity, bond type, conjugate system, etc.) should be considered. 

Molecular surface area determines the interactions between the molecule and its surrounding area. 

Molecular surface area as a geometric descriptor has been found statistically correlated with water 

solubility, octanol-water partition coefficients, activity coefficients and boiling points 50.The surface area 

refers to the area of van der Waals surface. Some derived descriptors show better biological relevance, 

such as water-accessible surface area, polar surface area, etc. The surface area can be approximated by 

summing either the areas of triangles of a defined surface or the contributions from all atoms. In addition, 
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efficient algorithms, developed by Pearlman, Lee and Richards, and Hermann, for the approximation of 

surface area have caught the most attention.  

 

 

Table 2-7: List of geometric descriptors and their applications 

 

Descriptor Application Reference 

gravitational index boiling point 51 

molecular surface area 

molecular volume 

octanol/water partition 

coefficients 

52 

electric quadrupole moments 

principal moments of inertia 

alignment-free 3D QSAR 

modeling inhibition of 

cytopathic effects of HIV-1 

53 

Linearity index (L/B index)  classification of carbonic 

anhydrase inhibitors 

54 

partial positive surface area 

partial negative surface area 

biological activity of carbonic 

anhydrase CA II inhibitors 

39 

WHIM descriptors toxicity of heterogeneous 

chemicals 

LogP, Caco-2 permeability  

55 56 

 

Sphericity (or asphericity) index is a measurement of the degree in which the shape of a molecule is 

similar to a sphere. The calculation is based on molecular volume and surface area. The sphericity index 

of a molecule is defined as the ratio of the surface area of a sphere with the same volume to the surface 

area of the molecule. As a sphere has the lowest surface-area-to-volume ratio, the more “round” a 

molecule is, the larger its sphericity index becomes. The maximum of a sphericity index is 1. 

Gravitational index is defined as G = ∑ mimj

rij
2i<𝑗 , where i and j are the atom indices, mi is the mass of 

atom i. Gravitational index is bond-restricted when the summation is only calculated on bonded atom 

pairs 51. This descriptor characterizes the mass distribution of a molecule.  Principal moments of inertia 

are also mechanical descriptors, describing the resistance to changes in rotation. Similar to dipole 

moments, electric quadrupole moments describe the distribution of electric charges over a molecule. 
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Quadrupole moments have higher order than dipole moments. A molecule that has zero dipole moment 

may still have quadrupole moment, as if a molecule that has zero net charge may still have dipole moment.  

Geometric descriptors have been widely used in QSAR and QSPR modeling. Table 2-7 lists some of 

the representative studies. The major disadvantage of most geometric descriptors is the dependence on 

three-dimensional conformations. The calculation of geometric descriptors however mainly relies on 

internal coordinates so that they are independent on molecular position and orientation. This valuable 

feature enables us to build alignment-free 3D QSAR models. 

2.2.3 Topological Descriptor 

Topological descriptor, also known as connectivity index, emphasizes what atoms are connected by 

covalent bound and how they are connected. To generate topological descriptors, compound structures are 

usually treated as molecular graph with suppressed hydrogen atoms. Topological descriptor is usually 

graph invariant, meaning that the descriptor value remains constant regardless of how the structure is 

represented. Topological descriptors have been employed in numerous QSAR and QSPR studies, but their 

interpretation is usually obscure in the context of physicochemical properties. Besides its graph invariance, 

topological descriptor exhibits another apparent advantage, the simplicity in computation. Table 2-8 lists 

some popular topological descriptors involved in many studies. Wiener index and BCUT descriptors will 

serve as examples for descriptor interpretation. And a few representative applications of topological 

descriptors are listed in Table 2-9. 

Table 2-8: List of representative topological descriptors 

 

Wiener Index Hosoya Index 

Balaban J Index Randić Index 

Structural Information Content Index Bonding Information Content Index 

Kappa Shape Index Connectivity Index 

BCUT Descriptors Molecular Path/Walks 

 

 

Wiener index is a classical quantity to characterize the connectivity of a graph. The formal definition is 

given by the following equation: 
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W =
1
2
�� di,j

n

j=1

n

i=1

 

Where di,j is the shortest distance between point i and point j, or atom i and atom j in a molecular graph. 

To restate this equation by words, Wiener index is equal to the sum of the nearest distance between any 

pair of atoms. Wiener index can be also interpreted in terms of each individual covalent bond. In acyclic 

case, the contribution of each bond is the product of the total number of atoms at each side, and the 

Wiener index is simply the sum of the contribution of all the bonds. If both sides of a bond show similar 

number of atoms, the product tends to be large, because the total number of atoms is constant and 

a × b ≤ (a+b
2

)2. Intuitively, the index is mainly affected by the bond located in the center of a structure. 

In other words, the topology of side branches weights relatively less in the index calculation. A structure 

with a large number of atoms tends to have a large Wiener index value. Thus, the index is potentially 

correlated with van der Waals surface area. Examples and explanations of Wiener index and some other 

descriptors are given by Randic and Zupan. 57 

BCUT (Burden CAS University of Texas) descriptors 58-61 incorporate comprehensive information 

regarding molecular structure, atom property and more into decimal numbers. Creating BCUT descriptors 

is one of the most popular approaches to construct low-dimensional chemistry space and perform 

diversity analyses. Briefly, BCUT descriptors are defined by combining atomic descriptors for each atom 

and description of the nominal bond-types for adjacent and nonadjacent atoms into BCUT matrices. The 

value of each chemistry-space coordinate is specified as the highest or lowest eigen value of BCUT 

matrix as illustrated in Figure 2-9. 

 

 

 
Figure 2-9: Illustration of BCUT connectivity matrix (Tripos). 

In the matrix, diagonal elements are filled by atom charge, and off-diagonal elements are filled by 
bond order if any. The remaining elements are filled by a predefined constant (0.01). BCUT descriptor is 

either the lowest or the highest eigen value of this connectivity matrix. 
 

OH

O

1
2

3

4

5

 1 2 3 4 5 

1 -0.047 1.1 0.01 0.01 0.01 

2 1.1 0.046 1 0.01 0.01 

3 0.01 1 0.231 2.1 1.1 

4 0.01 0.01 2.1 -0.371 0.01 

5 0.01 0.01 1.1 0.01 -0.293 
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In Figure 2-9, the diagonal elements of the matrix are filled with estimated partial charge of each atom. 

The off-diagonal elements can be a small number, e.g. 0.01 in this example, if two atoms are not 

connected. Otherwise, a nominal value is filled to represent covalent bond type. An increment (0.1) is 

added to the nominal bond value if the bond connects terminal atoms. Then, the off-diagonal elements 

may be scaled by a preset factor. Finally, the lowest or the highest eigen value of the connectivity matrix 

becomes BCUT descriptor of this query structure. BCUT descriptors have many variants, depending on 

atomic property filling the diagonal elements and the scaling factor. Generally, the optimal subsets of 

BCUT descriptors capture the maximum variance of a compound library, and show little pair-wise 

correlation. 

 

Table 2-9: List of topological descriptors and their applications 

Descriptor Application Reference 

BCUT Library Design, QSAR, 

Diversity Analysis 

62-64; 

 65; 66 

connectivity chi and kappa 

indices 

Prediction of HPLC Retention 

Index 

67 

Wiener index Drug-receptor interaction 68; 
69 

triplet index, Balaban’s J index, 

information contents, Wiener 

index, etc. 

mutagenic potency of aromatic 

and heteroaromatic amines 

70 

Edge-Connectivity Index, 

Hosoya Index, Wiener index, 

Randic’s index, Balaban’s Index, 

etc. 

The study on the relation 

between topological descriptors 

and physicochemical properties 

of Octanes, such as boiling 

point, molecular volume  

 

71 
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2.2.4 Electrostatic/Quantum-Chemical Descriptor 

The prediction of bioactivity and physicochemical properties of drug candidate compounds has become 

more and more important in modern medicinal chemistry. The correlation between structure and property 

is established by mapping molecular descriptors to numeric values. Obviously, the quality and accuracy 

of descriptors are deterministic for QSAR and QSPR studies. The advance of computer hardware and 

computation theory turns the generation of quantum-chemical descriptor feasible, but practical ab initio 

calculation is based on orbital approximation. Semi-empirical methods may also accelerate the calculation 

of quantum-chemical descriptors.  

Quantum-chemical descriptors encode unique molecular information that is hardly covered by other 

descriptors, including atomic charges, HOMO and LUMO energies, orbital electron densities, 

superdelocalizabilities, polarizabilities, dipole moment and total energies 72.  All of these descriptors are 

constantly employed in modeling bioactivities and various ligand properties. For example, LUMO energy, 

HOMO energy and dipole moment are involved in the prediction of oral drug absorption 73. The 

theoretical atomic charges are involved in modeling congeneric  and  non-congeneric  α1-adrenoceptor  

antagonists 74. In Tuppurainen et al.’s study, electron density is shown to be predictive for mutagenicity 75. 

Atom-atom polarizabilities and molecular polarizabilities contribute to the activity of a diverse set of 

enzyme activators 76. These case studies demonstrate the wide applicability of quantum-chemical 

descriptors in QSAR and QSPR modeling. The descriptors provide additional information at atomic and 

orbital level, which is relatively more accurate than empirical molecular descriptors. And quantum-

chemical descriptors generally have physical meaning. A comprehensive variable selection, or descriptor 

selection, is mandatory to build and refine a QSAR/QSPR model, especially for some unexplored 

properties and novel compound scaffolds.  

2.2.5 Hybridized Descriptors and Molecular Fingerprint 

Molecular fingerprints are probably the most frequently used descriptors in modern QSAR/QSPR 

modeling. Broadly speaking, molecular fingerprint could be a high dimensional categorical or real-value 

vector that encodes a diverse set of structural patterns and derived properties. Mapping chemical 

structures to desired molecular properties is challenging and complicated. One of the difficulties is the 

selection of appropriate descriptors. Molecular fingerprint, a high dimensional descriptor, is originally 

designed to discriminate and screen compounds in a compound inventory. As it encodes a variety of 

structural patterns, fingerprint offers great possibilities to build quantitative prediction models. 
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Nevertheless, the risk also exists due to potential overfitting. Recent publications report the application of 

molecular fingerprints for the prediction of ligand bioactivity, ADMET properties, selectivity, 

physicochemical properties, etc. Fingerprints are also the prevailing descriptor for traditional topics in 

cheminformatics, such as similarity calculation, virtual screening, library design, diversity analysis, etc. 

Majority of the chapters covered in this thesis are related to molecular fingerprints. 

 According to representation, molecular fingerprints can be classified into the fixed-length 

fingerprints and dynamic fingerprints. In the former case, the length of the fingerprint is usually preset, 

and the pattern that each dimension encodes is predefined. The length of the fingerprints ranges from 

hundreds to thousands. For example, the classical MACCS key has 166 bits; Unity fingerprint has 992 

bits. The length of dynamic fingerprint depends on the presented compound library because the number of 

possible patterns may be very large or even infinite. These fingerprints are usually represented in sparse 

arrays, but they are sometimes folded into regular vectors for simplicity. ECFP (extended-connectivity 

fingerprint) from ChemAxon is an example. Each dimension of molecular fingerprints can be binary (0 or 

1) indicating the presence or the absence of a feature, integers indicating the occurrence of a feature, or 

real-value properties. For example, MACCS key is a binary structural key, and LINGO counts the 

occurrence of each present feature.  

Molecular fingerprints can also be categorized by encoded features, including pre-defined structural 

keys, atom environment, atom path, and pharmacophore keys. To generate pre-defined structural keys, 

computer program scans a query compound structure to search for a list of structure patterns. Figure 2-10 

illustrates the scheme of Unity fingerprint in Tripos Sybyl software suite. In Figure 2-10, the compound 

structure is “chopped” into fragments that are defined in a fragment dictionary. These fragments are 

further mapped to different fingerprint “bits” by cyclic redundancy check algorithm. MACCS key 166 

and PubChem fingerprints are also typical examples.  
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Figure 2-10: Illustration of the coding scheme of Unity fingerprint by Tripos.  
Each dimension of the molecular fingerprint represents the presence or absence of predefined 

molecular fragments, following hashing algorithm and CRC algorithm. 
 

 

Atom environment fingerprints are mostly favored in recent publication for its optimal performance. 

These fingerprints describe atoms together with their surrounding environment in a structure. Atoms may 

be differentiated by the hybridization, and environment may be defined by connected atoms. Molprint 2D 

fingerprint 77 and ChemAxon extended-connectivity fingerprint (ECFP) are famous examples. The feature 

in Figure 2-11 can be translated as a sp2 carbon atom that is surrounded by another sp2 carbon atom and 

two aromatic carbon atoms at one-bond distance away, and that also has two sp2 carbon atoms, one sp3 

nitrogen atom, one sp2 oxygen atom and one sp3 oxygen atom at two-bond distance away. In Molprint 

2D, atoms are differentiated by Sybyl atom types. ECFP has a similar concept but discriminates atoms in 

a more detailed level. 

 

 
 

Figure 2-11: A graphical representation of a structure pattern in Molprint 2D fingerprint. 

Figure reference77 
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FP2 fingerprint in OpenBabel and Daylight fingerprint belong to path-based fingerprints. In these 

fingerprints, compound structures are treated as graphs. So atoms are vertices and bonds are edges. An 

“atom walk” is the movement from one atom to another if they are connected by any covalent bond. An 

“atom path” is a trajectory of several “atom walks” without revisiting any bonds. The types of atoms and 

bonds visited in an atom path uniquely define a structure pattern. Pharmacophore fingerprints translate 

atoms in a structure into pharmacophore tags, such as H-bond donor, H-bond acceptor, hydrophobic 

group, formal positive charge, formal negative charge, and etc. Pharmacophore fingerprints generally 

encode the pharmacophore groups in a structure and distance between them. PharmPrint 78 and TGT 

fingerprint belong to this category. The changes in 3D conformation generally affect pharmacophore 

fingerprints, opposed to other 2D fingerprints.  

     Many free computer programs are available to generate molecular fingerprints, such as Molprint 2D, 

FP2, MACCS key, PubChem fingerprints. Molecular Operating Environment (MOE) and Discover 

Studio are two popular proprietary drug design programs for fingerprint generation. The successful 

extended-connectivity fingerprint is implemented in JChem module from ChemAxon. Some fingerprints 

need to be generated by in-house scripts, e.g. PharmPrint. Researchers may also design structure patterns 

by SLN and carry out substructure search to generate customized fingerprints.  

Commonly, any high dimensional descriptor vectors that are sufficient to differentiate compound 

structures are molecular fingerprints. This coding strategy accelerates similarity calculation and 

substructure search for large chemical databases. Combined with robust machine learning algorithms, 

fingerprints have become powerful descriptors applied in almost all the fields in QSAR/QSPR modeling. 

Table 2-10 lists some of the application of molecular fingerprints that are introduced in this section. 
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Table 2-10: Example applications of molecular fingerprints 

 

Fingerprints Application Reference 

 

 

MACCS 

Similarity search, virtual screening on 

ChemBL 

79 

Cytotoxicity Prediction 80 

Drug-likeness 81 

ADME property 82 

 

 

Daylight 

Structure ranking and virtual screening 83 

Drug/compound clustering 84 
85 

Classification of kinase inhibitors 86 

Generation of diverse screening library 87 

 

 

ECFP 

Lipophilicity 88 

Melting Point and Aqueous Solubility 89 

QSAR for kinase inhibition 90 

Prediction of biological target 91 

TGT Structure ranking and virtual screening 83 

Virtual screening and QSAR 92 

2.3 STATISTICAL MODELING AND MACHINE LEARNING 

Statistical modeling and machine learning tools, the bridge that connects molecular descriptors and 

molecular properties, are an important component in modern QSAR/QSPR studies. Data mining on the 

vast collection of descriptors determines the optimal descriptor subset that correlates well with properties 

of interest. In addition, parameters in QSAR/QSPR models are solved according to machine learning 

algorithms and numerical optimization. Besides quantitative and qualitative prediction, computational 

learning theory, a subfield in machine learning, guides researchers in model selection and the estimation 

of generalization error. This section highlights classical machine learning algorithms, model hypotheses, 

and applicability in cheminformatics.  
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2.3.1 Linear Regression 

Linear regression assumes that one or more explanatory variables (x) have linearly additive contribution 

to a response scalar variable (y). However, a normally distributed noise in y cannot be explained by x. To 

express this mathematically, 

y = β0 + �βixi

K

i=1

+ ε 

ε is an error term, and it follows normal distribution; β is coefficient. The predicted y, denoted by y�, 

is equal to y� = β0 + ∑ βixiK
i=1 . The establishment of a linear model is the parameterization of  β based on 

training data. Once β is solved, the prediction of y, y�, can be easily obtained from x. The motivation of 

solving β is to maximize the likelihood of observations, or to minimize the squared sum of error ε. Let 

matrix X represent the training set. Each row of X is a single observation, and each column corresponds 

to variable xi. Thus, a training set that contains K dimension variables and N samples can be represented 

by matrix, X, which has N rows and K + 1 columns. The estimation of 𝛃 is 𝛃� = (X′X)−1X′𝐲, where 𝛃, 𝐲 

are coefficient vector and response vector. The most basic requirement of solving a linear model is that 

matrix must have a full rank. In other words, there must be at least K + 1 linearly independent samples to 

solve 𝛃.  

Linear regression has been used to model physicochemical properties and ligand bioactivities. For 

example, the famous Free-Wilson QSAR model 93: 

LD50 =  μ  + a[H]  + a [CH3]   + b[N(CH3)2]  + b[N(C2H5)2] 

Free and Wilson are the pioneers in QSAR research, and their Free-Wilson model initiated a new 

branch of drug discovery and suggested a quantitative approach for structure-activity study. In this 

equation, bioactivity is the sum of a bias value, μ, the contribution of H group or CH3 group at R1 

position and the contribution of N(CH3)2 or N(C2H5)2 at R2 position. This model can be easily 

transformed into linear regression analysis, in which a four-element binary vector x represents the 

presence and absence of the functional groups at R1 and R2 position, and coefficient 𝛃 represents the bias 

value and the contribution of each group. 

Linear regression analysis relies on a few assumptions, including linearity, normally distributed 

residual and constant variance. Even though the criteria do not necessarily hold in all occasions, the 

numerical optimization still minimizes the discrepancy between observed value and predicted value. 

Running some diagnosis on the regressor may improve fitting. For cheminformatics applications, variable 

transformation is a common remedy. For example, transforming bioactivity into logarithm scale is a 

popular practice in QSAR modeling. Another challenge in linear regression is variable selection. The high 
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degree of freedom tends to over-fit the training data, but yields poor performance in future prediction. 

Ridge regression, the Lasso, and stepwise regression are the techniques for bias-variance tradeoff.   

2.3.2 Logistic Regression 

Linear regression introduced in the previous section is a popular technique to predict real-value response. 

Sometimes, the desired response may be categorical label, such as active or inactive, soluble or insoluble. 

Besides predicting real-value response, linear regression could also be carried out for classification by 

assigning symbolic numbers to different categories. This approach however presents a few challenges to 

the assumptions of linear regression: first, the prediction may be inadmissible due to some extreme 

variables, x; second, the distribution of categorical labels is expressed as a function of explanatory 

variables (x), so the variance is not uniform or follows normal distribution. These impair hypothesis 

testing of coefficients, construction of confidence interval, variable selection, etc., as all the inferences 

assume normality.  

Logistic regression is regarded as generalized linear regression. It models the conditional probability 

of observing y, given its explanatory variables. It expresses the logit of the probability, or the log odds, as 

a linear combination of x: log � P(y)
1−P(y)

� = β0 + ∑ βixiK
i=1 . Thus, 

P(Y = y|X) =
exp (β0 + ∑ βixiK

i=1 )
1 + exp (β0 + ∑ βixiK

i=1 )
 

With one dimension variable x, logistic regression produces a sigmoid curve, as shown in Figure 2-12. 

The predicted category is the one that has larger than 0.5 probabilities.  

 

 
 

Figure 2-12: Sample sigmoid curve produced from logistic regression 
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The solution to coefficient vector 𝛃, has no analytical form. Instead, 𝛃 is found numerically by 

maximizing the likelihood: 

𝛃� = argmax
𝛃

�(
exp (β0 + ∑ βixiK

i=1 )
1 + exp (β0 + ∑ βixiK

i=1 )
)yi(

1
1 + exp (β0 + ∑ βixiK

i=1 )
)1−yi

N

i=1

 

A popular algorithm of finding 𝛃� is called reweighted least square, which is an iterative procedure. 

And the convergence is shown to be fast. 

Linear regression can be used to predict the real-value bioactivity, while logistic regression is 

designed to predict binary outcome. For example, Cronin et al. 94 uses logistic regression to classify 

compounds according to whether they have antibacterial activity. In their study, multiple physicochemical 

descriptors are involved in logistic regression model. As discussed in their article, logistic regression 

develops “interpretable and transparent” models. 

2.3.3 Partial Least Square 

Comparative Molecular Field Analysis (CoMFA), developed by Cramer et al and published in JACS in 

1988, is probably the earliest and most influential modeling method in QSAR, especially in 3D QSAR. 

After a decade, CoMFA and its derivative methods are still frequently seen in major cheminformatics 

journals. At the beginning stage, Tripos Sybyl implemented the CoMFA methodology and gained 

significant market share in commercial computer-aided drug design platform. As a renovated QSAR 

technology, its success is mainly attributed to a novel statistical method: partial least square regression. 

All the QSAR algorithms correlate activity with structure descriptors, and CoMFA is not an exception. 

The descriptor in CoMFA is the steric energy and electrostatic energy in an aligned 3D grid. According to 

a set of training compounds and their labeled activity, CoMFA figures out favored field energy for ligand-

receptor interaction. Figure 2-13 shows a graphical illustration of a developed CoMFA model. 
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Figure 2-13: A graphical representation of molecular field component in CoMFA studies.  
A CoMFA model depicts favored and disfavored functional groups in 3-D space. 

 

Linear regression and logistic regression are inappropriate techniques in CoMFA. In CoMFA, hundreds 

of energy field values are calculated in a 3-dimensional grid, but labeled training compounds are usually 

less than a hundred. Linear regression cannot solve the coefficients when the degree of freedom is higher 

than the number of constraint. In other words, the variable matrix, X, is not full rank. Before the advent of 

partial least square regression (PLSR), principal component analysis (PCA) was a common dimension-

reduction technique. PCA generates a few components that are linear combinations of original descriptors 

in order to capture the major variance in the distribution. Nevertheless, the major variance does not 

necessarily correlate with some response of interest. For example, minor modification to functional 

groups may induce significant change in bioactivity, but ligands in different scaffold may have similar 

biological profiles. On the contrary, PLSR calculates the principal components that correlate well with 

response values. Anyhow, PCA is in the domain of unsupervised learning, while PLSR is a supervised 

learning algorithm. 

Partial least square regression (PLSR) 95 approximates the original matrix by the hidden variable T: 

FTCY
ETPX

+=
+=

'
'

 

where X is mn× descriptor matrix, T is ln× score matrix, P’ and C’ are ml × and 1×l loading 

matrices, E and F are error terms. In this case, Y is only a vector with selectivity label or activity ratio for 

each compound. T is solved through iterative procedure. 

For each round k, k=1,2…l 

1. Find vector kw  that maximizes the covariance and score vector t: 
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2. The best approximation of matrices X and Y is 'kpkt  and 'kckt  through 

'min ptXp k
p

k −= ; 'min ctYc k
c

k −=
 

kp  will be the kth column of matrix P , kc  will be the kth column of matrix C and kt will be the kth 

column of score matrix T 

3. Replace matrix X and Y by their residuals, which are the difference between original X, Y 

and their approximation by kp , kc  and kt  

The final regression equation is y=x’b where b=W(T’XW)-1T’y . b is solved by minimizing the 

training error 2''min TCWvTP
v

− and b=Wv. The only variable l, the number of components, can be 

calculate through leave-one-out cross validation. 

The invention of PLSR is a “landmark” in statistics as it is probably the first algorithm motivated by 

pharmaceutical science, and it plays a central role in CoMFA. The theory on force field and field energy 

calculation was well established before CoMFA was developed. It was PLSR that turned modeling 

bioactivity through field energy practical. From CoMFA, the importance of quantitative modeling 

techniques can be easily observed.  

2.3.4 Naive Bayes Classifier 

Bayes' theorem states that the posterior probability is proportional to the prior and likelihood: 

P(Y = y|𝐱 = x1, x2, … , xK) =
P(𝐱 = x1, x2, … , xK|Y = y)P(Y = y)
∑ P(𝐱 = x1, x2, … , xK|Y)P(Y)Y

 

or  

P(Y = y|𝐱 = x1, x2, … , xK) ∝ P(𝐱 = x1, x2, … , xK|Y = y)P(Y = y) 

P(Y) is the prior, P(x| Y) is likelihood and P(Y| x) is posterior likelihood.  

Bayes’ theorem enables us to calculate the probability of Y given its explanatory variables x, based 

on the prior and likelihood. Similar to logistic regression, this theorem is suitable for ligand-based drug 

design, such as virtual screening or ligand classification. Naive Bayes classifier imposes independence 
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assumption on each dimension of descriptor vector x, which notably simplifies the calculation of 

likelihood. By applying the independence assumption, 

P(𝐱 = x1, x2, … , xK|Y = y) = �P(𝐱i = xi|Y = y)
K

i=1

 

Where 𝐱i is the ith element in vector x. and 

P(𝐱i = xi|Y = y) =
∑ I�Xj,i = xi, Yj = y� + aN
j=1

∑ I(Yj = y)N
j=1 + a + b

 

I is an indicator function, and a, b are pseudo-counts to avoid zero probability. Although the 

independence assumption is not always accurate, the estimation of likelihood, especially for high-

dimensional variable x, becomes feasible. Otherwise, the sample sizes required for likelihood calculation 

grows exponentially as the number of elements in x increases. This is also called “curse of 

dimensionality”. Naive Bayes classifier decouples the conditional probability and the distribution of each 

variable dimension is approached independently. Although the independence assumption impairs the 

precision of posterior probability, the goal of Naive Bayes classifier is to predict the correct class or label. 

Correct predictions can be still reached as long as the conditional probability of the correct class is higher 

than the one of incorrect ones. Therefore, Naive Bayes classifier is a flexible and robust classification tool 

in practice.  

The success of Molprint 2D descriptor, proposed by Bender et al. 77, is partially due to their software 

package that implements Tanimoto similarity calculation and Naive Bayes classifier for ligand screening. 

They systematically evaluated the performance of Molprint 2D fingerprint and Naive Bayes classifier by 

various classes of ligands 96. Naive Bayes classifier is an appropriate modeling tool in this application. 

The independence assumption on Molprint 2D fingerprint is approximately correct as the presence of one 

feature is relatively irrelevant to another. This does not mean Molprint 2D features in a ligand are 

absolutely independent. For example, atom B is in the environment of atom A, while atom A is also in the 

environment of B. Thus, the presence of a feature centered at atom A has positive contribution to the 

likelihood of the presence of the feature centered at atom B. The molecular weight of small organic 

ligands is usually limited, especially for drug-like compounds. The number of Molprint 2D features is 

equal to the number of heavy atoms in a chemical structure. Therefore, the present Molprint 2D features 

reduce the chance of observing other features. Nevertheless, these influences are only theoretical and 

ignorable in real-world computation because there are more important factors that we should take care of, 

such as the pseudo counts. 

The number of possible Molprint 2D patterns is almost infinite. A regular virtual screening library 

may generate a dictionary that defines thousands of three-bond-length Molprint 2D features. In this case, 

meaningful models cannot be expected from logistic regression or linear regression because of overfitting. 
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On the contrary, Naive Bayes classifier is a suitable choice as discussed above. Furthermore, it can 

provide degree of confidence in terms of probability. Last but not least, feature selection scheme is 

natively incorporated in this algorithm, resulting in transparent and interpretable probabilistic models.  

2.3.5 Artificial Neural Network 

In 1970s, research on artificial intelligence or machine learning was almost equivalent to studying 

artificial neural network (ANN), just like that CoMFA was almost equivalent to QSAR in 1990s. The 

establishment of ANN theories initialized another branch of machine learning methodology that used to 

be dominated by statistical modeling. Statistics means probability and inference. Distribution and 

probability exist in every corner of statistics. ANN, representing the opinions of computer scientists, maps 

explanatory variables directly to response variable. Nowadays, ANN is still a popular method in OCR, 

robotic science, clustering, etc. Figure 2-14 shows the overall paradigm of traditional neural network (NN) 

models. ANN model consists of input layer, hidden layer(s), and output layer. Each layer has a set of 

nodes, or neurons, to receive input, process signal and calculate output.  In Figure 2-14 (A), explanatory 

variables x are passed to the network through the input nodes. Every node in downstream layer receives 

the input (x) from all the nodes from the upstream layer. In Figure 2-14 (B), each of the input value is 

weighted by value w, and a linear combination of the input value becomes the incoming activation of the 

downstream node, i.e. the output of a hidden node j is  

1
1+e−zj

  where zj =  ∑ wijxi + δN
i=1  

Note that each hidden note possesses an independent set of weights w. The output of hidden layer 

nodes becomes the input of downstream nodes. The signal passes through the network structures until the 

output layer node is reached. The output node finally predicts the response value. It is clear that the 

parameters in a neural network given its structure are the weights associated with hidden nodes and output 

node(s). Back-propagation is a common algorithm to minimize the square loss of training data by 

gradually adjusting the weights.    
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A B 

 

Figure 2-14: The paradigm of artificial neural network by Sharma. 
Figure adopted from reference97 

 

 

Aoyoma et al. may be the forerunners who bring ANN in to the QSAR world 98. On-line training and 

multi-class classification are major advantages of ANN. Its flexibility and established learning theories 

achieve its popularity in computer science. Nevertheless, ANN may not be the appropriate tool in drug 

discovery. First, the determination of network structure is time-consuming and the structure varies from 

application to application. The high degree-of-freedom in model complexity demands sufficient training 

data for reliable prediction performance.  

2.3.6 Classification and Regression Tree 

Trees are straightforward and effective data-mining technique for both classification and regression. 

Figure 2-15 plots a sample classification tree and corresponding 2D classification scheme. Green color 

indicates safety and yellow color indicates risk. Deeper color means higher prediction confidence in the 

region. The blue boxes indicate the splitting criteria, and the red boxes represent local classification 

hypotheses together with confidence level. By traversing queries through the tree, from root to leaf 

following the splitting rules, predictions are made according to local decision hypotheses. This sample 

tree utilizes two variables, BMI and age, to predict the risk of cardiovascular disease. In fact, the 

classification tree partitions the age-BMI space into disjoint regions, as illustrated in Figure 2-15. 

Separate classification hypotheses are derived for each region in order to achieve better classification 
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accuracy and higher confidence level. The selection of splitting criteria targets at minimizing the impurity 

and reducing the response variance of each region. Technical details on how to derive a tree are given in 

Chapter 4, LICABEDS.  

 

 

 

 

Figure 2-15: A sample classification tree for the prediction of the risk of cardiovascular disease.  
The left figure displays a decision tree classifier, which partitions the AGE-BMI space in the right 

figure. 

 

 

In spite of the simple idea, trees are shown to be quite effective in many data-mining applications. They 

are also widely used in different areas of computer-aided drug design, such as virtual screening99, drug-

likeness prediction100 and ligand property prediction 101. One advantage of tree algorithm is its simplicity 

and flexibility. Tree algorithm has little mathematical assumptions compared to linear regression, logistic 

regression, and Naive Bayes classifier. Tree can be designed for both classification and regression 

purposes. The selection of splitting criteria effectively eliminates irrelevant features, so that we can derive 

a tree model from limited high-dimensional training data. Tree is a non-linear model. Its flexibility may 

handle complicated data patterns that present challenges to linear models. 

The disadvantage of tree algorithm coexists with its advantage. First, trees are supposed to be 

“pruned”, otherwise they can “grow” until all the training data is perfectly fit. Tree pruning is a procedure 

to control overfitting. At the same time, this approach also limits the number of predictive variables in a 

tree structure. Second, tree structures are derived from training data in a greedy manner because the 

search for optimal tree structure is proven to be NP-complete problem. “Greedy” trees are vulnerable to 
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noise in the training data. Little variance in the training data may drastically change the tree structure, 

especially the root nodes.  

2.3.7 Support Vector Machine 

Because of its robustness, Support Vector Machine (SVM) is probably the most successful and popular 

method in binary classification. SVM classifiers can be either linear or non-linear, depending on the 

choice of kernel function. The application domain of SVM has been further extended to regression, 

ranking, structured prediction, etc. Its elegant numerical optimization has guided many variant models in 

digital image processing, probabilistic graphical model, computational genomics, etc. The major 

components in SVM object function are error term and margin term. Error term corresponds to training 

error and margin term represents model robustness. The constraint optimization in SVM can be further 

transformed into quadratic programming, which guarantees the convexity and convergence to the global 

optimal. The outline of SVM is given in this section, and more details are described in Chapter 5, 

SUPPORT VECTOR MACHINE FOR LIGAND CLASSIFICATION. 

In SVM, a set of training samples {xi, yi} derive a decision boundary by minimizing empirical 

generalization error, with xi ∈ RK being the explanatory variables and yi ∈ {+1, -1} being its label. A 

linear decision boundary or decision surface can be defined as wTx + b, where w is the normal to the 

decision surface, x is the descriptor vector, and b is a bias. And the classifier can be formulated as ƒw,b(x) 

= sign(wTx + b). Non-linear case will be discussed in Chapter 5.Any decision surface that satisfies yi 

(wTxi + b) ≥ 1 ∀i, can perfectly separate the training data. SVM assumes that the optimal decision surface 

has the largest distance to the nearest data points of both categories, i.e. margin maximization. Figure 

2-16 demonstrates this concept. Skipping some technical details, the margin optimization problem can be 

formulated as 

 

Minimize w,b ‖𝐰‖2           

Subject to yi (wTxi + b) ≥ 1 ∀i, i = 1, …, n 
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Figure 2-16: SVM, maximum margin classifier, CMU 10-701 2008 spring. 

 

 

This constraint optimization can be further transformed into the dual problem of the Lagrangian 

Maximize Lα = ∑ 𝛼i −
1
2
∑ 𝛼i𝛼j𝑦i𝑦j〈𝐱i, 𝐱j〉n
i,j=1

n
i=1                   

Subject to ∑ 𝛼i𝑦i = 0n
i=1  with 0 ≤ αi ≤ C ∀i, i = 1, …, n 

Once we have αi, vector w can be recovered by equation, w =∑ 𝛼i𝑦i𝐱in
i=1 . 

The introduction of support vector machine into drug discovery starts a new era. Machine-learning-

based QSAR modeling becomes an alternative choice to CoMFA. SVM is reported in many 

cheminformatics applications, including but not limited to screening for bioactive compounds 102 103, drug 

design for orphan receptor 104, selectivity prediction 105, active learning in high-throughput screening 106, 

structure ranking 107 and calculation of docking score 108. 

The advantage of SVM is robustness and flexibility to build linear and non-linear models. SVM 

models generally have decent performance even if not the best. The multi-class classification is still an 

active research subject for SVM. Also, the choice of non-linear kernel function and parameters 

complicates SVM model training. The training of SVM models is an iterative procedure, so its time 

complexity is significantly higher than the statistical methods introduced earlier. 
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2.3.8 Ensemble Methods 

“Weak learners” may hardly capture the versatile distribution patterns in real life. Combining multiple 

models to attain better performance is the motivation of ensemble learning methods. An important chapter 

of this thesis, LICABEDS, describes an ensemble learning algorithm for ligand classification. Theory 

shows that any better-than-random-guess learners can be combined to build a strong learner. Besides 

support vector machine, ensemble methods become another interesting research topic in machine learning. 

Adaptive boosting and bootstrap aggregating are representative ensemble methods. 

Adaboost, short for adaptive boosting, systematically develops an ensemble model by assigning 

weights to weak learners. Thorough discussion on this method can be found in Chapter 4. Bagging, 

another name for bootstrap aggregating, trains each weak learner using a randomly drawn subset of the 

whole training set with replacement. Weak learners in bagging ensemble model vote equally for the 

outcome. Famous “random forest” belongs to this category.  

The choice of weak learner is influential in ensemble methods. Because of lengthy computation time, 

some fast algorithms are preferred as weak learners, such as decision trees, linear discriminant analysis. 

Some studies show that ensemble methods exhibit better performance than SVM, ANN, Naive Bayes 

classifier. The ensemble nature allows the estimation of variance and confidence band, but its 

optimization stems from robust assumptions. As emerging techniques, their development and applications 

will catch researchers’ attention. 

2.3.9 Miscellaneous 

Some successful machine learning and statistical models for QSAR/QSPR are summarized above. The 

advance of machine learning in a decade builds far more algorithms than these, like K Nearest Neighbor, 

Fisher Linear Discriminant Analysis, Genetic Algorithm, to name a few. No algorithm is always superior 

to another in all aspects. Depending on the applications, hypothesis, complexity, and available training 

data, choosing the appropriate technique is the foundation of successful modeling. Examples in Figure 2-3 

and Figure 2-4 are provided to demonstrate this point.  

An overview of QSAR/QSPR theory is covered so far. Biologists, chemists, and pharmacologists who 

are not familiar with statistics and computer science need some automated tools for QSAR/QSPR 

modeling. Tripos Sybyl, Molecular Operating Environment, Discovery Studio, and Schrödinger are well-

known drug discovery platforms, implementing the whole pipe line of QSAR/QSPR modeling. Table 
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2-11 lists some commercial QSAR software products. These commercial products are highly automated, 

including management of compound library, descriptor generation, model training, validation, prospective 

prediction, and visualization. This is definitely an advantage for most users, but the flexibility and 

transparency are their disadvantage, even if these platforms provide scripting language to customize 

computation. As a scientific platform, Accelrys’ Pipeline Pilot is another choice for QSAR/QSPR 

modeling. In Pipeline Pilot, users design the whole experiment by connecting functional modules and 

controlling data flow. Nevertheless, this approach heavily relies on the availability of published modules. 

Researchers who have sufficient IT techniques may customize descriptor generation and statistical 

modeling. All of major drug discovery platforms are capable of generating and exporting a large 

collection of molecular descriptors. For example, Unity fingerprint in Sybyl, ECFP in Discovery Studio, 

pharmacophore fingerprints in MOE. Software development kits, such as OpenBabel, ChemAxon, 

OpenEye, CDK, can be also used to generate molecular descriptors.  

 

 

Table 2-11: Machine learning algorithms in major drug discovery platforms 

Software Platform Algorithms Product Name 

Tripos Sybyl PLSR CoMFA, HQSAR 

Molecular Operating Environment 

(MOE) 

Tree, Linear Regression, 

PCA, PLSR 

QuaSAR 

Discovery Studio ANN, Bayesian model, 

PLSR, Linear Regression 

QSAR and Library Design 

Schrödinger PLSR, Linear 

Regression, PCA 

Strike 

Field-based QSAR 

 

 

As to machine learning and statistics software, SPSS is a famous interactive platform implementing 

routine algorithms. WEKA implements many machine learning algorithms with graphical interface 

support. R, Matlab, S-PLUS and SAS are powerful statistical analysis software that delivers scripting 

languages. Most of the machine-learning algorithms are implemented as package importable to these 

platforms, such as LibSVM. Sometimes, modeler may seek implementations from third party, for 

example, the preference ranking algorithm in SVMLight package (http://svmlight.joachims.org/). 

  

http://svmlight.joachims.org/�
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3 AIMS OF THE STUDY 

 

The aims of the study cover the development and implementation of cutting-edge machine learning and 

statistical modeling algorithms for handling large-scale cheminformatics data in order to guide drug 

discovery programs and boost productivity. The more specific aims of this dissertation include: 

1. Developing general-purpose linear and non-linear machine learning classifiers for the prediction 

of a variety of molecular properties that influence drug-likeness of candidate compounds 

(LiCABEDS and Support Vector Machine); 

2. Evaluating their performance on diverse pharmacological properties and validating the 

predictions in prospective screening (ligand functionality, blood-brain-barrier passage and ligand 

selectivity); 

3. Designing high-throughput parallel computing strategy to accelerate existing data mining 

algorithms in order to extend their application to terabyte compound database (GPU computing); 

4. Proposing and justifying compound acquisition approach to construct structurally diverse 

screening libraries that could potentially enhance hit rate and enrichment factor.  
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4 LICABEDS 

 

 

 
 

LiCABEDS is the acronym of Li

  

gand Classifier of Adaptively Boosting Ensemble Decision Stumps. It is 

an instance of adaptive boosting, and it belongs to ensemble methods in supervised learning. This chapter 

is focused on the description of LiCABEDS algorithm, its implementation, and applications. First, 

mathematical concepts of LiCABEDS are provided, which is followed by a case study on modeling 5-

HT1A ligand functionality. LiCABEDS is implemented as user friendly software that integrates data 

import/export, modeling training, prediction, etc. The software specification is given in the second section. 

Then, another case study, the prediction of CB1/CB2 ligand selectivity using LiCABEDS, demonstrates 

its effectiveness in quantitative structure-property relationship. This chapter ends with brief results for 

predicting ligand blood-brain-barrier passage. 
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4.1 LICABEDS AND MODELING LIGAND FUNCTIONALITY 

Advanced high-throughput screening (HTS) technologies generate great amount of bioactivity data, and 

this data needs to be analyzed and interpreted with attention to understand how these small molecules 

affect biological systems. As such, there is an increasing demand to develop and adapt cheminformatics 

algorithms and tools in order to predict molecular and pharmacological properties based on these large 

datasets. In this section, a novel machine-learning-based ligand classification algorithm, named Ligand 

Classifier of Adaptively Boosting Ensemble Decision Stumps (LiCABEDS), is reported for data-mining 

and modeling of large chemical datasets to predict pharmacological properties in an efficient and accurate 

manner. The performance of LiCABEDS was evaluated through predicting GPCR ligand functionality 

(agonist or antagonist) using four different molecular fingerprints, including MACCS, FP2, Unity and 

Molprint 2D fingerprints. Studies showed that LiCABEDS outperformed two other popular techniques - 

classification tree and Naive Bayes classifier - on all four types of molecular fingerprints. Parameters in 

LiCABEDS, including the number of boosting iterations, initialization condition, and a “reject option” 

boundary, were thoroughly explored and discussed to demonstrate the capability of handling imbalanced 

datasets, as well as its robustness and flexibility.  In addition, the detailed mathematical concepts and 

theory are also given to address the principle behind statistical prediction models. The LiCABEDS 

algorithm has been implemented into a user-friendly software package that is accessible online 

at http://www.cbligand.org/LiCABEDS/.  

4.1.1 Introduction 

As a complement to modern high-throughput screening, one of the primary goals of virtual screening 

and cheminformatics techniques is to explore the enormous chemical and biological properties in a time-

efficient manner as well as to help reduce the cost of experimental screening9-11. In particular, great 

emphasis is placed on the “drugability” or “drug-likeness” of compounds using cheminformatics tools in 

the early stages of drug development, with the hope of increasing the probability of “lead” compounds, or 

their derivatives, to pass through the later phases of drug clinical trials12.  

Despite numerous molecular properties and various mathematical models, the prediction of ligand 

binding activity and biological properties can be addressed by two types of approaches: a classification 

model for categorical response and a regression model for continuous response. For example, some 

pharmaceutical properties, such as mutagenicity, can be modeled by ligand classification109. To build up a 

http://www.cbligand.org/LiCABEDS/�
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quantitative structure-property relationship (QSPR) model, pattern recognition methodology can be 

applied to map molecular descriptors to continuous value or categorical value via regression or 

classification 19. These molecular descriptors are usually binary or continuous vectors describing various 

aspects of molecular attributes or structural patterns. Many ligand properties pertaining to drug discovery 

have been successfully modeled with hundreds of molecular descriptors or fingerprints through statistical 

or machine learning techniques110-112.  As one of the representative regression models, Comparative 

Molecular Field Analysis (CoMFA)13 applies partial least square regression to make predictions from the 

principal components that are linear combinations of electrostatic and steric energy fields at 3D grids. 

CoMFA was successfully applied in the prediction of membrane flux113, modeling structure-

pharmacokinetic relationships114 and antagonist binding affinities at cannabinoid receptor subtype115. A 

CoMFA model was also developed to distinguish 5-HT1A agonists and antagonists116, which is also one of 

the focuses in this section. Another classification technique, Naive Bayes classifier, has also been used to 

model quantitative structure-selectivity relationships117. 

Despite the advance of cheminformatics methodology, it remains a challenge to develop a robust, 

reliable, and interpretable ligand classifier to tackle different scenarios in computer-aided drug design. 

Although any regression method like CoMFA can be adapted as a ligand classifier, such an approach 

often suffers from overfitting due to the model complexity of the regression method. In addition, the 

ability to find a 3D bioactive conformer remains as one of the limits 14. Many existing modeling methods 

may require researchers to perform variable selection. In practice, variable selection is still a complicated 

procedure that ultimately has a large effect on the final predictive model. Free parameters are manually 

specified in most computational models, for example, the number of components in the CoMFA method. 

Besides, cross-validation is often carried out to find optimal values of those parameters, but this practice 

could be computationally inefficient, and its performance also heavily relies on the choice of cross-

validation datasets. 

Thus, reliable and robust ligand classifiers are needed to aid scientists and researchers in discovering 

compounds with desired properties in both the lead discovery as well as the drug development process. 

The adaptive boosting algorithm, or Adaboost, introduced by Freund and Schapire118, is a general method 

used to produce a “strong” classifier by combining a series of “weak learners”. Sharing certain 

resemblance with the support vector machine (SVM) algorithm, Adaboost is also a maximum-margin 

classifier and tends not to overfit the training data119. Advantageously, the number of boosting rounds is 

the only essential parameter in Adaboost training, which simplifies the computational process of machine 

learning algorithms. In spite of the advantages, this algorithm has rarely been applied and discussed in 

drug discovery. In this study, a novel ligand classifier, LiCABEDS, was proposed and implemented by 

adaptively boosting sets of decision stumps based on 2D molecular fingerprints. In the established 
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algorithm, important features are automatically selected and weighted accordingly to build “weak 

learners” in model training. The performance and the characteristics of our novel algorithm are 

demonstrated and tested through the application on modeling ligand functionality for serotonin receptors 

or 5-hydroxytryptamine (5HT) receptors, belonging to an important family of G protein-coupled receptors 

(GPCRs). In addition, across-target studies indicate the potential application of LiCABEDS on orphan 

receptors. This section also describes the detailed mathematical concepts of the LiCABEDS algorithm. It 

is anticipated that LiCABEDS, as a general-purpose ligand classifier, can be applied to model more 

biochemical and pharmacological properties. The model development is free of conformation search and 

is readily automated with the robustness of 2D molecular fingerprints. Its performance and application are 

described below. Finally, the algorithm is implemented in a freely available and user-friendly software 

package, allowing the easy importing of datasets and model development.  The fully functioning software 

package is available online to the scientific community. 

4.1.2 Methods, Materials and Calculations 

The detailed mathematics concepts of Ligand Classifier of Adaptively Boosting Ensemble Decision 

Stumps (LiCABEDS) and its application on modeling ligand functionality are described below. As case 

studies, LiCABEDS was first used to model the ligand functionality for the 5HT-subtype GPCR families 

by predicting a given ligand to be either an agonist or an antagonist. For a parallel study, the performance 

of LiCABEDS was compared to two other popular data-mining methods: classification tree120 and Naive 

Bayes classifier121.  The underlying theory of these two methods is also introduced in this section. 

 

 

4.1.2.1 Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps Adaptive 

boosting, initially introduced by Yoav Freund and Robert Schapire 118, is a general machine learning 

technique to create a strong classifier by combining a series of “weak learners” for improving the 

accuracy of prediction. In LiCABEDS, “decision stumps” are designed to be the weak learners. As 

illustrated in Figure 4-1, the “decision stump” denotes a heuristic classification hypothesis that a 

compound will be classified as an agonist (+1) if the ith bit of fingerprint ( ix ) is equal to a target value 

(t); or as an antagonist (-1), otherwise. 

 

http://en.wikipedia.org/wiki/Yoav_Freund�
http://en.wikipedia.org/wiki/Robert_Schapire�
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            A      B 

 

Figure 4-1: Graphical illustration of LiCABEDS 
(A) Illustration of a “decision stump based on molecular fingerprint. (B) Illustration of the 

composition of LiCABEDS. 

 

 

Instead of using the graphic representation, a “decision stump” can be formulated by a function: 

1)(2),,( −== txItixy i , where I is an indicator function,  I(Z) = 1 if the statement Z is true; I(Z) = 0, 

otherwise. x is the molecular fingerprint vector, i is the index of the fingerprint, and t is the target value. 

For example, if ix , the ith bit of fingerprint, is equal to the target value t, then )( txI i = = 1 and ),,( tixy = 

1 (agonist). If ix , the ith bit of fingerprint is different from t, then )( txI i = =0 and ),,( tixy = -1 

(antagonist). 

Different from many other machine-learning algorithms, LiCABEDS, as an ensemble method, is 

designed to achieve stronger classification power by boosting many “weak” classification hypotheses. As 

illustrated in Figure 4-1, a series of “decision stumps” with corresponding weights am vote for the final 

prediction, which can be formulated as the weighted summation of the outcome of every “decision 

stump”:  

)),,((∑=
M

m
mmmmM tixyasignY

 
    (4-1) 

1)( =zsign if 0>z , or -1 otherwise. The unknown variables, am, im and tm, for each weak classifier m 

can be “learned” from training datasets using the following algorithm: 
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1. Initialize the sample weights for each training compound n, NnNwn ,...,1,/1 == , N is the 

total number of training compounds. 

2. For each round of calculation m = 1,…,M 

 Find mm ti , for weak learner my  by minimizing the weighted error function 

∑ ≠=
=

N

n
nmmnmn

ti
mm ltiXyIwti

mm 1,
)),,((minarg),(                     (4-2) 

where argmin is the function to return the arguments which minimize the object 

function, nX   is the descriptor vector for compound n; nl = 1± is the label of compound 

n. mm ti ,  uniquely define a “decision stump”, and their optimal values can be found by 

enumerating all possible combinations of mm ti , . 

Evaluate the quantities: 

∑

∑

=

=

≠
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n

N
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w
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1
)),,((

ε ;
ε
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=
1lnma

            (4-3)
 

am becomes the weight for the “decision stump” m. Then update the weights of 

training compounds for next round of calculation: 

))),,((exp( nmmnmmnn ltiXyIaww ≠←                        (4-4) 

 

 

The number of training steps, M, is the only parameter that must be specified manually in the algorithm. 

Cross-validation is one of the options to specify the optimal value of M, Moptimal. Training error is steadily 

minimized as M increases. While the training algorithm aims to minimize the exponential loss function,  

boosting algorithm may have potential to overfit the training data as pointed by others 122. Despite such 

potential, Freund and Schapire have shown the underlying mechanism that adaptive boosting does not 
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often suffer from overfitting 119. Discussion is given later on the difference between a large value of M (by 

default) and Moptimal in order to address the overfitting issue. 

Training compound datasets may potentially be overwhelmed by one category of training samples. In 

this case, the majority class is usually favored in the prediction. To minimize the effect of 

disproportionate training samples in each category, balanced class weight can be set as an alternative 

initialization condition to equal initial weight. In other words, the total weights for each class are equal at 

the initialization step: ∑∑
==

−===
N

n
nn

N

n
nn lIwlIw

11
)1()1( . For example, all the labeled agonists in the 

training set may have initial weights 1/1 +N , where 1+N  is the total number of agonists in the training 

data. Similarly, all of the antagonists may have an initial weight 1/1 −N . 

Heuristically, the absolute value of ∑=
M

m
mmmm tixyaA ),,(  indicates the degree of confidence in the 

prediction, because a relatively large population of “decision stumps” vote for the corresponding class. 

On the other hand, a low absolute value of A indicates uncertainty in the prediction. Better prediction 

accuracy is anticipated by avoiding uncertain cases, which we also refer to as “reject option”. In our 

study, a prediction is only made for a test compound if cA > , where c is rejection threshold. Otherwise, 

an “unknown” label is assigned to the test compound. 

 

 

4.1.2.2  Classification Tree Classification tree is a straightforward and effective data-mining 

technique. It has been widely applied to different areas of computer-aided drug design, such as virtual 

screening99, drug-likeness prediction123 and ligand blood-brain-barrier passage101.  

A classification tree consists of a set of split criterions and leaf nodes. The split criterions control the 

region that a ligand belongs to, while the leaf nodes represent classification hypotheses that are derived 

from training datasets in the same regions. The structure of a decision tree can be induced from training 

datasets in a greedy manner. By recursively partitioning the entire training dataset into regions, impurity 

)(timpurity is minimized regarding each possible partitioning t: 

)()(min ttimpurity
s

st
∑= λ , 

where s is the new region created from split t, and ∑−=
=

1

0

2)(ˆ1)(
j

ss jptλ . In this study, splitting rule is 

chosen from xi = 0 or xi = 1, where xi is the ith bit of descriptor vector. )(ˆ jps is the maximum likelihood 
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estimator of a ligand being j, j = 0 or 1 (0 represents antagonists, and 1 represents agonists), in region S. 

Training data can be perfectly fitted by growing the tree until 100% purity is achieved at each node. To 

avoid overfitting, k-fold cross-validation is commonly employed to control the “height” of a decision tree. 

After “pruning” the whole tree according to the cross-validation score that is defined as the percentage of 

correct predictions on cross-validation sets in this study, the optimal tree structure will be used to make 

predictions for novel ligands. 

 

 

4.1.2.3  Naive Bayes Classifier The Naive Bayes classifier method is a simple classification 

method based on applying Bayes' theorem with independence assumptions121. The method relies on the 

assumption that the presence or absence of a particular feature or class is unrelated to the presence or 

absence of any other feature. This independence assumption, with regard to molecular fingerprints 

simplifies the estimation of the likelihood function, which makes the method applicable to many 

computer-aided drug design tasks, such as virtual screening124 and selectivity prediction117. In this study, 

Naive Bayes classifier was used to model the probability of one ligand being an agonist or an antagonist, 

given its molecular fingerprint: )|Pr( FpCl where Fp is the molecular fingerprint vector, and Cl = 1 for 

agonist or 0 for antagonist. By applying Bayesian theory, )Pr()|Pr()|Pr( ClClFpFpCl ∝ , the 

predicted class of a given ligand is antagonist, lC


= 0, if 5.0)|0Pr( ≥= FpCl ; and lC


= 1, otherwise. 

)|Pr( ClFp can be approximated by applying the independence assumption to molecular fingerprints: 

∏=
i

i ClFpClFp )|Pr()|Pr( where iFp  is the ith bit of fingerprint. 

Due to the difference between Molprint 2D and other types of fingerprints, the equation used in 

calculating the likelihood was also different. For example, we had Molprint 2D string “2;0-1-0; 2;0-2-2;” 

and MACCS fingerprint “0101” for a testing compound (only for illustration). The likelihood of the 

Molprint 2D fingerprint was calculated as:  

)|;220;2Pr()|;010;2Pr()|;220;2;010;2Pr( 21 ClFpClFpClFp −−=×−−==−−−−=  
The likelihood of MACCS key was calculated as: 

)|1Pr()|0Pr()|1Pr()|0Pr()|0101Pr( 4321 ClFpClFpClFpClFpClFp =×=×=×===  
The presence or absence of predefined MACCS features are considered in the likelihood calculation, 

while only present Molprint 2D features are modeled in the calculation.  

 



51 
 

4.1.2.4  Dataset Preparation, Molecular Fingerprint and Computation Protocol 

To evaluate the performance of LiCABEDS, all the labeled human 5-HT1A , 5-HT1B, 5-HT1D, and 5-HT4R 

agonists and antagonists were retrieved from the GLIDA database 125-126. The ligand quantity and their 

properties are summarized in Table 4-1 (properties were calculated using the Sybyl8.0 www.tripos.com).  

 

 

Table 4-1: Molecular properties of agonists and antagonists  

 

Receptor Ligand 
Category 

Quantity Molecular 
Weight 

No. of 
Rotatable 

Bond 

No. of  
H-Bond 
Acceptor 

No. of  
H-Bond 
Donor 

HUMAN 
5-HT1A 

Agonist 1102 346.7 ± 72.6 5.4 ± 2.4 2.8 ± 1.5 1.3 ± 0.9 
Antagonist 595 385.8 ± 70.7 5.0 ± 2.5 3.2 ± 1.3 1.7 ± 0.9 

HUMAN 
5-HT1B 

Agonist 104 348.4 ± 104.1 4.3 ± 2.5 3.6 ± 1.8 1.2 ± 0.8 
Antagonist 38 359.6 ± 88.4 4.1 ± 1.8 2.6 ± 1.4 1.2 ± 0.7 

HUMAN 
5-HT1D 

Agonist 685 339.1 ± 82.3 5.8 ± 2.6 3.3 ± 1.6 1.2 ± 0.7 
Antagonist 335 420.2 ± 71.0 4.1 ± 2.2 3.9 ± 1.4 1.7 ± 0.9 

HUMAN 
5-HT4R 

 

Agonist 287 369.4 ± 65 3.9 ± 2.5 2.8 ± 1.1 1.1 ± 0.5 
Antagonist 262 367.3 ± 61.5 5.7 ± 2.1 3.6 ± 1.4 1.1 ± 0.4 

*Molecular properties are given by sample average and standard deviation. 

 

 

With the published compound datasets, the prediction accuracy of different data-mining methods along 

with different molecular descriptors was assessed on the labeled agonists and antagonists of the human 5-

HT1A subtype G-Protein Coupled Receptor (GPCR) by ten rounds of calculation. For each round of 

calculation, three classification methods were compared, including LiCABEDS, classification tree, and 

Naive Bayes classifier.  Each was trained on the same randomly selected training compounds. The set of 

training compounds was composed of 75% labeled agonists and antagonists (827 5-HT1A agonists and 

446 5-HT1A antagonists). The remaining 25% ligands (275 5-HT1A agonists and 149 5-HT1A antagonists) 

were used as a testing dataset in order to evaluate the prediction accuracy of different methods. The 

prediction accuracy was estimated by comparing the predictions to the real ligand labels (agonists or 

antagonists). With Molprint 2D77, 124 as descriptor, the across-target ligand functionality prediction was 

also made by LiCABEDS. In this case, a LiCABEDS model was trained on all the labeled human 5-HT1A 

ligands (totally 1697 ligands), and then predictions were made on the ligands for human 5-HT1B, 5-HT1D, 

and 5-HT4R receptors. (Dr. Lirong Wang collected structure and bioactivity data from GLIDA database) 

In this study, four types of molecular fingerprints were generated for each compound, including 

MACCS key13, Unity (www.tripos.com), FP2127, and Molprint 2D 77, 124 fingerprint. (Unity and FP2 

http://www.tripos.com/�
http://www.tripos.com/�
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fingerprints were generated by Dr. Lirong Wang). The MACCS key fingerprint was calculated by 

Chemistry Development Kit (CDK)128-129 and the Unity fingerprint was calculated by Sybyl 8.0 

(www.tripos.com). Openbabel127 was used to generate the FP2 fingerprint, and Molprint 2D package was 

used to generate the Molprint 2D fingerprint. Variable selection was not carried out before model 

trainings, so all the dimensions of these molecular fingerprints were exposed to the learning algorithms. 

To ensure a fair amount of overlapping in Molprint 2D patterns, a three-layer atom environment was used 

for predicting ligand functionality for the human 5-HT1A receptor, while a two-layer atom environment 

was preferred for across-target predictions. Each feature defined by Molprint 2D was mapped to a unique 

bit in the descriptor vector by an in-house program.  

The implementation of the classification tree presented in this study came from a Tree package in “R” 
120, 130. To avoid overfitting, a tree node was not split unless more than ten training compounds were 

observed in the parent node and more than five were present in both child nodes.  Lastly, each 

classification tree was “pruned” according to ten-fold cross-validation scores. The implementation of 

Naive Bayes classifier on the Molprint 2D fingerprint was from the Molprint 2D software package.  An 

in-house Naive Bayes classifier was also developed for other fingerprints. The implementation of 

LiCABEDS is discussed in the following section (LiCABEDS Software Package). 

LiCABEDS models were initially developed using a large value of M (M = 10000), for all fingerprint 

types to ensure a convergence of training error. Furthermore, the influence of M was studied, and optimal 

values of M were determined by running cross-validation with 10% of training compounds as a cross-

validation set. LiCABEDS models were developed using balanced weights when compared to 

Classification Tree and Naive Bayes classifier on human 5-HT1A ligand datasets. Next, equal weights 

were compared to balanced weights as initialization conditions, which was conducted on the same 

training and testing datasets. Finally, the prediction accuracy was assessed with the “reject option” 

boundary ranging from 0 to 3.  

 

 

4.1.2.5  LiCABEDS Software Package A user-friendly interface was developed for 

LiCABEDS in order to simplify the steps involved in project management, model training and making 

predictions. The software integrates automated importing of training and testing datasets. The training 

module features automatic cross-validation, flexible initialization and interruptible model development. 

The “Reject option” is also implemented for making predictions. The graphical user interface allows for 

flexible model editing, prediction browsing, and result exporting. In addition, a work session can be saved 

to local hard disk, so that the previous workspace can be restored by the program. The program has been 

tested on Intel i7 860 2.8GHz CPU to evaluate the computational time. To iterate 10000 steps on 1697 

http://www.tripos.com/�
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compounds, model training takes 44 minutes for Molprint 2D fingerprint, 5 minutes for FP2 or Unity 

fingerprints, and 1 minute for MACCS fingerprint. The calculation time for model training is related to 

the amount of training samples, the number of boosting iterations and the dimension of descriptors. Once 

the model is established, the predictions can be made instantly by the program.  

4.1.3 Results and Discussion 

According to the distribution of physical properties listed in Table 4-1, simple classification hypotheses 

do not distinguish agonists from antagonists very well, if even at all. On the other hand, molecular 

fingerprints encode a large amount of chemical information regarding structural patterns of small 

molecules. The strength of the LiCABEDS method lies in its ability to robustly process this fingerprint 

information and make better predictions on the small molecules. I will discuss the performance of 

different fingerprints and computational models.  The effect of different parameters in LiCABEDS is also 

discussed in detail. 

4.1.3.1 Accuracy of LiCABEDS, Tree, and Naive Bayes Classifier  

 
Figure 4-2: The distribution of prediction accuracy from ten rounds of calculation  

X-axis is organized according to descriptor and prediction model. Y-axis is simply prediction 
accuracy. M: MACCS key fingerprint; U: Unity fingerprint; F: FP2 fingerprint; A: Molprint 2D 

fingerprint. Tree: Classification tree; NB: Naive Bayes classifier; boost: LiCABEDS. 
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Even if the predictions are made in the same descriptor space, the derived decision boundaries of 

different machine learning algorithms rarely agree, because of the discrepancy of underlying model 

assumptions, as well as object optimization functions.  The results of systematic comparisons among 

classification tree, Naive Bayes classifier and LiCABEDS are plotted in Figure 4-2 (M: MACCS key; U: 

Unity fingerprint; F: FP2 fingerprint; A: Molprint2D fingerprint. Tree stands for classification tree, NB 

stands for Naive Bayes classifier and boost is short for LiCABEDS.). A summary of the results can also 

be found in Table 4-2, which reports the distribution of prediction accuracy out of ten rounds of 

calculation on human 5-HT1A ligands. 

 

Table 4-2: Sample mean and standard deviation of prediction accuracy  

 

                                Model 
Fingerprint 

Tree Naive Bayes LiCABEDS 

MACCS 0.759 ± 0.026 0.685 ± 0.027 0.799 ± 0.016 
Unity 0.810 ± 0.023 0.753 ± 0.023 0.869 ± 0.013 
FP2 0.831 ± 0.018 0.771 ± 0.021 0.879 ± 0.010 

Molprint2D 0.820 ± 0.013 0.883 ± 0.013 0.901 ± 0.008 
The table lists the sample average and standard deviation of prediction accuracy out of 10 rounds of 

calculation. 
 

 

As shown in Figure 4-2 and Table 4-2, LiCABEDS uniformly outperforms both classification tree and 

Naive Bayes classifier regardless of the choice of molecular fingerprints. First, LiCABEDS exhibits the 

highest average prediction accuracy on ten different testing compound datasets. When Unity and FP2 

fingerprints are used as the descriptor, the highest number of mistakes made by LiCABEDS on testing 

sets is still lower than the lowest of the Tree or Naive Bayes classifier methods. With the Molprint 2D 

fingerprint as descriptor, the lowest accuracy from LiCABEDS is 0.894, which is almost the same as the 

highest accuracy from Naive Bayes classifier, 0.896. Not only does LiCABEDS show the highest average 

prediction accuracy, but also it possesses the lowest standard deviation on four kinds of fingerprints. This 

indicates model stability as well as model reliability.  This is further seen in the standard deviation of 

prediction accuracy from LiCABEDS.  As listed in Table 4-2, the standard deviation is 0.008 on the 

Molprint 2D fingerprint, while the standard deviation of both the Classification Tree and Naive Bayes 

classifier methods is 0.013.  A similar pattern is also observed using the other three types of molecular 

fingerprints.  The standard deviation from LiCABEDS ranges from 0.010 to 0.016 using the FP2, Unity 

and MACCS fingerprints.  On the other hand, the standard deviation of both the Tree and Naive Bayes 
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methods range from 0.018 to 0.027 using these three fingerprints.  Therefore, LiCABEDS is less affected 

by the distribution of training compounds compared to the Tree and Naive Bayes methods.  

Molprint 2D was the most predictive descriptor among the four types of fingerprints. In this study, a 

total of 6839 features were defined in the whole human 5-HT1A dataset. The length of the Unity and FP2 

fingerprints were 992 and 1024, respectively. The MACCS key had the shortest bit length of 168.  

Although Molprint 2D encoded many structural patterns in comparison to the Unity or FP2 fingerprints, it 

did not significantly improve the performance of the classification tree. As the “height” of tree was 

limited after “tree pruning” to avoid overfitting, a limited number of features could be considered in the 

classification hypothesis. The LiCABEDS method, on the other hand, consisted of 10000 weighted 

“decision stumps” and many factors contributed to the final prediction. This might explain the reason why 

LiCABEDS yielded more accurate and reliable predictions than the classification tree method. 

The Naive Bayes method outmatched the Tree method using Molprint 2D as a descriptor, but the Tree 

method outmatched the Naive Bayes method with other fingerprints. As previously mentioned in the 

method section, the Naive Bayes models were slightly different with different fingerprints. Molprint 2D, 

as an atom environment descriptor, only considered the features present, while FP2, MACCS and Unity 

predefined a set of substructures and modeled both the presence and absence of structural patterns. When 

the Naive Bayes classifier from Molprint 2D was applied to the other three fingerprints, the test 

calculation showed that the result was even worse. The Naive Bayes classifier treated each dimension in 

the fingerprint equally.  Thus, the performance could be affected by noise from irrelevant features. The 

independence assumption in the Naive Bayes model was not necessarily true for molecular fingerprints, 

which was one of the factors impairing the estimation of the likelihood function.  In addition, the training 

algorithm of LiCABEDS selected the most predictive “decision stump” and assigned its weight 

accordingly in order to build the classifier systematically. In that sense, not all the dimensions of the 

fingerprint vectors contributed to the prediction equally, and predictive features and corresponding 

“decision stumps” were emphasized with relatively large weights, am. Without much assumption 

regarding the fingerprints, LiCABEDS built robust models and produced more accurate predictions than 

the Naive Bayes classifier. 

4.1.3.2  Initialization Condition As previously mentioned in the Methods section, the equal 

initial weight in the training algorithm considers each training compound equally, while the balanced 

initial weight considers two compound categories (agonist and antagonist) equally. The two different 

initializations in LiCABEDS were compared on the same ten sets of training and testing compounds with 

M = 10000. Figure 4-3 shows the distribution of the overall accuracy of predictions from combinations of 
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different initialization conditions and molecular fingerprints. aefp stands for Molprint2D, b stands for 

balanced initial weight and e stands for equal initial weight.  Table 4-3 lists the average accuracy and 

standard deviation for each ligand category, as well as for the whole testing dataset. 

 
Figure 4-3: Prediction accuracy with different initialization conditions  

“aefp” represents Molprint 2D fingerprint. When letter “b” follows a fingerprint, it means the model is 
trained with balanced initialization condition. Otherwise, equal weight is specified as initialization 
condition 

 

Table 4-3: Initialization condition for LiCABEDS training  

  Agonist Antagonist Overall 
Molprint 2D Balanced weight 0.913 ± 0.018 0.879 ± 0.041 0.901 ± 0.008 

Equal weight 0.924 ± 0.018 0.856 ± 0.038 0.900 ± 0.009 
FP2 Balanced weight 0.888 ± 0.021 0.864 ± 0.026 0.879 ± 0.010 

Equal weight 0.901 ± 0.021 0.848 ± 0.029 0.882 ± 0.009 
Unity Balanced weight 0.891 ± 0.018 0.830 ± 0.023 0.869 ± 0.013 

Equal weight 0.901 ± 0.020 0.816 ± 0.022 0.871 ± 0.014 
MACCS Balanced weight 0.803 ± 0.025 0.792 ± 0.033 0.799 ± 0.016 

Equal weight 0.860 ± 0.018 0.702 ± 0.049 0.805 ± 0.020 
The sample mean and standard deviation of prediction accuracy for each category of ligands, using equal 
initial weight and balanced initial weight. 
 

 

According to Figure 4-3 and Table 4-3, these two initialization conditions result in differences with 

respect to the overall performance, even if equal initial weight is slightly better. As displayed in Table 

4-3, the balanced initial weight correctly predicts antagonists at a percentage of 87.9%, 86.4%, 83.0% and 

79.2% with Molprint 2D, FP2, Unity and MACCS descriptors, while the equal initial weight predicts 
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antagonists at the accuracy of 85.6%, 84.8%, 81.6% and 70.2% on the same descriptors. The opposite 

pattern is observed for agonist prediction, in which the equal initial weight uniformly outperforms the 

balanced initial weight. To explain this, LiCABEDS training algorithm with equal initial weight aims to 

minimize the error function by making fewer mistakes on the training datasets, while balanced weight 

emphasizes both ligand categories and each training sample.  For example, at the initial step of training 

algorithm with balanced weights, the cost to make a mistake is 1/1 −N for one antagonist and 1/1 +N for 

one agonist. As there are 827 agonists and 446 antagonists in the training datasets, LiCABEDS may tend 

to avoid making mistakes on antagonists because one mistake on an antagonist costs more than the one on 

an agonist ( 1/1 −N > 1/1 +N ). On the other hand, the equal initial weight favors the majority category, 

because the mistake on any training compound costs N/1 . Although the weights for each training 

sample are updated in the follow-up training iteration, the initialization condition still significantly affects 

the model development. As a result, the balanced initial weight makes the predictions that are more 

accurate on antagonists. In reality, training sets are sometimes overwhelmed by one category of samples, 

but correct predictions are still desired for the minority group. The balanced initial weight seeks a tradeoff 

between the accuracy for each category and the overall performance, which makes the algorithm 

generally applicable to many data mining situations.  

4.1.3.3 Training Parameter Besides the initialization condition, another parameter crucial to the 

LiCABEDS training algorithm is M, the number of boosting iterations. To minimize overfitting, the 

optimal value of M, Moptimal (Moptimal < 10000) can be determined through cross-validation.  In this process, 

a fraction of the training compounds (10% of the whole training sets) was left out as a cross-validation 

set. Moptimal was then compared to the default condition, a large value of M, M = 10000, on the same 

training and testing datasets. Models were developed using a balanced initial weight and the four types of 

fingerprints. The percentages of correct predictions on the ten testing datasets are shown in Figure 4-4. 

The x-axis denotes the choice of fingerprint and M. aefp stands for Molprint2D fingerprint. cv means that 

number of boosting rounds is set to Moptimal. The label without cv means M=10000 by default. 
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Figure 4-4: The boxplot showing the effect of number of boosting rounds  

 

 

According to the distribution shown in Figure 4-4, models developed by Moptimal iterations are moderately 

better than M = 10000 on FP2, Unity and MACCS fingerprints, but not as good as M = 10000 on 

Molprint 2D fingerprint. Because M = 10000 is much larger than the length of FP2, Unity and MACCS 

fingerprints, some dimensions in the fingerprint are overrepresented in the classifier. This may result in 

overfitting.  If this is the case, running cross-validation could control the overfitting and improve the 

performance. Nevertheless, the length of the Molprint 2D fingerprint used in this study is 6839, which is 

at the magnitude of M = 10000. Thus, cross-validation is not essential for the Molprint 2D fingerprint. 

Hypothesis testing was carried out to quantify the difference between Moptimal and M= 10000.  The 

distribution of correct predictions on the testing datasets was examined.  The null hypothesis was “the 

models trained with and without cross-validation have the same performance”, while the alternative 

hypothesis was “cross-validation improves the model performance”.  Student’s t-test showed that the one-

sided p-values for the four types of fingerprints (Molprint 2D, FP2, Unity and MACCS) were 0.954, 

0.357, 0.290 and 0.354, respectively.  This result does not significantly favor the alternative hypothesis, 

indicating cross-validation does not significantly influence on the prediction generated. The data mining 

studies and the results presented also indirectly support the conclusion that LiCABEDS is not so 

susceptible to overfitting in the studied datasets, which is also supported by boosting theory119. Although 

cross-validation is not strictly required by LiCABEDS, parameter tuning may still be beneficial under 

certain circumstances, such as the application of LiCABEDS on FP2, Unity and MACCS fingerprints. 
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4.1.3.4 Reject Option To assess the confidence-rated predictions, LiCABEDS uses the raw value of 

∑=
M

m
mmmm tixyaA ),,( to address the degree of belief for each prediction. By applying the concept of 

“reject option”, accurate prediction is anticipated, provided a high absolute value of A , whereas an 

“unknown” label is output to prevent uncertain prediction for a low absolute value of A . To validate this 

hypothesis, predictions were made on the ten testing compound datasets with different “reject” boundaries 

and molecular descriptors. The difference in the average performance of different “reject option” 

boundaries is reported in Figure 4-5. Each figure corresponds to a type of fingerprint. X-axis denotes the 

value of decision boundary. When Molprint 2D was used as the descriptor, an average accuracy of 90.1% 

(Table 4-2) was reported without using the “reject option”.  As shown in Figure 4-5A, the average 

proportion of predictions made on the testing datasets readily decreases when the “reject” boundary 

increases from 0.5 to 2. Because more “unknown” labels are output when a higher boundary value is 

specified, a relatively smaller fraction of predictions is made. In the meantime, the average prediction 

accuracy increases from the original value of 90.1% (reported in Table 4-2) to 91.1%, 92.1%, and 93.8% 

with corresponding boundaries being 0.5, 1 and 2, respectively.  A similar trend can be observed with the 

other three types of fingerprints as well.  For example, using the FP2 fingerprint, the predictions are made 

on 92.3% of the testing compounds when the boundary is set to 2.  An accuracy of 91.1% is obtained 

from the “reject option”, which is a noticeable improvement from the original accuracy of 87.9% 

(reported in Table 4-2). Therefore, LiCABEDS is not only able to attain better performance by making 

selective predictions, but is also able to estimate the classification risk for testing compounds through the 

absolute value of A , or the confidence-rated prediction. In practice, it is sometimes economical to 

sacrifice some testing compounds to achieve accurate predictions.  The boundary value can be determined 

by examining the distribution of A and leaving a fair prediction ratio.  

  



60 
 

A. Molprint 2D B.  FP2 
 

 

  

 

C. Unity D.  MACCS  

  

 

Figure 4-5: “Reject option” with LiCABEDS 
The plot shows average prediction accuracy and percentage of prediction by changing the prediction 
boundary. X-axis represents a value above which a prediction is made. 

4.1.3.5 Across-target Ligand Functionality Prediction In addition to the ligand functionality 

classification, I have explored the potential of across-target ligand bioactivity prediction using 

LiCABEDS program. With the assumption that agonists and antagonists might share some common 

pharmacological features for similar receptor subtypes, the LiCABEDS model, which was developed 

from human 5-HT1A  ligands on Molprint 2D fingerprint, was used to predict the ligand functionality for 

other human 5-HT subtype receptors, including 5-HT1B,  5-HT1D, and  5-HT4R receptors. 5-HT1A, 5-HT1B 

and 5-HT1D GPCRs can be classified as serotonin receptor subtype 1 (or 5-HT1) while 5-HT4R belongs to 

the family of serotonin subtype four. 5-HT1B receptor has the shortest evolution distance to 5-HT1A. On 

the other hand, 5-HT4R receptor has the largest evolution distance to 5-HT1A of all. As sufficient number 

of known agonists and antagonists has been reported for these receptors, the correlation between model 

predictability and target similarity can be studied in order to understand the scope of application of 

established models. 
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Table 4-4: Across-target ligand functionality prediction  

 

Receptor Accuracy for 
agonists 

Accuracy for 
antagonists 

Overall 
accuracy 

Blastp 
similarity 

scorea 

Sybyl 
similarity 

scoreb 
Human 5-HT1B 0.875 0.816 0.859 304 397.80 
Human 5-HT1D 0.812 0.609 0.745 279 393.60 
Human 5-HT4R 0.826 0.267 0.559 142 340.90 

a Blastp similarity score is calculated by blastp using default scoring parameters 
b Sybyl similarity score is calculated by Sybyl Biopolymer131 using “pmutation” scoring matrix. 
  

 

The performance of LiCABEDS models for each category of the 5-HT ligands, as well as entire datasets, 

can be seen in Table 4-4.  The sequence similarity scores compared to human 5-HT1A are calculated by 

blastp132 and Sybyl Biopolymer131, respectively. The calculations based on the 5-HT1A model show that 

85.9% of predictions are correct on 5-HT1B ligands, with 87.5% accuracy for agonists and 81.6% 

accuracy for antagonists, respectively.  The data is congruent with the relative high sequence similarity 

between 5-HT1B and 5-HT1A (blastp score:  304; Sybyl score: 397.80).  The studies show that the model 

trained from 5-HT1A ligands is still predictive for 5-HT1B ligands, but the overall accuracy for 5-HT1D 

ligands drops to 74.5%, which may be attributed to the lower sequence similarity between 5-HT1D and 5-

HT1A (blastp score:  279; Sybyl score: 393.60). 5-HT4R, which possesses the lowest sequence similarity to 

5-HT1A (blastp score:  142; Sybyl score: 340.90), was also evaluated, and its prediction is not necessarily 

better than a random guess.  The results are consistent with the known data that the drugs Ergotamine 

(agonist) and Methiothepin (antagonist) are active to 5-HT1A, 5-HT1B and 5-HT1D receptors but not to 5-

HT4R. The results may also suggest that LiCABEDS prediction models may have potential of applying to 

other targets with limited known ligands, as long as the models are developed for a closely related 

receptor family. This concept could extend the application of LiCABEDS to the drug discovery process 

targeting at orphan receptors that has no known ligand reported. 

4.1.3.6 Model Interpretation The interpretability of the LiCABEDS model may help us understand 

the underlying classification mechanism and significant features regarding ligand properties.  The model 

developed on the first set of 5-HT1A training compounds, which consist of randomly selected 827 agonists 

and 446 antagonists, is used to demonstrate this process.  As presented in the method section, each 

“decision stump” contributes to the final prediction according to its weight, ma , as described in equation 

(4-1). In the LiCABEDS model, four out of 6839 highly weighted Molprint 2D features, which are the 
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few highly weighted ones to distinguish agonists and antagonists, are listed in Table 4-5. Feature 1 and 2 

are favored by agonists, while feature 3 and 4 are preferred in antagonists.  In order to illustrate the 

structural patterns of these features, Figure 4-6 shows a graphical atom environment according to the four 

features. Each feature depicts a central atom and its atom environment up to a specific topological 

distance. The atom environment in Molprint2D is defined as the quantity of heavy atoms surrounding the 

central atom. Heavy atoms are distinguished by Sybyl atom types. For example, feature 1 (0;0-1-0;0-1-

4;1-3-0;2-3-0;) translates to a substructure of a central sp3 carbon atom (C.3) neighbored by one sp3 

carbon atom and one sp3 nitrogen atom (N.3),  and surrounded by three sp3 carbon atoms (C.3) located 

two or three bonds away. The Molprint2D features in Table 4-5 are generated by Molprint2D software 

package, and the detailed explanation can be found in original publication 77, 124. 
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Figure 4-6: Four sample Molprint 2D features in graphic representation  

 

 
 

Figure 4-7:  Compounds used to exemplify four features 

 

 Table 4-5: List of important Molprint features regarding ligand functionality 

 Bit Index Molprint 2D featurea Weight 
Feature 1 3474 0;0-1-0;0-1-4;1-3-0;2-3-0; 0.869 
Feature 2 808 8;0-1-1;1-1-2;1-1-27;2-2-0;2-2-2; 0.328 
Feature 3 362 8;0-1-1;1-1-0;1-1-27;2-3-0;2-1-2; 0.343 
Feature 4 4322 18;0-2-0;0-1-2;1-2-0;1-2-2;2-2-

2;2-2-4;2-1-7; 
0.639 

a Features listed in this table are extracted from Molprint 2D software package. The interpretation of the 

listed features is presented graphically in Figure 4-6. 
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Figure 4-7 lists seven compounds selected from the testing compound dataset in order to exemplify the 

four features. The first three compounds (L008638, L006280, L006274) are labeled as agonists, and the 

other four compounds (L022154, L018611, L001620, L018612) are labeled as antagonists. It is worth 

pointing out that thousands of features are involved agonist/antagonist prediction, but only four highly 

weighted Molprint 2D features are picked up to illustrate model interpretation. Molprint2D fingerprint 

(feature) is a highly sparse descriptor, and the number of features that a compound possesses is equal to 

the number of its heavy atoms. The agonists from the testing set, which possess both feature 1 and 2 

(listed in Table 4-5), are involved in Model Interpretation. The same analogy is applied to antagonists. 

Even if the agonists or antagonists do not share the same structural scaffold, certain substructures may 

still match in three-dimensional space. Figure 4-8 displays that feature 1, 2 from the three agonists are 

well aligned, with the central carbon atom from feature 1 labeled in grey and the central oxygen atom 

from feature 2 labeled in red. Similarly, Figure 4-9 displays the alignment of feature 3, 4 for the four 

antagonists. The result suggests that those features might be related to ligand functionality and ligand-

protein interaction. The interpretability of LiCABEDS models is rooted in the explanation of each 

“decision stump”, especially the highly weighted ones. Therefore, LiCABEDS models can be easily 

understood and interpreted, which could potentially guide chemical modification to achieve better 

pharmacological or physicochemical profile. 

 

Figure 4-8: 3-D alignment of three agonists 
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Figure 4-9: 3-D alignment of four antagonists 

4.1.3.7 Model Robustness Model robustness is the potential to handle diverse training data and 

provide consistent predictions. Section 3.1 has shown that LiCABEDS models render the most consistent 

and accurate predictions on any of the molecular fingerprints. To analyze the composition of the 

classifiers, important dimensions of Molprint 2D fingerprints are extracted from the LiCABEDS models, 

which are developed on ten different 5-HT1A training datasets. All the Molprint 2D features are observed 

totally more than 50 times in all the models and possess weights, ma , larger than 0.08. To visualize the 

major components of the classifiers, Figure 4-10shows the distribution of occurrence of six important 

Molprint 2D features that are favored in agonists, for which LiCABEDS training algorithm may select a 

feature several times to minimize generalization error. The occurrence of features mainly ranges from 4 to 

7, except dimension 2828. Even if the ten models are developed on the randomly selected training 

datasets, only three outliers (labeled as circles in Figure 4-10, two in dimension 1694, one in dimension 

2828) are identified in the boxplot. Thus, the occurrence of the six major components has moderate 

variance in each of the ten models. The stability of the influential “weak-learners” leads to consistent 

prediction accuracy, although only a few features are visualized.  

 
Figure 4-10: The occurrence of the six major LiCABEDS components in ten 5-HT1A models 
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4.1.4 Conclusion 

This chapter reports a novel ligand classification algorithm, Ligand Classifier of Adaptively Boosting 

Ensemble Decision Stumps (LiCABEDS), and thoroughly investigated it through the case studies of 

ligand functionality prediction for the GPCR 5-HT subtypes. The performance of LiCABEDS is 

compared to the Classification Tree model and Naive Bayes classifier using four types of molecular 

fingerprints:  Molprint 2D, FP2, Unity and MACCS. The results show that LiCABEDS uniformly 

produces the most accurate and consistent predictions, especially with Molprint 2D fingerprints as the 

descriptor.  Additionally, unique characteristics of LiCABEDS make it applicable to model various ligand 

properties.  The flexible initialization conditions of LiCABEDS allow the development of predictive 

models and emphasize minority categories on unbalanced training datasets. Parameterization is usually a 

complicated procedure in many machine-learning algorithms, however, model development in 

LiCABEDS is simplified because the number of boosting iterations, M, is the only parameter required for 

model training.  The result from cross-validation suggests that a large value of M still yields satisfactory 

performance, which makes the model training process simplified in practice.  Another valuable 

characteristic of LiCABEDS is the “reject option”, which returns the degree of confidence for each 

prediction.  Higher prediction accuracy can be achieved by rejecting some “low-confident” testing 

samples. The capability of LiCABEDS is further demonstrated through the application on a cross-target 

prediction.  The interpretation of LiCABEDS models may reveal the correlation between structural 

pattern and molecular properties of interest. The robustness of LiCABEDS models is further 

demonstrated by examining the principal components of “decision stumps”. Lastly, LiCABEDS has been 

implemented into an easy-to-use and freely available (http://www.CBLigand.org/LiCABEDS/) software 

platform that provides a graphical user interface for automating model development and predictions. As a 

general classifier, LiCABEDS may also have great potential for modeling and predicting other ligand 

properties, such as ADME prediction and other applications on in-silico drug design research. These are 

ongoing projects and will be reported in future studies. 

4.2 SOFTWARE MANUAL FOR LICABEDS 

LiCABEDS is implemented as highly automated software to simply the whole modeling process. 

Computer program, Fingerprint-based Compound Classifier (FCC), integrates data import/export, project 
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management, model training, and model testing into an integrated pipeline. Currently, LiCABEDS is the 

major machine learning algorithm in this platform. This section introduces the functions of FCC program 

and provides a walk-through project. The program and sample tutorial files are available 

at www.cbligand.org/LiCABEDS.  

FCC is developed as “green” software for Microsoft Windows system, which means that software 

installation is not strictly required. To launch the program, locate the executable file and double click the 

“FCC.exe” icon.  

 
The interface of the program is displayed in the figure below. Similar to most Windows programs, 

FCC has a title bar, showing the title of current project and “minimize, maximize, close” buttons. A menu 

bar and a tool bar are displayed below the title bar. The tool bar provides shortcuts to some frequently 

used functions, such as new project, copy-and-paste function, model training, etc. Besides toolbar, all the 

program functions are listed in the menu. A main window is designed for information exchanging. In the 

screenshot, the main window displays a welcome page, project status and brief introduction to each 

module. Underneath the welcome page is a message board, displaying system message and project 

parameters.  

 

http://www.cbligand.org/LiCABEDS�
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In FCC, a ligand classification project mainly consists of four steps: 

• Define a project in “Project Profile”: name the project title and specify ligand categories of 

interest. 

• Load Fingerprints: import training and testing compound datasets in predefined fingerprint 

format. 

• Setup Training: develop a LiCABEDS model.  

• Make Predictions: use the developed model to make predictions on testing compound dataset. 

 

The homepage also shows the progress of current project by putting different colors on each tag. A 

module tag will turn green after the corresponding step is completed. A red tag indicates that this step 

remains unexplored, whereas a yellow tag indicates this step is partially finished. 

The toolbar lists frequently accessed functions: 

File functions:   

• New project: current project profile and data are restored to default settings. All the changes made 

to the project are discarded. A warning message will be displayed to remind saving your work if 

any modification is detected. 

• Open project: a previous saved workspace will be restored. All the changes made to the current 

project are discarded. 

• Save project: a work session will be saved to a FCC file on hard drive. The project will resume 

next time by opening the FCC workspace file. 

 

Editing Functions:  

• Cut: delete selected items and deposit the content into system clipboard. The button turns grey if 

the action is not applicable. 

• Copy: Deposit the selected items into system clipboard. The button turns grey if the action is not 

applicable. 

• If a compatible format is available in the clipboard, the contents will be pasted to the current 

project. This function only works in prediction window.  

 

Project Functions:  

• Start a new model training process or continue with previous model training 

• Stop undergoing model training. 
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• Make predictions using developed predictive model 

• Go to home page 

• Go to training window for model browsing 

• Go to prediction window to view prediction results. 

 

Step One: Define a Project 

 A new project starts with defining its aim and two compound categories. Click “Project Profile” tag 

at home page or go to “Edit Project Title” in “Edit” menu to define a project. A dialog box will pop up 

and its interface is displayed below: 

 
In “Project Title”, input a name to distinguish the current project from others. The title name will 

become the default file name to save the workspace (to be discussed later). The project title is also 

displayed in the “Message Board”, so users can easily identify the aim and content in this project. Next, 

specify two classification categories. For convenience, the categories could be the properties to be 

modeled, e.g. agonist and antagonist in the screenshot. The program will automatically output the 

predicted category for each testing compound after predictions are made. Click “OK” button to finish 

project definition. Users can always repeat the same procedure to change the settings. User may start a 

new project by clicking  button on the toolbar or go to menu “File->New Project…”. 

Step Two: Load Fingerprints 

The imbedded classification algorithm in FCC is called Ligand Classifier of Adaptively Boosting 

Ensemble Decision Stumps (LiCABEDS). The theory and performance of LiCABEDS have been 

discussed previously. Like many other supervised learning algorithms, LiCABEDS also relies on training 

data to derive predictive models. 
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The screenshot above shows the interface that imports training and testing datasets. In FCC, 

compounds are represented in molecular fingerprints instead of structure information. Molecular 

fingerprints define the hypothesis space, within which possible decision stumps in LiCABEDS can be 

generated. Sample fingerprints are given below: 

 
In this format, each line corresponds to a compound. The first field of every row is the index of 

training or testing compounds. It is then followed by fingerprints in 0/1 binary format. Data fields are 

separated by single space. To import compound datasets, select a category which the dataset will be 

imported to (e.g. agonist in the picture). Then click “…” button to locate a fingerprint file. Compound 

datasets can be additively imported to the same category several times. Users still have the option to 

check “Clean Existing Compounds in The Selected Dataset”.  Once this option is checked, existing data 

in the selected category will be overwritten by new fingerprint contents. Both categories of training 

compounds have to be loaded before model training starts. Testing compound dataset could also be 

loaded at the same time. Note that the fingerprint data needs to comply with the fingerprint specification 

mentioned above. Sample training and testing datasets are available for downloading. Refer to the simple 

walk-through project below for more technical details. Message Board always displays the updated status 

of the project after data is successfully imported: 

 
Step Three: Setup Training 
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Once both categories of training compound datasets are imported, automatic datamining can be 

carried out to derive a predictive LiCABEDS model. This procedure is called model training or model 

development. In model training, FCC will examine the distinct patterns between two categories of 

compounds and build classifiers accordingly.  

To setup training, click  on the toolbar, or go to “welcome page” and click “Setup Training”. 

Then, a dialog will pop up to collect a few parameters: 

 
The most important parameter in LiCABEDS training is the number of iteration, which is equal to M 

mentioned previously. Users have the option to carry out cross-validation to search for its optimal value. 

In this case, check “Training with Cross Validation” and select the percentage of training datasets to be 

used as cross-validation set. Users can also choose initialization condition: equal initial weight or 

balanced class weight. If equal initial weight is chosen, then all the training compounds are treated 

equally. Nevertheless, this initialization condition may not be suitable for many ligand classification 

tasks, e.g. virtual screening. In virtual screening, thousands of compounds are labeled as inactive but only 

a few are reported as active. The program can simply treat all the compounds as inactive to achieve nearly 

100% accuracy. To solve this problem, balanced class weight assigns equal weight to each category 

instead of treating each training sample equally. Balanced class weight is encouraged if unbalanced 

training datasets are provided. Interruptible training is another competitive feature of LiCABEDS. Users 

can always continue with the previous training by checking “Continue the previous training” checkbox.  

In this case, training error will be minimized based on the established model by adding more weighted 

decision stumps. For example, a model is developed using M = 1000, but the model performance is not 

satisfactory on the cross-validation set or testing dataset. Users can simply continue the previous training 

by setting M = 1000 again. Then, the final model will contain totally 2000 decision stumps. This feature 

allows reusing the developed model to generate a new classifier instead of start-over from the beginning.  
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After clicking “OK” button, model training will start automatically and a real-time error curve will be 

displayed in the main window. 

 
The screening shot displays undergoing model training. Certain functions are disabled during model 

training. To activate disabled functions, click  button to interrupt the calculation. The vertical grids 

indicate the number of decision stumps, and the horizontal grids indicate training error or cross-validation 

error (measured by error ratio). As time passes by, the training error curve moves towards right-hand side 

until M steps are finished. The legends in the upper-left corner explain the meaning of each curve. For 

example, the blue curve in this figure shows training error whereas the brown curve shows cross-

validation error. In general, training error is minimized in a stepwise manner. As m (the number of 

finished iterations, m<M) increases, training error usually decreases. Conversely, cross-validation error 

may not necessarily follow the same trend. The cross-validation (CV) error may forms a “U” or an “L” 

shape as a function of m. LiCABEDS also has the risk of overfitting like most supervised learning 

algorithms. Therefore, the CV error may reduce at the beginning when the training error is minimized, 

and then increase due to overfitting, which forms a “U” shape error curve. Running cross-validation is a 

choice to pick up an optimal value of M.  

 The program has a default style for displaying training curves. Other styles can be specified as well. 

Click right mouse button in the main window to show a pop-up menu:    

 
Select “Display Option..”: 
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First, choose line width of either training error curve or cross-validation error curve in the unit of 

pixels. Then, users can specify line color and style, such as dotted line and dashed line. The grid section 

controls the number of vertical and horizontal grids. Un-checking “Show Grids” box will disable any 

assistant grids in the main window. Finally, set the zoom ratio through “Vertical Ratio” and “Horizontal 

Ratio” drop-boxes. After clicking “OK”, the setting will become the default display format for all FCC 

program sessions.   

To keep track of coordinate information, check “Show Coordinates” from the popup menu (click right 

mouse button). Next, move the cursor in the window, FCC will automatically track selected “weak 

learner” or decision stump, which is illustrated in the screenshot below: 

 
The selected “weak learner” is shown in the status bar: 

. 

In this example, the cursor is pointing to the 77th “weak learner” (Num: 77 in zero-based index). 

When m = 78, the training error is 0.113, which means the LiCABEDS model can classify 88.7% of 

training samples correctly. As cross-validation is enabled, cross-validation (CV) error is also reported at 

the same time. In this case, the CV error is 0.167. The last part of the text string, “000675 0 -> 1” depicts 

the 77th decision stump in the LiCABEDS model. This decision stump states that if the 675th bit (zero-

based index) of fingerprint is 0, this compound is classified as positive (positive or negative class is 

defined in project profile). 
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FCC also supports selection of range “weak learners” by “dragging” the mouse with left button down. 

The color of selected decision stumps is inverted, and the summary will be given in the Message Board. 

All of these features help users to interpret the model and search for the optimal parameters. 

 
Tip: FCC can calculate the best display ratio to fit the training curve in the window. Go to View menu 

and select “Fit to Window Size”. If the size of the 2D-plot is larger than the display window, scroll 

bars will automatically show up. Shortcut keys are listed to scroll vertically or horizontally and zoom 

in/out: 

Roll the mouse wheel to scroll horizontally 

Roll the mouse wheel with “Shift” key down to scroll vertically 

Vertical Zoom-in:  Ctrl + Z 

Vertical Zoom-out: Alt + Z 

Horizontal Zoom-in:  Ctrl + H 

Horizontal Zoom-out: Alt + H 

Selected “weak learners” can be copied and pasted into any text-editing software, e.g. Wordpad. 

Select part of the model, click  button, and paste the content into a text editor: 

  
id field indicates the zero-based index of decision stumps. 

bit field tells the hypothesis in the corresponding decision stump, e.g. the 158th decision stump means 

if 626th bit is equal to 1, then the compound is classified as positive.  
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weight is equal to am in LiCABEDS model, which tells the contribution to final prediction. 

These fields are followed by T error (training error) and CV error (cross-validation error if enabled). 

LiCABEDS error curve can be output to any installed physical or virtual Windows printer, like PDF 

printer. FCC supports what-you-see-what-you-get printing preview. Click “File -> Print Preview” and the 

printing preview will be shown in the program window: 

 
The figure can be sent to a specific printer through a uniform printing dialog for archive or 

publication. 

Step Four: Make Predictions 

Once a predictive LiCABEDS model is developed and testing compound dataset is loaded, 

categorical labels can be predicted for the testing compounds. Click  button on the toolbar, a 

prediction dialog will popup: 

 
It is optional to use part of the decision stumps to make predictions, even if model is trained using a 

large value of M. For example, a LiCABEDS model is trained with 10000 iterations, only the first 1000 

decision stumps may be used for predictions. If “Use All the Weak Classifiers” is checked, the 

corresponding edit box turns grey and the whole LiCABEDS model is used for prediction. Otherwise, 

users can input arbitrary number, as long as it is smaller than M. The other parameter in the dialog is the 

boundary of reject option. LiCABEDS can not only output the categorical value for each testing sample, 

but also output the degree of confidence for each prediction. The rationale and benefit have been 

discussed in previous chapter. If prediction confidence is below the boundary value, LiCABEDS will 
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output an “unknown” label instead of making a risky prediction. A typical view of the prediction window 

is displayed below:  

 
At the same time, a prediction summary is also given in the Message Board. The toolbar at the top of 

the prediction page allows user to browse through the predictions and change display layout. Click the 

button  to expand this toolbar: 

 
 “<<” : go to the first page; “<”: go to the previous page; “>” go to the next page; “>>” go to the last 

page. These buttons are followed by page number. It is allowed to change the number of rows and 

columns displayed in each page. When the program starts, the number of rows and columns are specified 

automatically to fit content in one page.  

In the prediction window, four data fields are displayed for each testing compound: compound ID, 

compound name, predicted categorical value and raw output value from LiCABEDS model. By default, 

all the testing compounds are ranked according to their indices in the testing dataset. They can also be 

sorted according to other fields. Move the mouse cursor to the first row of the table. The shape of the 

mouse cursor will be automatically changed to up-arrow or down-arrow. Click left mouse button to sort 

all the testing compounds according to the pointed data field.  

Click left mouse button to select a testing compound entry or multiple entries with “Ctrl” key down. 

Users can open a popup menu by clicking right mouse button to select all the data (Ctrl + A) or inverse 

the selection. The “Cut” function deletes selected testing data and put them into clipboard (Note: the data 

in the clipboard will be overwritten if another copy or cut request is made). 
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The selected data entries can be copied to clipboard and pasted to text editing software or a session of 

FCC program. The content copied to text editor still includes compound id, name, predicted category and 

raw prediction value (screenshot is shown below) 

 
The data saved in the clipboard can be also pasted to the same session of FCC or another session of 

FCC program. Nevertheless, different sessions of FCC may hold different predictive LiCABEDS models, 

so the copied predicted category value is not necessarily consistent with the existing model. Predictions 

have to be made for the pasted data entries; otherwise, “unknown” labels will be assigned. 

A “Find” dialog is provided to facilitate text searching. The dialog consists of text search box and 

page/line locating box. 

 
In the “Find what” textbox, input the exact or partial string of a compound name. Then click “Find 

Previous” or “Find Next” to carry out forward or backward searching. If no item is selected, the searching 

will start from the first entry in the table. Message board will report whether a matched compound name 

is found. The retrieved item will be automatically selected and labeled by red rectangle. It may be a good 

idea to jump directly to a certain page or line instead of clicking “>” button many times, especially when 

large amount of testing data is imported into the program. Check “Page” or “Line” option button and 

input a page or line number. After clicking “OK” button, the desired page or data entry will be displayed 

if available. 

Similar to the printing function in model training module, the prediction results can also be sent to a 

virtual or physical printer. Once paper size is set, the program formats the layout and outputs the 

predictions line by line. Printing preview function is not implemented for this purpose. The snapshot 

shows part of the PDF printout. 
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Save Your Workspace and Export Your Results 

A work session can be serialized and saved into a file, so that the project can be reloaded by another 

program instance. The saved workspace contains project profile, training and testing compound datasets, 

developed model and predictions. Before exiting the program, a dialog box will popup to remind saving 

the workspace if any changes has been made to the project. To save the project, click  button on the 

toolbar. If the project is not associated with a workspace file, a file name is needed to save the project. 

Otherwise, the project will automatically overwrite the associated file. To provide an alternative file 

name, go to “File” menu and select “Save Workspace As”. 

The project workspace file has a default “FCC” extension. To restore a previous workspace, open 

another FCC program and drag a FCC workspace file into the main window. Another way to open a FCC 

workspace file is to click  button and select a saved workspace file with extension .FCC. FCC 

automatically records the most recent workspace files and provides shortcuts for opening those files in the 

“File” menu.  

 
FCC workspace format is in binary format that can only be understood by the FCC program. 

Meanwhile, an “export” function is implemented to enable exporting legible text results, such as 

predictive models and LiCABEDS predictions. To get access to this function, go to “Edit menu” and 

select “Export”.  



79 
 

 
Specify an output file name by clicking “…” button and select to output either predictive model or 

predictions. The exported model is in pure text format: 

 
Each row includes the index of a weak classifier, its hypothesis and its contribution weight to the final 

prediction (All the indices are zero-based). For example, the first weak classifier is “if the 722nd bit of 

fingerprint is equal to 0, the compound is classified as positive, which has weight 0.866193”. The final 

prediction is the weighted summation of the outcome of each weak learner. If the summation is larger 

than 0, then output is positive categorical value, otherwise, negative categorical value. Use the exported 

result to interpret the model and extract key features. The exported predictions are similar to the clipboard 

text format that is mentioned in the previous section: 

 
Molprint2D Fingerprint Generation 

Molprint2D fingerprint characterizes a two-dimensional compound structure by a set of atom 

environment defined by Sybyl atom types. Reference regarding Molprint2D fingerprint is available 

at http://cheminformatics.org/molprint_download/. In our test calculation, Molprint2D outperforms FP2, 

Unity and MACCS fingerprint. Thus, a short tutorial is given on how to generate Molprint2D fingerprints 

and import the descriptors into an FCC project.  

First step, convert your compound structure file to mol2 format using Openbabel or other 

cheminformatics toolkit. Molprint2D prefers chemical structures with implicit hydrogen atoms. A FCC 

project requires three separate files: positive-category training data, negative-category training data and 

http://cheminformatics.org/molprint_download/�
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testing data (if available). Molprint2D software package is developed for Linux platform. Install the 

software on a Linux computer and use the following command to generate raw Molprint2D fingerprint: 

mol22aefp input output 

Input is your mol2 structure file and output is a file name to save the raw fingerprints. Generate the 

fingerprints for all the datasets. 

 The raw Molprint2D fingerprint is in the following format: 

L000007 4;0-3-0;1-4-0;2-4-0;2-1-2; 10;0-1-2;0-1-10;1-1-0;1-2-2;2-2-0;2-2-2; 10;0-1-2;0-1-

10;1-2-2;2-2-0;2-2-2;………  

Each of the Molprint2D feature will be mapped to a unique index that indicates the presence or 

absence of the feature in a compound. To achieve this, a mapping list should be created. Molprint2D 

package provides a command “build.pl” to generate a histogram of all the features. In this case, merge all 

of your structure data files into a single mol2 file and generate raw Molprint2D fingerprints of the merged 

structure file. Then, use the following command 

build.pl input his-file –l min max 

“input” is raw fingerprint file of the merged dataset. His-file is output histogram file. The last 

parameter “-l min max” means how many layers of neighboring atoms are considered in atom 

environment. It is usually set to “–l 0 2” for “–l 0 3”. Finally, variable selection can be carried out by 

modifying the output histogram file or deleting noisy features. Note that only features present in the 

histogram will be mapped to a dense-format descriptor. A feature will be discarded if it does not exist in 

the list. 

 
Download Molprint2D converter from the LiCABEDS website. The screenshot of the program is 

displayed above. A string-matching algorithm is implemented in the converter using hash table. It only 

takes a few seconds to process a megabyte data file. The converter requires five parameters, including two 

input files, two output files and one fingerprint parameter. First, locate histogram file by clicking adjacent 

“…” button and find the histogram file that is generated from “build.pl” command. In the command 
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“build.pl”, users have an option to specify the number of layers that are considered in atom environment, 

such as “-l 0 2”. “-l 0 2” means the atom environment contains neighboring atoms up to two bonds away 

(more details can be found from official Molprint2D website). Choose the number of layers from the drop 

box. This value has to be consistent with the number of layers in the histogram file. For example, if no “-

l” argument follows the “build.pl”, the default maximum layer is 2. If a “-l min max” argument is 

specified in the command, then the number of layers in the Molprint2D converter should be equal to 

“max”. The histogram file serves as a mapping table. Next, in the “Molprint Fingerprint File” edit box, 

locate the raw Molprint2D fingerprint file that will be converted into binary vector format. Finally, 

specify “log” file name and binary fingerprint file name for output. Press “Convert” button to start data 

processing. Sample data files are available online: 

Histogram.his:  a preprocessed histogram file for the converter 

Sample Molprint2D.fp: a raw Molprint2D fingerprint file 

The output binary fingerprint and corresponding log file are given below: 

 
The “log” file illustrating mapping mechanism: 

 
Note: only part of the result is displayed. 

The output binary fingerprint complies with the requirement of FCC program, so it can be imported to 

the program without any modification. Log files reveal the interpretation of fingerprint vector. For 

example, feature “2;0-2-2;0-1-10;1-4-2;2-4-2;2-1-9;” is mapped to the second bit in the fingerprint vector. In 

other words, if the second bit of the fingerprint is 1, it indicates the presence of this feature in a 

compound; otherwise, this feature is absent. Therefore, users can interpret a predictive model and results 

according to the mapping schema. 

Simple Walk-through Project 

Sample training and testing datasets can be downloaded together with the program, FCC. The goal of 

the walk-through project is to model ligand functionality for 5-HT1A G-protein coupled receptor (GPCR). 

Ligands are classified into two categories: agonists that active the receptor and antagonists that inhibit or 

deactivate the receptor. In this experiment, a LiCABEDS model will be developed based on labeled 
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agonists and antagonists. Then, the model will be used to make predictions on the testing compound 

datasets. The model performance is evaluated by comparing predicted categorical values with the real 

labels. Molecular fingerprints have already been generated for all the compounds so that the datasets can 

be directly imported into FCC program. Here is a list of training and testing data files: 

daylight_agonist_train.fp 

daylight_antagonist_train.fp 

The training agonist and antagonist datasets. These two datasets are used to develop a 

predictive model. 

daylight_agonist_test.fp 

daylight_antagonist_test.fp 

The testing agonist and antagonist datasets. These two datasets are used to evaluate the 

performance of a developed LiCABEDS model. All the compounds in  “daylight_agonist_test.fp” 

are labeled as agonists. Ideally, the program should output “agonist” for all the testing samples in 

this dataset. Similarly, all the testing samples in “daylight_antagonist_test.fp” are known to be 

antagonist.  

Protocols: 

a) Launch the “FCC.exe” 

b) Click “Project Profile” and input the content as shown below: 

 
Click “OK” button. 

c) Click “Load Fingerprints”. Select “Agonist” option and locate file “daylight_agonist_train.fp” 

(click “…” button for browsing).   

d) Select “Antagonist” option and locate file “daylight_antagonist_train.fp” 

e) The Message Board should display the following information

 
f) Click “Setup Training” and input parameters: 
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g) Click “OK” and training will start automatically. This process may take a few minutes.  

h) The training error is minimized in a stepwise manner. The screenshot of the error curve is given 

below: 

  
i) Load the testing dataset. Go to “File menu” and click “Load Fingerprints…”. Select “testing 

dataset” and locate file “daylight_agonist_test.fp”. Click “OK”. 

j) The main window will automatically display the home page. Click “Make Prediction”. Take 

default parameters and click “OK”. 

k) The predictions are listed in the main window, and a summary is given in the Message Board. 

The programs identified 258 compounds as agonists and 17 as antagonists. As we know, all the 

compounds were labeled as agonists. Therefore, the program made 17 mistakes out of 275 

samples. 

 
l) Load the other testing dataset. Go to “File menu” and click “Load Fingerprints…”. Select “testing 

dataset” and check “Clean Existing Compounds in the Selected Dataset”. This is an important set 

to clean up the data imported before. Locate file “daylight_antagonist_test.fp”. Click “OK”. 
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m) Click “Make Predictions” and the result is summarized in the Message Board:

 
n)  As all the testing compounds are labeled as antagonists, 28 mistakes were made by the program. 

The overall prediction accuracy is about 89% (45 mistakes out of 424 testing samples). Finally, press 

“Ctrl + S” to save your work session. The workspace will be restored to the previous status by loading the 

work session file. 
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4.3 LICABEDS AND MODELING LIGAND SELECTIVITY 

 

 

 
 

 

The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, 

osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets at another 

closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development 

of CB2 ligands in order to minimize their effects on CB1 receptor. In the previous study, LiCABEDS 

(Li

4.3.1 Introduction 

gand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand 

classification algorithm for the prediction of categorical molecular properties. Here, I attempted to extend 

the application of LiCABEDS to modeling cannabinoid ligand selectivity with molecular fingerprints as 

descriptors. The performance of LiCABEDS was systematically compared with another popular 

classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. 

In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 

and CB2 selective ligands. The structure insight from data mining could be useful for the design of novel 

cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through 

successful identification of a newly synthesized CB2 selective compound.  

 

The selectivity to specific drug targets has been a crucial pharmacological property of drug candidates105. 

Since the advent of chemical genetics and chemical genomics 133-134, more attention has been paid to 

ligand selectivity for studying biological systems and exploring mechanism of action.  
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The endocannabinoid system is assumed to regulate psychological process, and is directly related to 

human mental and physical health. The first cannabinoid receptor was discovered in 1988 135, later named 

as CB1 receptor. And a second cannabinoid receptor, CB2 receptor, was identified in human peripheral 

organs in 1993136. These two receptors share high sequence similarity, especially in transmembrane 

portions. Thus, selective cannabinoid ligands are desired to ensure minimal effect on the other receptor. 

Recent studies show that cannabinoid CB2 receptor may serve as potential targets for many diseases, 

including neurodegenerative disorders137, blood cancer138 and osteoporosis139. On the other hand, a 

famous drug, rimonabant that targets cannabinoid CB1 receptor to treat obesity, was withdrawn from the 

market due to its side psychotropic effects140.  In spite of the therapeutic potential of CB2 receptor, the 

suspension of rimonabant reemphasizes the importance of selectivity regarding the design of CB2 

agonists and antagonists.  

Felder et al reported the first CB2 selective ligand, WIN-55,212-2, that showed 19 fold higher 

binding affinity for CB2 than for CB1141. Since then, the discovery of novel CB2 selective ligands has 

become the endeavor of many scientists, including medicinal chemist J.W. Huffman 142. Nowadays, 

computer-aided drug design has been integrated into the pipeline of drug discovery process to accelerate 

traditional experimental screening, which requires significant efforts. Thus, the search for CB2 selective 

ligands is undoubtedly one of its application domains. For example, Ashton et al applied homology 

modeling and molecular docking to develop CB2 specific ligands143. Besides structure-based drug design, 

machine learning and pattern recognition are gaining popularity for virtual screening and the prediction of 

various molecular properties. In the context of selectivity profiling, Wassermann et al presented the 

prediction of ligand selectivity using support vector machine ranking strategies105.  

Li 144gand Classifier of Adaptively Boosting Ensemble Decision Stumps (LiCABEDS)  is a generic 

ligand classification algorithm for the prediction of categorical ligand properties. LiCABEDS is 

established on Freund and Schapire’s ensemble learning framework118. The underlying theory and its 

application on modeling ligand functionality have been outlined before. In this study, the performance 

and applicability of LiCABEDS for the prediction of cannabinoid ligand selectivity are explored. 

LiCABEDS was compared with famous supervised learning algorithm, support vector machine (SVM), in 

order to evaluate their performance in recovering true selective ligands. Performance measures were 

given by precision, recall rate, the geometric mean of both, and ROC curve with area-under-curve (AUC). 

An ideal classifier would recover all selective ligands from a screening library (100% recall rate), and 

have no false positive error (100% precision). In addition, the investigation of LiCABEDS models 

brought certain insight into structure diversity of CB1 selective and CB2 selective ligands. Supported by 

scaffold and fragment analysis, it was hypothesized that CB2 selective ligands tended to be more 

structurally diverse than CB1 selective compounds among discovered cannabinoid ligands. More 
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interestingly, LiCABEDS model successfully identified a true CB2 selective ligand from newly 

synthesized compounds. The following sections report datasets involved in model training and validation, 

comprehensive computation protocol of LiCABEDS and SVM, and results of systematic calculations.  

4.3.2 Methods, Materials and Calculation 

To demonstrate the performance and robustness of machine learning algorithms in the prediction of 

cannabinoid ligand selectivity, 703 chemical structures and their bioactivity (Ki value) to CB1 and CB2 

receptors were retrieved from public cannabinoid ligand database (www.cbligand.org). A selective ligand 

is usually defined descriptively as its differing binding affinity to form ligand-protein complex with 

different receptors. In this study, a ligand was regarded as CB1selective (or CB2 selective) as long as its 

ratio of CB1 Ki to CB2 Ki (CB2 Ki to CB1 Ki) was less than 0.1. In other words, a ligand possessed 

selectivity of cannabinoid receptor subtypes if it exhibited more than 10-fold Ki difference. The 

rationality of this criterion was supported by an expert in selective cannabinoid ligand discovery, J.W. 

Huffman 142, who commented that O,2-propano-∆8-THC analogues 145 exhibited modest CB2 selectivity. 

The CB1/CB2 Ki ratio of these analogues, reported by Reggio et al, ranged from 2.8 to 4.5. Following 10-

fold Ki threshold, 149 compounds were identified as CB1 selective; 147 compounds were identified as 

CB2 selective; the remaining compounds were treated as non-selective. The goal of the study was to 

distinguish CB1 selective compounds from the CB1 non-selective (including CB2 selective and non-

selective), and CB2 selective compounds from the CB2 non-selective (including CB1 selective and non-

selective). 

4.3.2.1 LiCABEDS The performance, robustness, interpretability and parameters of LiCABEDS were 

thoroughly discussed through modeling 5-HT1A ligand functionality144. Here, LiCABEDS is extended to 

model cannabinoid ligand selectivity. Briefly, the prediction in LiCABEDS is determined by weighted 

summation of a set of “weak” classifiers, i.e. decision sumps. Each decision stump outputs a predicted 

categorical label according to weather the testing sample possesses a specific compound fragment or 

structure pattern.  

Figure 4-11 visualizes the underlying mechanism of LiCABEDS prediction model. Each decision stump 

outputs a categorical value (+1 or -1) that represents selectivity label by examining the presence of a 

predefined structural pattern. The final prediction is the summation of the predictions of individual 

decision stumps weighted by constant ai. Even though the performance of each individual decision stump 

http://www.cbligand.org/�
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is not necessarily much better than a random guess, ensemble learning theory shows that strong classifiers 

can be obtained by boosting these weak learners. 

 

 

 
 

Figure 4-11: Graphical illustration of the constitution of a LiCABEDS classifier  

4.3.2.2  Support Vector Machine Support Vector Machine (SVM) shares certain similarity 

with adaptive boosting regarding margin maximization. Both algorithms have native margin-

maximization mechanism to control overfitting except that margins in these two algorithms are expressed 

in different norms. The binary classification in standard SVM setting is formulated by function ƒw,b(x) = 

sign(wTx + b). w is the normal vector to the decision hyperplane. The motivation of support vector 

machine lies in that the optimal decision surface has the largest distance to the nearest data points of both 

categories, i.e. margin maximization, and still classifies training samples correctly by satisfying yi (wTxi + 

b) ≥ 1 ∀i where yi is label of training data. Given the same training data sets {xi, yi}, i = 1 to n, the margin 

optimization problem can be transformed into constraint optimization: 

Minimize w,b ‖𝐰‖2 

Subject to yi (wTxi + b) ≥ 1 ∀i, i = 1, …, n 

Among all the constraints, the training samples that are relevant to the determination of margin are called 

“support vectors”. Nevertheless, this optimization is not guaranteed with a solution since the training data 

may be not linearly separable due to outliers, higher-order data patterns, and many other reasons. To 

avoid this issue, some “hard-to-classify” training data are ignored by introducing the concept of soft 

margin. In this case, the previous optimization setting becomes  

Minimize w,b ‖𝐰‖2 + C ∑ ξi
n
i=1   

Subject to yi (wTxi + b) ≥ 1 – ξi  with ξi  ≥ 0, ∀i, i = 1, …, n 

ξi is an error term. Besides margin maximization (or minimizing ‖𝐰‖2), another goal is to maintain a low 

training error (∑ ξi
n
i=1 ). The tradeoff between margin and training error is regularized by a specified 

constant, C. Even if this constraint optimization can be solved by standard quadratic programming 
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packages, it is beneficial to investigate its dual form because it brings some valuable properties, for 

example, insight into support vectors: 

Maximize Lα = ∑ 𝛼i −
1
2
∑ 𝛼i𝛼j𝑦i𝑦j〈𝐱i, 𝐱j〉n
i,j=1

n
i=1                  (1) 

Subject to ∑ 𝛼i𝑦i = 0n
i=1  with 0 ≤ αi ≤ C ∀i, i = 1, …, n 

αi are support vector coefficients, and vector w can be recovered by equation, w =∑ 𝛼i𝑦i𝐱in
i=1 . Four types 

of molecular fingerprints, including MACCS key146, Unity (www.tripos.com), FP2127, and Molprint 2D 77, 

124, were generated as descriptors to represent each cannabinoid ligand in machine learning algorithms. 

MACCS key (166 bit) and FP2 (1024 bit) were calculated using OpenBabel, and Unity fingerprints (992 

bit) were generated in Tripos Sybyl. The whole cannabinoid ligand dataset produced 2530 three-layer 

Molprint 2D features from Bender et al’s program. These features were mapped to binary vector 

according to previously published protocol 144. To systematically evaluate prediction accuracy, 50% CB1 

selective and 50% CB1 non-selective compounds were randomly selected as training set in order to build 

a prediction model. The remaining compounds, which were not present to learning algorithms, were used 

to test the model. The calculation strategy was also applied to CB2 selectivity modeling. Two machine 

learning algorithms (LiCABEDS and SVM) combined with four types of fingerprint and two receptor 

subtypes resulted in 16 calculation settings. Each calculation setting was repeated for 20 times on 

different randomly selected training and testing samples, with intention to assess stability and reliability.  

All calculation regarding LiCABEDS was automated with published program 

(www.cbligand.org/LiCABEDS). The SVM-based selectivity modeling approach was carried out using 

library “e1071”, which included an R wrapper of LIBSVM147. This chapter also reports the effect of 

cross-validation on the prediction performance of testing data sets. With cross-validation, 30% of training 

data was left out as cross-validation set in order to choose optimal training parameters. For LiCABEDS, 

the training parameter was the number of “decision stumps”, or training iterations; while the parameter of 

SVM was the constant C that regularized the tradeoff between training error and margin size. Then, all 

the training data was used to train a model with the optimal parameter specified during cross-validation. 

During this study, a LiCABEDS model was developed using all labeled compounds to predict the CB2 

selectivity of 12 newly synthesized compounds.  

The following performance metrics were calculated for each calculation setting:  

-   Precision = #True Selectives 
#True Selectives +#False Selectives

 

 -  True Positive Rate (TPR) = #True Selectives 
#True Selectives +#False Non−selectives

  

-   False Positive Rate (FPR) = #False Selectives
#False Selectives+#True Non−selectives

 

Precision measured the percentage of correctly identified selective compounds, and Recall Rate (or True 

Positive Rate) depicted the capability of prediction model to retrieve or recover selective compounds. 

http://www.tripos.com/�
http://www.cbligand.org/LiCABEDS�
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Geometric mean of Precision and Recall Rate could serve as a single criterion for performance rating. 

ROC (receiver operating characteristic) curve, plotting TPR versus FPR, showed the enrichment of true 

selective compounds with varying decision threshold. 

Structural skeletons of cannabinoid ligands were generated and compared for the exploration of 

structure diversity in selective CB1 and CB2 ligands. Briefly, compounds were reduced to carbon 

skeletons by deleting all non-ring substituent except linkers between ring systems, replacing all hetero-

atoms with carbon atoms, and converting all bond orders to single bonds 148. Following these steps, 

generic compound scaffolds were generated by shrinking the linker chain from a sequence of two or more 

CH2s to only one CH2. Figure 4-12 exemplifies the procedure of scaffold generation with a CB1 

selective ligand, SR141716. (A) The original structure of SR141617. (B) Its carbon skeleton after deleting 

the side chains, such as the ‘=O’ , “-CH3’ and ’-Cl’ groups, replacing all non-carbon atoms, in this case 

nitrogen atoms, with carbon atoms and converting all bond orders to single bonds. (C) General carbon 

skeleton is produced by shrinking the linker chain of the carbon skeleton from two or more CH2s to one 

CH2. (Scaffold analysis was carried out by Dr. Lirong Wang) 

 
 

 
 

Figure 4-12: Illustration of scaffold generation 
SR141716, a CB1 selective ligand, as an example to show the procedure of scaffold generation.  

4.3.2.2 Experimental Section 12 compounds with a novel scaffold were synthesized and tested 

against CB1 and CB2 receptors. The synthetic route is shown in Scheme 1. The hydrolysis of the 

substituted 2-phenylacetonitrile in concentrated H2SO4 gave the intermediate amides. And then, the 

coupling reaction between the amide and aldehyde was performed in anhydrous dichloroethane with the 

catalyst TMSCl149. Alternatively, the coupling reaction was performed in anhydrous DCM with the 

catalyst F3CSO3SiMe3
150

. The nitro compound was reduced with palladium (10%) and hydrazine in 

ethanol to give the amine, which react with halide to give the final product.  
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 Scheme 1. General Synthesis of PAM Analogues 

 
Reagents and conditions: (a) concentrated H2SO4, 0 oC, 12 h; (b) method 1: aldehyde, anhydrous 

dichloroethane, TMSCl, 70 oC, 3-12 h; (c) method 2: aldehyde, anhydrous DCM, F3CSO3SiMe3, 

r.t, 12 h; (d) ethanol, palladium (10%), hydrazine, 70 oC, 3 h; (e) DMF, K2CO3, r.t, 12 h. 

 

 

The binding affinities of these 12 derivatives to CB2 receptor were determined by performing 

[3H]CP-55,940 radioligand competition binding assays using membrane proteins of  the CHO 

cells stably expressing human CB2 receptor. The CB1 binding assay was also conducted for those 

compounds with high CB2 receptor binding potency (Ki < 1,000 nM) using membrane proteins 

harvested from the CHO cells stably transfected with the human CB1 receptors. CB2 receptor 

ligand SR144528 and CB1 ligand SR141716 were used as positive controls respectively along 

with the tested compounds. (experimental section was summarized by Dr. Peng Yang) 
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4.3.3 Results and Discussion 

This section is focused on the analysis of LiCABEDS, SVM and different molecular fingerprints for their 

capability of distinguishing cannabinoid selective compounds from non-selective ones. The results are 

quantitatively supported by various performance metrics that depict aspects of prediction outcomes. The 

effect of cross-validation on LiCABEDS and SVM is also discussed. In addition, the cross-validation 

studies reveal that the LiCABEDS model complexity is positively correlated with the recall rate of CB2 

selective compounds, but not CB1 selective ones. A possible explanation to this is provided in terms of 

structure diversity, which gives us deeper understanding of the LiCABEDS mechanism. In the end, a case 

study shows how LiCABEDS could direct drug discovery and chemical modification by predicting the 

selectivity of newly synthesized compounds. 

4.3.3.1 LiCABEDS and SVM in Default Settings  

LiCABEDS was originally designed as a general-purpose ligand classifier for the prediction of 

categorical ligand properties. The theoretical framework of LiCABEDS shows that LiCABEDS is not 

necessarily a linear classification algorithm. Nevertheless, when the feature space is represented in binary 

molecular fingerprints, the training algorithm mentioned in the method section produces a linear classifier. 

Given that a type of fingerprint defines a pattern set S, and that a function NSf →:  maps each 

structure pattern to a unique index, there are 2| S | possible decision stumps 1)(2),,( −== tItiy ixx , 

because }),(:{ Sssfididi ∈=∈ and }1,0{∈t . Due to the sample space of t in the context of binary 

fingerprint, the indicator function, I, can be omitted by expressing a decision stump as 

)12(),,( −= iktiy xx , }1,1{ −+∈k . k = +1 if t = 1, k = -1 otherwise. Therefore, the LiCABEDS 

prediction function )),,((∑=
M

m
mmmmM tiyasignY x can be updated as ))12('(∑ −=

M

m
imM m

asignY x ,

mmm kaa ='  For a specific i, define a set iA that contains any ma'  associated with ix .  

Thus, )()))12('(( 0
11 '

ββ +=−= ∑∑ ∑
== ∈

i

K

i
i

K

i Aa
ikM signasignY

ik

xx . This proves the linearity of 

LiCABEDS with decision stumps created in a binary feature space.  

In previous studies, LiCABEDS was compared with naive Bayes classifier and classification tree (or 

recursive partitioning method). Support Vector Machine (SVM) is another popular classification 

algorithm for building linear and non-linear models. SVM has been widely applied in cheminformatics 

and ligand-based drug design. For the linear nature of LiCABEDS models here, we present a back-to-
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back comparison between LiCABEDS and linear SVM. Note that non-linear SVM models may exhibit 

advantages over linear ones in certain circumstances 151. Nevertheless, the selection of non-linear kernel 

functions and parameters is computationally expensive, and could become a risk factor for over-fitting.  

This section presents the performance of LiCABEDS and SVM models trained with default 

parameters (parameter tuning will be discussed later), to show the robustness of these two algorithms. The 

only parameter in linear SVM is the “C”-constant of regularization. Its default value is 1, meaning that 

training error and margin size are equally important. The only parameter in LiCABEDS training is the 

number of training iterations or decision stumps, M. A reasonable default value of M is 2| S |, so that 

every possible decision stump could be incorporated in the ensemble classifier, even though only some 

relevant decision stumps contribute to the prediction in real-world problems. By following this principal, 

the number of LiCABEDS training iterations for Molprint 2D, FP2, Unity and MACCS fingerprints are 

5000, 2000, 2000, 400, respectively.   
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Figure 4-13: The performance of selectivity prediction without cross-validation 

The boxplot displays the precision and recall rate out of 20 rounds of calculation, using either LiCABEDS 

or SVM.  
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Table 4-6: Model performance without cross-validation 

  

Molecular 
Fingerprint 

Classification 
Algorithm 

CB1 Selectivity CB2 Selectivity 
Precision(%) Recall(%) GM Precision(%) Recall(%) GM 

Molprint LiCABEDS 64.8±4.5 67.4±5.7 66.1 64.9±5.1 61.2±7.6 63.0 
SVM 66.8±5.1 66.6±6.3 66.7 65.3±5.1 60.3±7.8 62.8 

FP2 LiCABEDS 63.8±2.9 67.8±5.2 65.8 63.7±3.7 63.4±5.9 63.5 
SVM 65.6±3.8 67.2±5.7 66.4 66.3±4.5 64.5±7.0 65.4 

Unity LiCABEDS 67.1±3.9 68.3±4.6 67.7 61.0±4.6 60.7±6.6 60.8 
SVM 67.0±3.0 65.8±5.5 66.4 60.9±3.6 62.6±7.0 61.7 

MACCS LiCABEDS 66.0±6.1 64.6±6.5 65.3 64.4±6.0 50.3±7.0 56.9 
SVM 65.6±5.3 69.5±6.0 67.5 63.4±3.9 54.7±5.2 58.9 

The average and standard deviation of precision and recall rate out of 20 rounds of calculation 

 

The results of systematic evaluation of cannabinoid-subtype selectivity prediction are summarized in 

Figure 4-13 and Table 4-6. Figure 4-13 plots the distribution of precision and recall rate of different 

computational methods in 20 rounds of calculation. The performance metrics of LiCABEDS and SVM 

that are trained with different fingerprints are shown. LiCABEDS and SVM models are trained with four 

types of fingerprints (indicated along X-axis) and default training parameters for the prediction of either 

CB1 selective or CB2 selective ligands. Y-axis shows performance metrics in percentage value. 

Correspondingly, Table 4-6 lists the average, standard deviation, and geometric mean of precision and 

recall rates. The numbers are reported for each combination of machine learning algorithm (SVM or 

LiCABEDS), molecular fingerprint (Molprint, FP2, Unity or MACCS), and selectivity type (CB1 or CB2 

selective). All the SVM and LiCABEDS models are trained with default parameters. GM: geometric 

mean. GM = sqrt(Precision × Recall). Overall, satisfactory results are achieved. LiCABEDS + Unity 

outperform other combinations for CB1 selectivity prediction, with the highest geometric mean, 67.7. 

SVM + FP2 lead the CB2 selectivity prediction, with the highest geometric mean, 65.4. Regardless of 

fingerprint types, the range of precision and recall of LiCABEDS models covers 56.1%-77.9% and 

49.3%-80.0% for CB1 selectivity, 52.1%-74.1% and 33.8%-74.3% for CB2 selectivity. At the same time, 

SVM models yield precision of 57.7%-76.4% and recall of 54.7%-80.0% for CB1 selectivity, and 

precision of 55.7%-76.3% and recall of 43.2%-77.0% for CB2 selectivity. In spite of the variability, the 

precision and recall rate stay above 50% in most cases.  

In general, all the fingerprints exhibit decent predictability in LiCABEDS and SVM. According to 

Table 4-6, Unity fingerprint is the optimal choice for screening CB1 selective compounds, since it 

achieves a 67% precision rate in both machine learning algorithms. FP2 fingerprints produce the highest 

geometric mean of precision and recall for CB2 selective compounds (63.5% for LiCABEDS and 65.4%). 
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Also, the best recall rate of CB2 models are established on FP2 fingerprints (63.4% for LiCABEDS and 

64.5% for SVM). Figure 4-13 reveals consistent high precision rate of Molprint 2D fingerprint for both 

CB1 and CB2 selectivity prediction. MACCS key is weak at recovering the CB2 selective, but is 

surprisingly sufficient for the CB1 selective. Altogether, Molprint 2D, FP2 and Unity have subtle 

difference in terms of performance metrics, leaving MACCS key slightly behind.  

With four types of fingerprints, the geometric mean (GM) gap of LiCABEDS and SVM models falls 

in the interval (-2.2, 1.3). Table 4-6 suggests that SVM generally outperforms LiCABEDS. However, the 

outperformance is insignificant when visualized in Figure 4-13 or compared with the standard deviation 

in Table 4-6. Another interesting fact is that the precision and recall rate of CB1 models are uniformly 

higher than those of CB2 models, even if the computation protocol is identical. Section 3.3 will explain 

and discuss this in depth.  

The evaluation and comparison of modeling strategies are quantified according to precision, recall 

rate, and the geometric mean of both. Precision should be emphasized when the cost of validating a 

predicted selective is high. On the other hand, recall rate catches our attention when many lead 

compounds are desired at an early stage of virtual screening. Precision and recall rate are usually 

negatively correlated. An astringent strategy guarantees a high precision rate by selecting high-confident 

samples, but sacrifices recall rate by ignoring potential true positives. Even if geometric mean is not 

perfect as a single-number performance measure, it is still a reasonable way to rank screening strategies.  

These analyses assume correct selectivity label of training and testing compounds. Due to systematic 

and random error in bioassays, this assumption is obviously not rigorous in practice. For example, 

Huffman et al pointed out that the CB2/CB1 affinity ratio of a famous cannabinoid, WIN-55,212-2, was 

reported in range 0.6 to 30 142. Here, this compound could be CB2 selective or non-selective. The 

inconsistent selectivity label in training and testing compounds cause confusion and uncertainty. To 

minimize this effect, bio-affinity values of a cannabinoid ligand were extracted from the same literature if 

possible, and use the Ki values reported for the same cell line. However, this systematic error cannot be 

fully eradicated.  

 

 

4.3.3.2  LiCABEDS and SVM with Cross-validation The ultimate goals of supervised 

learning algorithms are to minimize generalization error and achieve optimal performance for prospective 

predictions. In this sense, LiCABEDS and SVM are not exceptions. The sole pursuit of reducing training 

error may lead to poor predictions for new testing samples (overfitting), while the over-emphasis on 

margin maximization may result in lack-of-fit. This paradox is also known as “bias-variance tradeoff” in 
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statistics. Cross-validation is an effective approach to figure out optimal model parameters. In this study, 

the parameters evaluated in cross-validation are the number of training iterations in LiCABEDS (M) and 

C-constant in SVM. For LiCABEDS, M ∈ [minstep, maxstep]. maxstep is the default training iterations 

mentioned previously. minstep = 50 if MACCS is used as descriptor, otherwise minstep = 100. C ∈ {2i: i 

= -16, -15,…,15, 16}. Although the parameter space of LiCABEDS is much larger than SVM, dynamic 

programming technique makes the cross-validation in LiCABEDS as fast as training a single model. The 

M and C that perform best on cross-validation data are selected for model training. The performance of 

these models is further evaluated on the same testing sets, and results are shown in Table 4-7 and Figure 

4-14.  
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Figure 4-14: The performance of selectivity prediction with cross-validation 

The boxplot resembles Figure 4-13 in figure layout. 
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 Table 4-7: Model performance with cross-validation 

Molecular 
Fingerprint 

Classification 
Algorithm 

CB1 Selectivity CB2 Selectivity 
Precision(%) Recall(%) GM Precision(%) Recall(%) GM 

Molprint LiCABEDS 69.1±5.0 68.5±6.5 68.8 68.4±4.5 58.2±8.9 63.1 
SVM 70.7±4.0 72±7.8 71.3 68.5±3.3 64.5±7.9 66.5 

FP2 LiCABEDS 68.0±4.0 68.5±5.8 68.2 69.2±4.1 61.8±6.5 65.4 
SVM 67.5±5.0 70.8±7.4 69.1 71.1±4.0 60.9±6.7 65.8 

Unity LiCABEDS 70.7±4.8 69.2±4.7 69.9 65.0±3.6 59.2±7.4 62.0 
SVM 69.8±3.6 72.2±5.3 71.0 65.2±3.6 60.9±7.8 63.0 

MACCS LiCABEDS 68.0±5.5 66.1±6.2 67.0 63.8±6.5 47.7±8.4 55.2 
SVM 69.0±5.3 72.9±5.6 70.9 65.9±6.6 48.3±10.4 56.4 

The performance of LiCABEDS and SVM combined with different fingerprints after running cross-
validation 
 

Cross-validation brings consistent improvement for both LiCABEDS and SVM, except for CB2 

selectivity prediction using MACCS fingerprint. The geometric mean (GM) of LiCABEDS grows Δ1.7 – 

2.7 for CB1 selectivity prediction, and Δ-1.7 – 1.9 for CB2 selectivity prediction. Correspondingly, the 

geometric mean (GM) of SVM grows Δ2.7 – 4.6 for CB1 selectivity prediction, and Δ-2.5 – 3.7 for CB2 

selectivity prediction. Both algorithms are robust enough to deliver satisfactory predictions with default 

model parameters. Even if cross-validation has positive impact, the improvement is inconclusive when 

compared with performance variance. SVM seems to be more sensitive to the choice of parameters than 

LiCABEDS, since the increment of its geometric mean is relatively higher. After parameter tuning, SVM 

+ Molprint 2D outruns other models in both CB1 and CB2 selectivity prediction for its highest GM (71.3 

and 66.5). Figure 4-14 shows that, the precision rate of LiCABEDS and SVM is similar among all 

fingerprints, but SVM is capable of retrieving more selective compounds than LiCABEDS, especially for 

CB1 selective compounds. In the end, the GM of SVM is 0.4 to 3.9 higher than that of LiCABEDS.  

4.3.3.3  Training Iterations of LiCABEDS Training iterations (M) of LiCABEDS are 

directly related to model complexity, as every round of training adds one more “weak classifier” to the 

ensemble model. Parameter M was thoroughly discussed in the previous study144, and the hypothesis was 

that large M produced close-to-optimal models. Running cross-validation might improve prediction 

performance, but its effect was statistically insignificant.  The results in section 3.2 also support this 

hypothesis. Thus, assigning a relatively large value to M not only guarantees model convergence, but also 

avoids costly cross-validation procedures and potential overfitting of cross-validation data.  
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Figure 4-15: Training iteration and CB2 selectivity prediction 

The plots show the average and standard deviation interval of recall and precision rate of CB2 selectivity 

models versus model training iterations.  

 

 

Apart from machine learning language, the meaning of M can be also interpreted in applied domain 

knowledge. This section is primarily focused on how M affects the recovery of selective ligands.Naturally 

selective compounds are supposed to be overwhelmed by non-selective ones, which is also true for the 

training and testing sets. Thus, what LiCABEDS training algorithm faces is unbalanced data. Treating 

each training sample equally at the initialization stage, the training algorithm first assures the correct 

classification of non-selective compounds even at the cost of misclassification of selective ones. As 

majority is non-selective samples, this is an effective way of minimizing training error when the 

classification power of LiCABEDS is limited. Later when the model complexity grows, the training 

algorithm aims at recovering selective ligands from the training pool by picking up discriminative 

features and building “decision stumps” accordingly. This process is visualized in Figure 4-15. Figure 

4-15 plots the average and standard deviation of recall and precision rates on the testing data sets as a 

function of training iterations, M. The average and standard deviation are calculated based on 20 rounds 

of test calculation. Each row represents a specific fingerprint type. The Y-axis of each plot is in 

percentage. The values along X-axis represent M. Note that the growth of X-axis values is not linear. As 

shown in the left column, the recall rate steadily increases as M grows. For example, with Molprint 2D 

fingerprint, the recall rate starts from 20%. It converges to a plateau (approximately 60%) when M is 
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more than 500. Similar trend can be observed in other plots.  Meanwhile, the precision is more stable 

compared to recall rate. It mainly fluctuates from 60% to 70% for Molprint 2D, FP2, Unity fingerprints, 

and from 50% to 60% for MACCS fingerprint. The precision rate seems to be negatively correlated with 

training iterations, meaning that a large M reduces prediction precision. To explain this, easy-to-classify 

selective ligands are correctly labeled at the beginning stage of training. As training continues, the 

algorithm tries to recover more selective ligands that are harder to classify. At the same time, more non-

selective ligands may be also predicted as selective, which reduces precision. The positive effect of a 

large M on recall rate is obviously more significant than its negative effect on precision. Therefore, 

training error is effectively minimized in the early stage of training. As recall rate reaches the plateau, 

adding more “decision stumps” only impairs precision rate. The value that seeks a balanced trade-off 

between these two metrics can be figured out through cross-validation, which has been well addressed in 

the previous section.  

      The precision and recall rate of CB1 selectivity models are quite different from those of the CB2 

selectivity models. Their values as a function of training iterations are displayed in Figure 4-16. One 

major difference is that the recall rate of CB1 selectivity models reaches the plateau when M is about 50 

for Molprint 2D, FP2 and Unity fingerprints. The uptrend of recall rate is almost not observable with 

MACCS fingerprint. Figure 4-16 suggests that precision rate gradually reduces as M grows, which is 

similar to Figure 4-15. Thus, a large M is less favored compared to CB2 selectivity models. This also 

explains why cross-validation is more beneficial to CB1selectivity prediction than CB2 selectivity 

prediction. As mentioned in Section 3.2, cross-validation enhances the geometric mean of CB1 selectivity 

models by Δ1.7 – 2.7, but Δ-1.7 – 1.9 for CB2 selectivity models. Furthermore, the average of optimal M 

for CB1 selectivity prediction is 283 with Molprint 2D fingerprint. The average for CB2 selectivity 

prediction is 736 with the same fingerprint. A straight-forward conclusion is that the complexity of CB2 

selectivity models is higher than the CB1 models. It also indirectly suggests that the structure of CB2 

selective ligands is more diverse, so more factors need to be considered in the classifier. 
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Figure 4-16: Training iteration and CB1 selectivity prediction 

The average and standard deviation interval of recall and precision rate of CB1 selectivity models versus 

model training iterations.  

 

 
 

Figure 4-17: Principal component analysis of fragments of CB ligands 

2D scatter plot shows the spatial arrangement of selective ligands in the coordinates of two principal 

components.  
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A universal quantitative definition of structure diversity does not exist, since it can be evaluated according 

to aspects of criteria, such as molecular weight, number of rings, etc. We attempt to illustrate the structure 

diversity of cannabinoid selective ligands in both fragments and scaffolds. Principal component analysis 

(PCA) is an unsupervised learning skill that transforms original data into a new orthogonal coordinate 

system in order to capture the maximum variance. In the new coordinate system, the first component has 

the largest possible variance; the second component has the second largest possible variance; and so on. 

Figure 4-17 displays the first two components of MACCS fingerprints of all selectivity ligands. The 

principal components are solved according to MACCS fingerprints of all selective ligands. The X-axis 

and Y-axis represent the two most significant components. CB1 and CB2 selective ligands are 

represented in different color. PCA reduces the dimensionality of 166-bit fingerprint for visualization 

while maintaining minimum information loss. In Figure 4-17, CB1 selective ligands form three clusters 

that are approximately centered at (-3,1), (2,1), and (2,-3). Only a few points are scattered near origin. 

Similarly, CB2 selective ligands also form three clusters that roughly centered at (-4,0), (0,0), and (-3,-4). 

The radius of each cluster is associated with the structure variance of the compounds in the cluster. It is 

apparent that the CB2 selective ligands near the origin of Figure 4-17 show larger variance than the CB1 

selective ligands in any cluster. The other two CB2 selective clusters have similar pattern to those of CB1 

selective. Thus, CB2 selective compounds may have more diverse structure features defined in MACCS 

fingerprint than CB1 selective.  

 
Figure 4-18: The top five scaffolds in CB selective compounds 

(A) CB1 selective compounds (B) CB2 selective compounds 
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To assess structure diversity in a different aspect, the scaffolds of CB1 and CB2 selective compounds 

were generated according to the protocol described in Method section. Results showed that 149 CB1 

selective compounds possessed 22 scaffolds. Meanwhile, 147 CB2 selective compounds were reduced to 

38 scaffolds. Figure 4-18 lists five most populated scaffolds in each compound category. An interesting 

finding is that the top three CB1 scaffolds have significant overlapping. In other words, the second 

scaffold in Figure 4-18(A) is a substructure of the other two. On the other hand, CB2 scaffolds have 

relatively more variation. These observations also support the hypothesis that CB2 selective compounds 

could be more structurally diverse than CB1 selective compounds. This information could be useful clues 

for the design of CB selective compounds. (Scaffold analysis was conducted by Lirong Wang) 

4.3.3.4  ROC Analysis of LiCABEDS models 
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Figure 4-19: ROC curves of LiCABEDS models for the prediction of CB1 selectivity 
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Sensitive and specificity are classical statistical measures of the performance of binary classification 

function. ROC curve visualizes the true positive rate (sensitivity) as a function of false positive rate (1-

specificity) by changing classification boundary value. Visual inspection of enrichment of positive 

samples is straightforward by examining ROC curve. Besides the convenience of visualization, the area 

under curve (AUC) serves as quantitative performance measure of enrichment of relevant samples. The 

ROC curve of a random guess function (curve in dashed line) yields an AUC of 0.5. A perfect 

classification function has an AUC of 1.  

As discussed, ∑=
M

m
mmmm tiyaA ),,(x indicates the degree of confidence in each prediction. The 

default classification boundary is 0=A . Thus, changing the decision criteria generates a set of TPR and 

FPR values and allows inspecting the enrichment of selective ligands. Figure 4-19 and Figure 4-20 plot 

the ROC curves of LiCABEDS models for the prediction of CB1 and CB2 selectivity with four types of 

fingerprints. Each individual plot contains four curves that represent different fingerprints. Out of 20 

rounds of test calculation, the average AUC of CB1 selectivity models (Figure 4-19) are 0.883, 0.893, 

0.897 and 0.895 with Molprint 2D, FP2, Unity and MACCS fingerprints respectively. Correspondingly, 

the average AUC of CB2 selectivity models (Figure 4-20) are 0.839, 0.880, 0.855 and 0.839 with the 

same set of fingerprints. The visualization of these two figures and AUC values confirm that LiCABEDS 

models effectively enrich selective ligands. In addition, the ROC curve also supports that large || A  

suggests high probability of observing relevant samples, since the left region of ROC curve corresponds 

to astringent decision criteria. Figure 4-19 and Figure 4-20 reveal that the performance of fingerprints 

involved in LiCABEDS models is comparable, especially for CB1 selectivity models. Molprint 2D 

models produce relatively low AUC for CB2 selectivity prediction (average 0.839), which seems to be 

contradictory to previous findings. In real-world problem, a practical decision boundary corresponds to 

the left region of ROC curve because large FPR is mostly disfavored and remains unexplored. Partly, the 

slope of the left part of ROC curve is more important than AUC. As shown in Figure 4-19 and Figure 

4-20, as well as AUC calculation, the LiCABEDS models for CB1 selectivity prediction exhibit better 

enrichment than CB2 models. This also agrees with the previous hypothesis that the structure patterns of 

CB2 selective ligands are more diverse.  
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Figure 4-20: ROC curves of LiCABEDS models for the prediction of CB2 selectivity 

4.3.3.5 Prediction of Selectivity of Novel Compounds 
 

 

 

Figure 4-21: The structures of newly synthesized CB2 selective ligands. 
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Besides retrospective validation, a LiCABEDS model was developed to predict the CB2 selectivity of 12 

novel compounds before they were tested. The training set consisted of all the CB2 selective and CB2 

non-selective compounds in our cannabinoid database. The training iteration was set to 2000 with 

Molprint 2D as molecular descriptor. The LiCABEDS model predicted PY-63 (Figure 4-21) as CB2 

selective, while the other 11 compound as CB2 non-selective. Later, the experimental validation showed 

that the three structures in Figure 4-21 (PY-42, PY-61 and PY-63) were CB2 selective, and that the 

remaining compounds were either non-selective or inactive. Therefore, LiCABEDS successfully 

discovered PY-63, but missed the other two potential selective compounds. These compounds possessed a 

novel scaffold that was not present in training data. Interestingly, the prediction model still recovered a 

true selective without reporting any false positive. Even though the number of testing compounds was 

limited, this case study illustrated that the expense of drug discovery projects could be minimized by 

introducing in silico ligand profiling calculation. 

4.3.4 Conclusion 

When introduced as a general-purpose ligand classifier, LiCABEDS demonstrated its application for 

the classification of 5-HT1A ligand functionality144. This chapter reports a follow-up study of LiCABEDS 

algorithm in the prediction of cannabinoid ligand selectivity. In-depth discussions are presented on 

LiCABEDS theoretical framework, performance measures compared with SVM, vulnerability to 

overfitting, choice of training parameter, and prospective validation. The results show that LiCABEDS 

models effectively recover 60%-70% selective compounds from testing data sets, and maintain 

satisfactory false positive rates in the meantime. All fingerprints deliver decent performance metrics, 

showing the flexibility of LiCABEDS to adapt assorted hypothesis space. More importantly, LiCABEDS 

successfully identifies a CB2 selective compound out of twelve newly synthesized ones without any false 

positive error. Another advantage of LiCABEDS is straightforward parameter setting. Default training 

iteration significantly reduces calculation time by skipping costly cross-validation procedure, but conveys 

close-to-optimal models. LiCABEDS is not a black-box method, since models are interpretable by 

examining individual “decision stumps” that ensemble models are composed of. Furthermore, the 

investigation of LiCABEDS models provides insight into structure diversity of cannabinoid selective 

ligands. The correlation between performance metrics and model complexity reveals that reported CB2 

selective ligands are more diverse than CB1 selective ligands. This hypothesis is later supported by 

principal component analysis of fragments and analysis of compound scaffolds. It is also well agreed by 
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some performance metrics, such as AUC of ROC curve. This could suggest that there were more binding 

modes to form ligand-protein complex for CB2 receptor and for CB1 receptor. To conclude, LiCABEDS 

has potential to model the pharmacological properties that are not well addressed by traditional QSAR 

methodology. It could also guide screening strategy in early stage of drug development project.   

4.4 LICABEDS AND MODELING BBB PASSAGE 

Blood-brain barrier (BBB) is protective mechanism to prevent hazardous substances, e.g. some drugs, 

from entering brain tissues, while maintaining the permeability of some chemicals to the brain. The 

ability to pass blood brain barrier is one of the most important pharmacological properties for ligands 

targeting at central nervous system. Evaluating the passage of the barrier also helps to predict the 

potential side effects on central nervous system, which may be caused by ligands targeting at periphery 

organs. Thus, BBB passage is part of Distribution (D) properties in ADME.  

 

To demonstrate the feasibility, a LiCABEDS model was developed on published BBB compound datasets 
152 using FP2 fingerprint as descriptor. The training datasets consisted of 832 BBB+ ligands (able to cross 

the barrier) and 261 BBB- ligands (unable to pass the barrier). The model performance was then 

evaluated on labeled testing compounds containing 451 BBB+ ligands and 49 BBB- ligands. The result is 

summarized in Table 4-8.  

 

 

Table 4-8: Blood-Brain-Barrier passage prediction for BBB+ and BBB- ligands 

Label 

Prediction  

BBB+ BBB- 

BBB+ 440 7 
BBB- 11 42 

 

 

The overall accuracy of LiCABEDS on the testing dataset is 96.4%, with 97.6% accuracy for BBB+ 

category and 86.7% accuracy for BBB- category respectively. The LiCABEDS model outperforms some 

methods in the publication 152 that reports an overall accuracy ranging from 75% to 97%. 
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LiCABEDS demonstrates straight-forward prediction logic and high prediction accuracy. Furthermore, an 

online BBB passage prediction tool is developed based on the LiCABEDS model. The prediction toolkit 

is accessible at www.cbligand.org/BBB/predictor.php. 

 
The screenshot atop displays the online BBB passage prediction, maintained by Dr. Lirong Wang. 

Users can either sketch a compound structure or upload a chemical structure file as queries. Two 

supervised learning algorithms have been implemented, SVM and AdaBoost (LiCABEDS); and four 

types of molecular fingerprints are available as descriptors, MACCS, FP2, Molprint 2D and PubChem 

fingerprints.  

(* Chao Ma developed the back-end prediction program. Dr. Lirong Wang developed SVM classifier 

and built this webpage.)   

  

http://www.cbligand.org/BBB/predictor.php�
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5 SUPPORT VECTOR MACHINE FOR LIGAND 
CLASSIFICATION 

 
 

This chapter is an extension to differentiating 5-HT1A agonists and antagonists by developing robust non-

linear support vector machine (SVM) classifiers. Upon binding to a receptor, agonists and antagonists can 

induce distinct biological functions and thus lead to significantly different pharmacological responses. 

Thus, in silico prediction or in vitro characterization of ligand agonistic or antagonistic functionalities is 

an important step toward identifying specific pharmacological therapeutics. In this study, we investigated 

the molecular properties of agonists and antagonists of human 5-hydroxytryptamine receptor subtype 1A 

(5-HT1A). Subsequently, intrinsic functions of these ligands (agonists/antagonists) were modelled by 

support vector machine (SVM), using five 2D molecular fingerprints and the 3D Topomer distance. Five 

kernel functions, including linear, polynomial, RBF, Tanimoto and a novel Topomer kernel based on 

Topomer 3D similarity were used to develop linear and non-linear classifiers. These classifiers were 

validated through cross-validation, yielding a classification accuracy ranging from 80.4% to 92.3%. The 

performance of different kernels and fingerprints was analyzed and discussed. Linear and non-linear 

models were further interpreted through the illustration of underlying classification mechanism. This 

study expands the scope and applicability of similarity-based methods in cheminformatics, which are 

typically used for the identification of active molecules against a target protein. These findings provide a 
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good starting point for further systematic classifications of other GPCR ligands and for the data mining of 

large chemical libraries. 

5.1  INTRODUCTION 

Agonists and antagonists usually bind to the same site or pocket of a receptor, 153 but they trigger distinct 

biological responses, resulting in significantly different pharmacological responses. It is known that 

agonists stimulate the receptor, while antagonists inhibit the receptor function. Nonetheless, agonists and 

antagonists may share many common features. Analysis of their structures-bioactivity correlation may 

help to identify important structural patterns and develop agonist/antagonist prediction models.154 These 

models further help to design functional molecules. Nevertheless, many of the reported Quantitative 

Structure-Activity Relationship (QSAR) approaches suffer from low throughput due to the requirement of 

3D structure alignments, which may limit their applications in the screening and data-mining of large 

chemical databases.155 Herein, we report our investigation of agonists and antagonists for the 5-

hydroxytryptamine receptor subtype 1A (5-HT1A), since diverse ligands are available to evaluate the 

various computational approaches for large-scale agonist and antagonist classification. 

    The 5-HT1A receptor is a 5-HT or serotonin (Figure 5-1) receptor belonging to the G protein-coupled 

receptor (GPCR) family. Primarily expressed in the central nervous system,156 5-HT1A receptor influences 

biological and neurological processes, such as aggression, anxiety, appetite, mood, and sleep157. 

Numerous studies have demonstrated the therapeutic potential of 5-HT1A ligands. For example, the 5-

HT1A receptor agonists, flesinoxan and buspirone (Figure 5-1), mediate the efficient relief of anxiety 158 

and depression 159. Another agonist, serotonin, has recently been reported to be involved in bone 

formation 160. Conversely, evidence supporting the role of 5-HT1A receptor antagonists, such as lecozotan 

(Figure 5-1), in facilitating an enhancement of certain types of learning and memory functions in rodents 

has led to their current development as novel treatments for Alzheimer's disease 161. 

  

http://en.wikipedia.org/wiki/Aggression�
http://en.wikipedia.org/wiki/Anxiety�
http://en.wikipedia.org/wiki/Appetite�
http://en.wikipedia.org/wiki/Mood�
http://en.wikipedia.org/wiki/Sleep�
http://en.wikipedia.org/wiki/Sleep�
http://en.wikipedia.org/wiki/Anxiety�
http://en.wikipedia.org/wiki/Depression_(mood)�
http://en.wikipedia.org/wiki/Antagonist�
http://en.wikipedia.org/wiki/Lecozotan�
http://en.wikipedia.org/wiki/Alzheimer%27s_disease�
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Figure 5-1: The structures of some representative 5-HT1A ligands 

 

 

 In addition to elucidating several distinct biological responses induced by 5-HT1A agonists and 

antagonists, many studies have examined their structural requirements. Aganval et al. generated a 

pharmacophore model based on a small set of 5-HT1A agonists and antagonists using comparative 

molecular field analysis (CoMFA). Their analyses showed that the agonists tended to be “flatter” and 

more coplanar than the antagonists 116. Sylte et al., using molecular dynamics simulation of the binding 

process of 5-HT1A ligands, found that the agonists induced larger conformational changes into helix 3 and 

6 162. Han et al. developed a decision tree model to discriminate 5-HT1A agonists or antagonists from high-

throughput screening data 163.  

Most of the previous studies only focused on a small subset of the 5-HT1A ligands, and the predicting 

power and throughput of calculations were limited. For example, CoMFA requires 3D conformers to be 

pre-aligned and target compounds to possess identical or similar scaffolds 154. Moreover, the structures of 

decision trees are usually developed based on heuristic algorithms, as learning an optimal tree structure is 

proven to be NP-complete. Therefore, decision trees are substantially influenced by sampled training 

datasets. Consequently, robust 2D and 3D linear/non-linear predictors were developed for the 

classification of the agonists and antagonists of the 5-HT1A receptor, by data mining 1697 diverse ligands 

from the GLIDA 126 database. First, the properties of the human 5-HT1A agonists and antagonists were 

analyzed and compared. Subsequently, intrinsic biological functions of the ligands were classified via 

support vector machine (SVM) algorithm, invented by Vapnik. SVM is a popular classification algorithm 

in many fields. As the parameter regularization is built into a constraint optimization, it generally tends 

not to overfit training datasets. In SVM, compound structures were mapped to high dimensional 

descriptor vectors, called molecular fingerprints. When 2D molecular fingerprints were used as descriptor 

vectors, polynomial kernel, RBF kernel (Radial Basis Function) and Tanimoto kernel were used to 
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develop non-linear classifiers. Furthermore, a novel Topomer kernel is proposed to incorporate the 

concept of 3D fragment similarity. Different from traditional fingerprint representation of compound 

structures, the Topomer kernel in the SVM does not require an explicit structure-descriptor mapping 

mechanism. Instead, the Topomer similarity score between any pair of compounds suffices to train a 

model, which is an application of “kernel trick”. The rationale of these algorithms is supported by the 

principle that an active compound usually behaves as an agonist if it structurally resembles agonists, and 

as an antagonist if it structurally resembles antagonists. Test calculations showed that the SVM yielded 

average 88.3% to 92.3% prediction accuracy with five types of molecular fingerprints and three non-

linear kernels (Polynomial, RBF and Tanimoto kernels), and the Topomer kernel produced average 90.9% 

prediction accuracy.  

5.2  METHODS, MATERIALS AND CALCULATION 

5.2.1 Support Vector Machine 

The motivation and concepts of Support Vector Machine (SVM) have been brought up in 4.3.2. Continue 

with the standard setting of linear SVM: 

Maximize Lα = ∑ 𝛼i −
1
2
∑ 𝛼i𝛼j𝑦i𝑦j〈𝐱i, 𝐱j〉n
i,j=1

n
i=1                  (5-1) 

Subject to ∑ 𝛼i𝑦i = 0n
i=1  with 0 ≤ αi ≤ C ∀i, i = 1, …, n 

Once we have αi, vector w can be recovered by equation, w =∑ 𝛼i𝑦i𝐱in
i=1 . Sometimes a linear 

classifier in the original feature space fails to identify the pattern of non-linear observations, e.g. using a 

linear classifier to learn an XOR function. This problem could be tackled by mapping the non-linear 

observations to some higher dimensional feature space: x → φ(x), in which the data are linearly 

separable. The linear classifier in the higher dimensional space may correspond to a non-linear hypothesis 

in the original feature space.  Nevertheless, it is rather difficult to identify an appropriate mapping 

function, φ. In equation (5-1), observations 𝐱i  and 𝐱j  only appear as inner product, 〈𝐱i,𝐱j〉. After the 

observations are mapped by function φ, the observations appear as the inner product in the new feature 

space, K�𝐱i, 𝐱j� = 〈φ(𝐱i), φ(𝐱j)〉 . Therefore, the mapping function φ does not have to be identified 

explicitly, as long as the inner product in the higher dimensional space, K�𝐱i, 𝐱j� , can be solved. This 
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technique is named as “kernel trick”, and function K�𝐱i, 𝐱j� is called “kernel” function. This important 

character enables us to derive a SVM model only based on the relationship between any pair of training 

samples without knowing their vector representation. In this case, the prediction becomes 

sign(∑ 𝛼i𝑦iK(𝐱in
i=1 , 𝐱test) + b) for a given testing case xtest, where xi is the ith training sample. 

  In this study, four types of popular kernel functions were considered. A standard support vector 

machine employs the linear kernel (eq. 5-2). Polynomial kernel (eq. 5-4) and RBF kernel (eq.5-5) have 

been applied widely, delivering decent performance in many applications. Thus, the polynomial and RBF 

kernel were tested along with other kernel functions. The Tanimoto kernel function (eq. 5-6), which has 

been used intensively in cheminformatics, incorporates prior knowledge on how to calculate chemical 

similarity.  

  Besides these four popular kernel functions, we propose a novel kernel function, Topomer kernel, to 

integrate the concept of 3D similarity into SVM. Sybyl Topomer Search directly generates 3D similarity 

scores, which can be plugged into the Topomer kernel function (eq. 5-3) for model training. Conversely, 

it is difficult for non-kernel machines, e.g. naive Bayes classifier, to make use of this information. “A 

topomer is a specific alignment or pose of a molecular fragment, prescribing both its conformation and 

position” 164. In the Topomer similarity algorithm, the molecule is split into two or three fragments and 

the similarity of two molecules is evaluated by the similarity between the topomers of these fragments. 

Generally, the Topomer similarity considers both overall steric and pharmacophoric features, which 

enables it to function as a powerful 3D similarity tool in both virtual screening and QSAR studies 165-166.  

Klinear(𝐱i, 𝐱j) = 〈𝐱i, 𝐱j〉                                     (5-2) 

KTopomer�𝐱i, 𝐱j� = (1 − Topomer(𝐱i,𝐱j)
maxi,j Topomer(𝐱i,𝐱j)

)d                                                (5-3) 

Note: for consistent notation, assume Topomer distance and Topomer kernel are calculated from 

virtual vector xi. 

Kpolynomial�𝐱i, 𝐱j� = (〈𝐱i, 𝐱j〉 + 1)d                        (5-4) 

KRBF�𝐱i, 𝐱j� = exp ( −g�𝐱i−𝐱j�
2  )                                                                   (5-5)    

KTanimoto�𝐱i, 𝐱j� = 
〈𝐱i,𝐱j〉

〈𝐱i,𝐱i〉+〈𝐱j,𝐱j〉−〈𝐱i,𝐱j〉
                                                             (5-6)   
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5.2.2 Materials and Calculations 

A collection of 1102 5-HT1A agonists and 595 5-HT1A antagonists was retrieved from the GLIDA 

database 125-126. The whole 5-HT1A data set was randomly split into 10 different training and testing sets, 

with 75% agonists and antagonists representing the training sets and the remaining forming the testing 

sets. MACCS, Unity, FP2, Molprint 2D and PubChem fingerprints were generated for all the training and 

testing compounds. MACCS and PubChem fingerprints are dictionary-based fingerprints, each dimension 

of which indicates the presence or absence of a set of predefined fragments 167. Unity and FP2 fingerprints 

encode atom-path patterns with variable length. Molprint 2D fingerprint 168-169 is a circular atom 

environment fingerprint, which depicts all the neighboring atoms around each central heavy atom. Tripos 

Sybyl was used to calculate the Topomer distance, Topomer(𝐱i, 𝐱j), between any pair of compounds. 

  The performance of linear, polynomial, RBF and Tanimoto kernel functions was measured together 

with five types of fingerprints, resulting in 20 different models (descriptor × kernel). Another SVM model 

was only specified by Topomer kernel, as Topomer distance was a special descriptor. For a given SVM 

model, 10 rounds of training were carried out by 10 different training sets, and the prediction accuracy 

was evaluated through the corresponding testing data sets. Predictive SVM model creation and evaluation 

were carried out with the svmpath software package 170. The svmpath implementation discovers the entire 

path of the SVM solution and provides an interface for user-defined kernel functions. The regularization 

and kernel parameters were determined by 10-fold cross-validation. 

5.3 RESULTS AND DISCUSSION 

The focus of this section is on the classification of human 5-HT1A ligands. Firstly, we demonstrate that 

some general molecular properties, such as properties mentioned in Lipinski’s Rule-of-Five and the 

number of rotatable bonds, exhibit limited discrimination power, as expected. Interestingly, the significant 

difference between intra-class and inter-class similarity measured by molecular fingerprints suggests the 

possibility of building a predictive agonist-antagonist classifier using these fingerprints. Next, the 

performance of different combinations of kernels and fingerprints is retrospectively investigated and 

analyzed through cross-validation.  

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt�
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5.3.1 Molecular Properties of Agonists and Antagonists 

The distribution of five molecular descriptors of 5-HT1A agonists and antagonists is plotted in Figure 5-2, 

including the properties mentioned in Lipinski’s Rule-of-Five and the number of rotatable bonds. The 

average molecular weights for agonists and antagonists are 373.75 and 414.05 Dalton, respectively. 

Accordingly, agonists possess on average 2.78 H-bond acceptors, while antagonists have on average 3.07 

H-bond acceptors. The analysis of rotatable bonds reveals that antagonists are relatively more rigid 

compared to agonists. The results are congruent with the TOGGLE model provided by Schwartz et al171. 

The flexibility of agonists is suggested through induction of a common molecular activation mechanism 

involving TM-V, TM-VI and TM-VII of the GPCR receptor. A recent publication on the human A2A 

adenosine receptor validates this hypothesis 172.  According to the TOGGLE model, agonists should be 

more flexible in order to adjust their conformation with the receptor’s conformational changes. 

Antagonists, however, are rigid and can hinder the movement of the receptor helixes upon binding 162. 

The subtle differences in these descriptors can hardly distinguish agonists from antagonists.  

 

 
 

Figure 5-2: The distribution of molecular properties 5-HT1A agonists and antagonists 
The properties include molecular weight, cLogP, the number of H-bond acceptors, the number of H-bond 
donors and the number of rotatable bonds.  
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Figure 5-3: Intra-class and inter-class similarity of 5-HT1A agonists and antagonists.  

 

Principal component analysis is a popular technique for dimension reduction and visualization. The 

principal components are linear combinations of original features and capture the maximum variance of 

high-dimensional samples. N-dimensional data usually produces N components, the variance of which is 

in descending order. Figure 5-4 plots the first two principal components of the reported five molecular 

properties. Agonists and antagonists are colored differently in this transformed chemistry space. The 

standard deviations of the first two principal components are 1.52 and 1.10, and the standard deviations of 

omitted components are 0.89, 0.70, and 0.44. Agonists and antagonists have significant amounts of 

overlap in the new coordinate system, suggesting that performing data mining on these traditional 

molecular properties may only yield limited accuracy. 

 
Figure 5-4: Principal component analysis of five molecular descriptors. 

The scatter plot of the first two components from molecular weight, cLogP, number of H-bond donors, 

acceptors and rotatable bonds.  
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Even though agonists share certain similarity with antagonists, the examination of intra-class and inter-

class similarities using compound library comparison173. Figure 5-3 suggests that they retain distinct 

molecular fragments (The distribution was generated by Tripos Sybyl Selector.  Intra-class similarity is 

defined as the pairwise Tanimoto coefficient calculation within agonist or antagonist compound collection; 

inter-class similarity refers to the pairwise compound comparison between the agonist and antagonist 

datasets.).  The average intra-class Tanimoto similarity of agonists and antagonists are 0.88 and 0.87, with 

a standard deviation of 0.11 and 0.12, respectively. On the other hand, the average inter-class Tanimoto 

score is 0.71 with a standard deviation of 0.11. The difference between intra- and inter-class similarities 

suggests the possibility of building a predictive agonist-antagonist classifier by data mining the structural 

patterns that define such similarity. 

5.3.2 Classification Performance Using Fingerprints 

The results of systematic comparisons of different molecular fingerprints and kernel functions are 

summarized in Figure 5-5 and Table 5-1. The average prediction accuracy of SVM models ranges from 

80.4% to 92.3%. As shown in Figure 5-5, non-linear classifiers that are derived from polynomial, RBF and 

Tanimoto kernel functions generally outperform linear classifiers. 

 

 
 

Figure 5-5: The performance of kernel and fingerprint 

The boxplot showing the distribution of prediction accuracy with combinations of molecular fingerprints 
and kernel functions.  
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Table 5-1: Average prediction accuracy of fingerprint/kernel combinations.  

 Linear Polynomial RBF Tanimoto 

FP2 0.878 0.919 0.919 0.912 

Unity 0.883 0.913 0.919 0.918 
MACCS 0.804 0.883 0.897 0.896 

PubChem 0.846 0.888 0.903 0.900 

Molprint 2D 0.912 0.905 0.923 0.909 

The results are calculated as the ratio between correctly predicted compounds and the total number of 

testing compounds out of ten rounds of validation. 

 

 

Out of 10 rounds of test calculations using the MACCS fingerprint as descriptor, the highest prediction 

accuracy of linear SVM models, which could be regarded as default approach for SVM, is still lower than 

the worst performance of any non-linear SVM models (Figure 5-5). The average performance of FP2, 

Unity and PubChem fingerprints with linear kernel is 87.8%, 88.3% and 84.6% respectively, which are 

approximately Δ 3% - 6% lower compared to non-linear kernels (Table 5-1). This outcome suggests that 

compound fragments may not make straightforward additive contributions to ligand-receptor interactions, 

i.e. considering the simultaneous influence of two or more functional groups could improve the quality of 

models. In this case, a non-linear model is a possible solution to capture the interaction among fragments. 

Although non-linear kernels outperform standard linear functions for these four types of fingerprints, 

Figure 5-5 shows that the Molprint 2D fingerprint consistently yields rigorous predictions regardless of 

kernel functions, with an average accuracy ranging from 90.5% to 92.3% (Table 5-1). This could be 

explained by the high sparsity and high dimensionality of the Molprint 2D fingerprint. In Molprint 2D, 

each heavy central atom and its surrounding heavy atoms uniquely define a pattern. In this study, the 

entire agonist and antagonist compound collection generates 6839 Molprint 2D patterns, while the lengths 

of FP2, Unity and MACCS fingerprints are 1024, 992 and 166, respectively. Out of 6839 Molprint 2D 

features, the number of features that a compound possesses is actually equal to the number of its heavy 

atoms, resulting in high sparsity. The purpose of kernel functions is to map original features to a higher, 

possibly infinite dimensional space so that a better linear classifier could be obtained in the new space. As 

Molprint 2D has already defined numerous features, a linear classifier is adequate to solve the problem 

and a solution in another high dimensional space does not necessarily lead to a significant improvement.  

Among non-linear kernels, RBF kernel and Tanimoto kernel are generally superior to the polynomial 

kernel although their performance is quite similar. Furthermore, Figure 5-5 and Table 5-1 show that the 
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RBF kernel outmatches the other three kernels no matter which type of fingerprint is used. Molprint 2D is 

the most favorable fingerprint because of its rich information, consistency and SVM kernel independency. 

Following Molprint 2D, FP2 and Unity fingerprints produce similar results, roughly 88% accuracy for 

linear kernel and 91% - 92% for non-linear kernels. PubChem and MACCS fingerprints could be ranked 

as last, given their relatively lower performance compared to FP2 and Unity (Table 5-1). As previously 

mentioned, Molprint 2D, FP2 and Unity fingerprints specify a set of rules for generating structural 

patterns, instead of predefining structural fragments or patterns. Thus, the interpretation of these 

fingerprints depends on the presented compound collection. On the other hand, PubChem and MACCS 

fingerprint preset a look-up table or structure dictionary. In this case, primal functional groups pertaining 

to distinct pharmacological or physico-chemical properties may not be readily defined in MACCS and 

PubChem fingerprints, but they may be well traced in FP2, Unity and Molprint 2D descriptors. To 

summarize, the best 2D SVM model is derived from the combination of Molprint 2D fingerprint and a 

RBF (or Gaussian) kernel, which exhibits 92.3% average accuracy on ten testing datasets. This 

conclusion is also consistent with Wasserman et al.’s findings174. 

5.3.3 Topomer Distance Kernel  

As previously mentioned, Topomer distance reported by Sybyl is an efficient 3D similarity metric and 

somewhat better than the traditional approach of 2D Tanimoto similarity175. In this section, Topomer 

kernel combined with Topomer distance is compared to the top-performing kernel, Radial Basis kernel, 

and 2D fingerprints, and the results are plotted in Figure 5-6.  

 
 

Figure 5-6: The comparison of Topomer kernel and RBF kernel 

The boxplot shows SVM prediction accuracy with Topomer distance and Topomer kernel, compared with 

traditional 2D fingerprints and RBF kernel. 



119 
 

 

Overall, using Topomer distance in SVM shows decent classification power with an average 90.9% 

accuracy. This is slightly better than the RBF kernel with MACCS and PubChem fingerprints. 

Nevertheless, this approach does not necessarily outperform the RBF kernel with other fingerprints, 

since the “gap” is statistically insignificant. In many virtual screening processes, 2D fingerprints 

perform better than 3D fingerprints or pharmacophore features176. The conclusion from our study is 

not an exception. Heuristically, 3D descriptors and 3D similarity metrics are supposed to be 

superior to traditional 2D approaches, especially when a query compound has a different scaffold 

from currently known compounds. Other work suggests that 3D descriptors can provide 

competitive similarity searching results in some scaffold hopping-oriented virtual screening 177.  

 

Consider an extreme case shown in Figure 5-7. Both compounds (L000022 and L000008) cannot be 

correctly classified by any 2D approaches in this study, as they have identical 2D fingerprints. Their 

Topomer distance is 0.26, indicating remarkable pairwise similarity. Generally, compounds with 

Topomer distance below 185 are regarded as similar 165-166, and identical compounds have zero Topomer 

distance. Unfortunately, the SVM model failed to identify L000008 as an antagonist using Topomer 

distance, when both compounds were present in the testing dataset. Recently, Guha et al. developed an 

index to detect the molecules that are very similar but have a large difference in activity. This 

phenomenon is named as “activity cliff” 178. In our case, the functionality of L000022 and L000008 

against the 5-HT1A receptor can be considered as another cliff, i.e. a functionality cliff. The functionality 

cliffs may provide some insights into the relationship between structure and functionality of GPCR 

ligands. 

 

 

 
 

Figure 5-7: Two stereoisomers that have distinct biological functionality 
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5.3.4 Model Interpretation 

In this study, linear classifiers and non-linear classifiers have been developed through SVM training 

algorithm. Linear classifiers make classifications based on a linear combination of structural fragments or 

features. As mentioned in the Methods section, the prediction of a testing sample is formulated as ƒw,b(x) 

= sign(wTx + b) in vector notation, or  ƒw,b(x) = sign(∑wixi + b), where xi ∈ {𝟎,𝟏} is one dimension of 

molecular fingerprints and represents a specific structural pattern. Note that x is descriptor vector; xi 

represents the descriptor of the ith compound, and xi is the ith element of vector x. 

Accordingly, the corresponding coefficient wi determines the contribution of the pattern to the final 

prediction. The pattern i that has a large associated |wi| has more influence on the prediction than the 

patterns with smaller |wi|. In other words, examining heavily weighted structural patterns may highlight 

the substructures associated with ligand functionality. The optimization of equation (1) yields a set of 

coefficients for support vectors, i.e. 𝜶, and w can be solved by equation w = ∑ 𝛼i𝑦i𝐱in
i=1 . In this section, 

one example is given to illustrate a linear SVM model that is developed on the whole agonist/antagonist 

dataset using PubChem fingerprint as descriptor.  

 

 

 
 

Figure 5-8: Histogram displaying the distribution of elements in vector w. 

 

 

Figure 5-8 shows the distribution of elements in vector w, i.e. wi. As shown, the majority of wi reside in 

interval (-0.5, 0.5), suggesting that most of predefined PubChem features are possibly irrelevant to ligand 
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functionality. Only 26 patterns possess an absolute weight larger than 5, some of which are shown in 

Table 5-2. Besides certain substructures, distinct ring systems are observed in agonists and antagonists. 

According to the model, agonists prefer saturated or heteroatom aromatic rings. In contrast, simple 

aromatic rings are frequently observed in antagonists. Thus, extra caution should be taken to correlate 

these features with chemical modifications in order to achieve the desired biological profile, which was 

pointed out by Wassermann et al174. The support vector machine aims at minimizing generalization error, 

not causal inference. 

 

 

Table 5-2: List of structural patterns emphasized by a linear SVM classifier.  

 

Index Fingerprint Annotationa  Favored 
by 

Weightb 

187 >= 2 saturated or aromatic nitrogen-

containing 6-member rings  

Agonist 5.88 

194 >= 3 saturated or aromatic nitrogen-

containing 6-member rings 

Agonist 6.41 

650 O=,:C-,:N-,:C=,:O Agonist 8.22 

698 O-,:C-,:C-,:C-,:C-,:C-,:C-,:C Agonist 9.12 

860 CC1C( C )CCC1 Agonist 5.81 

    

257 >= 2 aromatic rings Antagonist -9.40 

261 >= 4 aromatic rings Antagonist -8.34 

597 O=,:C-,:C-,:C:C Antagonist -11.44 

647 O=,:C-,:N-,:C-,:N Antagonist -7.66 

674 N-,:C-,:N-,:C:C Antagonist -9.63 
a The implementation of PubChem fingerprint comes from the CDK software package, so the fingerprint annotation 

may not completely conform to PubChem standards. The substructures are given in SMILES or SMARTS notation. “=” 

means double bond, “-“ means single bond, “:” means aromatic bond, and “=,:” means either double bond or aromatic 

bond. 
b In this study, agonists are labelled as +1, while antagonists are labelled as -1. Thus, the presence of a pattern with 

positive weight “votes” for agonists or antagonists otherwise.  
c The index is zero-based, and it corresponds to bit position in the PubChem fingerprint. The fingerprint annotation is 

the description of each bit represented in the fingerprint. The last two columns show which group favors the patterns and 

their weights (wi) in the prediction. 
 

 

An interpretation of a non-linear classifier is more complicated, as the mapping mechanism original 

feature space x, 𝐱 ∈ {0, 1}d, to Hilbert space φ(x) is implicit. Therefore, it is impossible to explain the 
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model in the “feature level”.In the SVM methodology, the optimal decision boundary is only related to a 

few training observations, called support vectors. The presence or absence of other “non-support” vectors 

does not affect the model development. In the non-linear case, the prediction of a testing sample is given 

by the equation sign(∑ 𝛼i𝑦iK(𝐱in
i=1 , 𝐱test)  + b), which consists of two components, support vector 

coefficients 𝜶  and “similarity score” between training and testing compounds. The final prediction 

generally is contributed by training compound i that shows a high similarity to the testing compound 

(K(𝐱i, 𝐱test)) and is heavily weighted by the support vector coefficient 𝛼i. As the decision boundary is 

determined by support vectors, we can examine the training compounds associated with a large value of 

𝛼i . The SVM model developed on all labeled compounds with Topomer kernel is illustrated. The 

distribution of 𝛼i𝑦i is characterized in Figure 5-9.  

 

 

 
 

Figure 5-9: The distribution of support vector coefficient 

The X-axis shows the product of support vector coefficient 𝜶𝐢 and compound label 𝒚𝐢. 

 

 

Similar to the appearance of Figure 5-8, the majority of training samples are not support vectors, except 

that the distribution of support vector coefficients has “thick tails” due to optimization constraint. The 

number of support vectors (𝛼i > 0.1) is 822, which is 48.4% of the whole training set. Mattera and 

Haykin 179 propose that a robust model may accommodate the condition that 50% of training data are 
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support vectors. Empirically, a large percentage of support vectors suggest overfitting the training data, 

while a lower percentage of support vectors may indicate lack-of-fit.  

 

5.4 CONCLUSION 

This chapter reports the investigation of linear and non-linear support vector machine (SVM) classifiers 

with the intention to distinguish agonists from antagonists of the human 5-HT1A receptor. The choice of 

molecular descriptors and kernel functions in SVM has been thoroughly discussed and analyzed. The test 

calculation shows that the Molprint 2D fingerprint, combined with RBF kernel function, yields the best 

prediction accuracy. Another innovation of the presented work is the integration of a 3D Topomer 

similarity distance into SVM through the proposed Topomer kernel function, without explicit vector 

representation of compounds. The mechanism of linear and non-linear SVM classifiers is illustrated by 

examining coefficient vector w and support vector coefficient vector α, respectively. Although only the 

classification of 5-HT1A agonists and antagonists is presented here, linear and non-linear SVM, as a 

generic classification tool, may be applied to address other challenges in computer-aided drug design.  
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6 GPU-ACCELERATED COMPOUND LIBRARY 
COMPARISON 

 

 
 

 

Chemical similarity calculation plays an important role in compound library design, virtual screening, and 

“lead” optimization. This chapter presents a GPU-accelerated method for all-vs-all Tanimoto matrix 

calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA 

parallel programming technology, the algorithm is up to 39 times superior to the existing commercial 

software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is 

nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are 

used for Tanimoto calculation. The GPU program that implements this new method takes about 20 

minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 

10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. 
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6.1 INTRODUCTION 

Combinatorial chemistry generates a large number of compounds and boosts the growth of various 

screening libraries. Thus, analysis and data mining of the vast quantity of compounds significantly 

contribute to the success of both virtual screening and high-throughput screening.180 Among the analysis 

schemes, chemical similarity calculation is a frequently used method in computer-aided drug design.181 

The concept of chemical similarity or molecular similarity is also heavily involved in molecular diversity 

analysis and combinatorial library design. Many methods have been established for this purpose, covering 

a wide range of molecular descriptors and data mining algorithms.66, 182-187 

Various cheminformatics algorithms have been developed for chemical similarity measurement. The 

Tanimoto coefficient between molecular fingerprints is still the most popular similarity metric, because of 

its computational efficiency and its relevance to biological profile 188-189. In addition, Database 

Comparison program in Tripos Sybyl98 uses Tanimoto coefficient to characterize the degree of similarity 

or overlapping between two compound libraries.190 Furthermore, Tanimoto calculation is also associated 

with modern machine learning algorithms, ranging from supervised kernel machine191 to unsupervised 

compound clustering.192-193 In these applications, an all-vs-all Tanimoto matrix, which contains Tanimoto 

coefficients between all pairs of compounds, needs to be calculated. This results in O(N2) time 

complexity, i.e., quadratic in the size of libraries. Despite the advance in computer hardware, exploring 

large chemical libraries, such as PubChem library, remains a substantial challenge.194-195 

With the emphasis on “green high performance computing”, the development of modern graphics 

processing units (GPU) points out potential solutions to these challenges. GPUs are specialized 

microprocessors for graphic rendering. Modern GPUs feature higher memory bandwidth and computing 

throughput in terms of floating point operations per second (FLOPS), compared to CPUs. Recently, GPUs 

have been applied to quantum chemistry and molecular dynamics, 196-197 as well as Tanimoto 

calculation.198-200 Haque et al.198  and Liao et al.199 reported sparse vector algorithm for all-vs-all 

Tanimoto matrix calculation on GPUs. The established sparse vector algorithm is proficient to process 

high-sparsity fingerprints. 

This chapter introduces a new algorithm to calculate Tanimoto coefficients between pairs of 

compounds, and to perform compound library comparison on GPUs. Different from Haque’s and Liao’s 

work , this algorithm achieves better performance when processing low-sparsity molecular fingerprints. 

Furthermore, compound library comparison can be executed on GPUs after Tanimoto coefficients are 

solved. In the present studies, we start with algorithm design, and then compare its performance with 

existing GPU and CPU algorithms using three different chemical libraries and three CPU or GPU systems. 

The results show that the program that implements this novel approach runs up to 39 times faster than the 
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Sybyl Database Comparison program and nearly 10 times faster than the existing GPU-based sparse 

vector algorithm. Furthermore, the program completes the calculation of 324G Tanimoto coefficients in 

20 minutes, for comparing 10K Active Probes compounds with PubChem library. The algorithm is 

implemented with graphical user interface (GUI) for ease of use. The binary, source code and user 

instruction are available at http://www.cbligand.org/gpu. The program can be customized to adapt any 

binary fingerprints and carry out kNN (k-nearest neighbor) search. 

6.2 METHODS AND CALCULATIONS 

6.2.1 Overview of Compound Library Comparison 

The concepts and details regarding the GPU-accelerated compound library comparison are described in 

this section. In cheminformatics, Tanimoto coefficient is one of the most popular chemical similarity 

indices, and is usually calculated based on binary molecular fingerprints. The Tanimoto coefficient 

between a pair of compounds that have molecular fingerprints a and b can be formulated as: 

abba

ab

NNN
NbaTanimoto

−+
=

)(
),(

 
where Nab is number of common “1” bits that occur in both fingerprint a and fingerprint b; Na is 

number of “1” bits in fingerprint a; Nb is number of “1” bits in fingerprint b.  In our calculation, Tanimoto 

coefficient is computed with Unity98 fingerprint as illustration, whereas other fingerprints can be applied 

as well. Unity fingerprint is a 992-bit binary vector, which encodes the presence or absence of a set of 

predefined structural patterns. 

The compound library to be compared to is named as reference library, while the other compound 

library is named as candidate library. The goal is to characterize how well the candidate library is 

represented in the reference library. Among established programs, Tripos Sybyl 190 examines the 

Tanimoto similarity between each candidate compound and its nearest neighboring compound (most 

similar compound) in a reference library. Let X denote an m × n Tanimoto matrix, in which Xi, j is the 

Tanimoto coefficient between the ith compound in candidate library and the jth compound in reference 

library. Finally, the distribution of y indicates the degree of overlapping between the two libraries, where 

y is an m-element vector and yi = max1≤ j ≤ n Xi, j for 1≤ i ≤ m. 

 

http://www.cbligand.org/gpu�
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Figure 6-1: Flowchart of similarity calculation on GPU 
The general workflow of compound library comparison on the computer hardware where a GPU is 

located 

 

Figure 6-1 shows the general diagram for compound library comparison on GPUs. First, Unity 

fingerprints are indexed and transferred to allocated graphical memory. Next, depending on the format of 

the indexed fingerprints, “Sparse Vector” kernel or “Integer Fingerprint” kernel is launched on a GPU to 

calculate the Tanimoto matrix, X. After the Tanimoto matrix calculation, a parallel reduction kernel is 

executed to identify the maximum of each row of X, i.e. yi. Finally, the distribution of yi is examined 

through computing and displaying its histogram.  
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6.2.2 Integer Fingerprint Algorithm on GPUs  

Tanimoto equation consists of three elements: Na, Nb and Nab. In library comparison, the number of “1” 

bits of each compound, Na or Nb, is used repeatedly. Thus, it is wise to pre-calculate Na and Nb in the 

fingerprint indexing procedure. In this algorithm, binary molecular fingerprints, such as Unity fingerprint, 

are saved into 32-bit integers. This approach reduces time and space complexity for low-sparsity 

fingerprints. First, one integer is capable of representing 32 fingerprint bits, so only 124 bytes are required 

to save the whole Unity fingerprint of any compound (Unity fingerprint has 992 bits). Furthermore, the 

throughput of calculating Nab can be guaranteed by efficient intrinsic “&” operator and population count 

(pop-count) instructions on GPUs. The “&” operator finds the common “1” bits between two 32-bit 

fingerprint fragments (A∩B), while the pop-count instruction returns the number of the common “1” bits. 

Therefore, the total number of common “1” bits between two fingerprints, i.e. Nab, can be obtained 

through applying “&” and pop-count instructions on every 32-bit fingerprint fragment.  

In GPU parallel programming, the ith thread block (or virtual GPU core) is responsible for the ith row 

of the Tanimoto matrix, Xi,●, and every thread in the block calculates one or more elements of Xi,●. Each 

thread block therefore compares a candidate compound to the whole reference library, and every thread in 

the block calculates the Tanimoto coefficients between the candidate compound and some reference 

compounds. For coalesced memory access, the reference and candidate library fingerprints are organized 

in column and row major 2D arrays, respectively. Figure 6-2A summarizes algorithm pseudo-code for a 

given thread block, and Figure 6-2B graphically illustrates the calculation procedure.    
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Data:    Na : the number of “1” bits of the ith candidate fingerprint; vector a contains the    
fingerprint fragments of the ith candidate compound; Nj

b 

Begin 

: the number of “1” bits of the jth 
reference fingerprint; vector bj contains the fingerprint fragments of the jth reference compound; 
M: the total number of compounds in the reference library; Dim: the number of fingerprint 
fragments or dimensions. Totally T threads are launched in a thread block (T = 256 in our 
implementation).  

Nj
b 

 

and bj reside in global memory. Fetch Na from constant memory to thread register; Fetch 
vector a from global memory to low-latency shared memory.  

for each thread with index t 
        for batch = 0 to ceil(M / T) - 1    
                j = t + batch × T 
                count = 0; 
                for k = 0 to Dim - 1  
                       tmp =  a[k] & bj[k] 
                       count += popc(tmp)  ‘ intrinsic population count function 
                end k  
                Tanimoto(a, bj) = count / (Na + Nj

b 

        end batch 
 - count) 

end thread t 
End 

(A) 

 
(B) 

 

Figure 6-2: Similarity calculation based on dense-format fingerprint 

(A) The pseudo-code for a GPU thread block to calculate the Tanimoto coefficients between a 
candidate compound and a reference library using integer fingerprint format; (B)Graphical 

illustration of Tanimoto calculation on a CUDA core. The GPU algorithm is designed to count 
the number of common elements between two 32-bit fingerprint fragments in one single step. 

(B)  



130 
 

6.2.3 Sparse Vector Algorithm on GPUs 

The calculation strategy of sparse vector algorithm is similar to the one of integer fingerprint algorithm 

previously mentioned: the ith thread block (or one virtual core) is responsible for the ith row of the 

Tanimoto matrix, and every thread in the block calculates one or more elements of that row. On the other 

hand, the sparse vector algorithm adapts an alternative approach to calculate Tanimoto coefficients 

between pairs of fingerprints, as reported by Haque et al. and Liao et al.198-199  

 

 

 
 

Figure 6-3: Illustration of data structure of sparse vectors.  

(A) original binary fingerprint format; (B) sparse vector format; (C) column major alignment for 
reference library; (D) row major alignment for candidate library 

 

Figure 6-3 illustrates the representation of fingerprints in sparse vector format. Figure 6-3A displays 

the fingerprints of the ith reference and jth candidate compounds in original binary format. Instead of using 

the binary format, the fingerprints can be indexed into sparse vector format as well. As shown in Figure 

6-3B, each element indicates the index, of which the bit is “1” in the binary format, and the indices are 

sorted in an increasing order. In Tanimoto matrix calculation, the fingerprints from reference library and 

candidate library are organized in a column-major (Figure 6-3C) and row-major (Figure 6-3D) layout in 

order to achieve coalesced memory access. Sparse vectors of a compound library are sorted according to 
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vector length with the intention of minimizing the possibility of divergent execution branches. For a 

specific pair of reference and candidate compounds, Figure 6-4 outlines the algorithm to calculate the 

Tanimoto coefficient between them. 

 

Data:    vector a contains the sparse-vector fingerprint of a candidate compound, a resides in 

GPU’s shared memory; Na : the length of vector a; vector b contains the sparse-vector fingerprint 

of a reference compound; Nb : the length of vector b; 

 

Begin 

count = 0; 

i = j = 0; 

while  i < Nb and j  < Na 

        buffer = b [i]          ‘retrieve an element from global memory to thread register 

        while j < Na and a[j] < buffer 

               j++ 

        end while 

        if a[j] == buffer 

                count++ 

        end if  

        i++ 

end while 

Tanimoto(a, b) = count / (Na + Nb - count) 

End 

 

Figure 6-4: Tanimoto coefficient and sparse vector fingerprint 
The pseudo-code for calculating the Tanimoto coefficient between a specific pair of compounds that are 
represented in sparse vector fingerprints   

 

6.2.4 Find Maximum Tanimoto and Create Histogram on GPUs 

A parallel divide-and-conquer algorithm is used to find the maximum values of Tanimoto coefficients. 

Every thread block is in charge of searching the maximum value from one row of the Tanimoto matrix. In 
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a block, threads independently find the local maximum values from disjoint sets of Tanimoto coefficients. 

Then, parallel reduction step determines the global maximum (yi) of each row.  

Despite its simple idea, histogram creation is a non-trivial job on GPUs, because GPUs have a limited 

amount of memory allowing low-latency random access. In this case, GPU threads maintain conflict-free 

counters to create sub-histograms in parallel. Finally, a 100-bin histogram is generated by merging all the 

sub-histograms. This histogram displays the distribution of yi and depicts the degree of similarity between 

two compound libraries.  

6.2.5 Computation Protocols 

The computing performance of the established GPU-accelerated algorithms was evaluated through 

comparing three compound libraries against each other. For the three libraries, 992-bit Unity fingerprints 

were generated by Tripos Sybyl software and formatted into the data structures required by sparse vector 

or integer fingerprint algorithms. 

 

 

Table 6-1:  The number of compounds and coverage statistics for three testing compound libraries.  

 

Librar
y ID 

No. of 
Molecules 

Lowest 
Coverage (%) 

Average 
Coverage (%) 

Highest 
Coverage (%) 

A 9902 5.2 19.8 43.2 
B 24755 5.3 18.7 44.4 
C 56079 2.4 19.1 41.8 

Coverage ratio is defined as the percentage of “1” bits in the 992-bit Unity fingerprint. Library A was 
generated from TimTec 10K-Active-Probes library (http://www.timtec.net/actiprobe-10k.html); Library B 
was generated from TimTec 25K-Active-Probes library (http://www.timtec.net/actiprobe-25k.html); 
Library C was generated from Maybridge Screening Collection. 

 

 

Details regarding the testing compound libraries can be found in Figure 6-1, including the TimTec 

libraries (Library A and B) and Maybridge Screening Collection (Library C). Sometimes, a data entry in 

SDF files may contain two or more separate structures, e.g., compound and organic solvent, and such 

entries have been removed from these libraries. The coverage statistics in Table 6-1 reflects the sparsity 

of Unity fingerprints, when applied on the sample libraries. 

http://www.timtec.net/actiprobe-10k.html�
http://www.timtec.net/actiprobe-25k.html�
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The GPU integer fingerprint and sparse vector algorithms were implemented in our CudaCLA 

program. The executable file, together with source code and documents, is available 

at http://www.cbligand.org/gpu. The program was compiled by Visual Studio C++ 2005 and CUDA 3.0 

toolkit, and implemented with graphical user interface. For comparison studies, we selected three 

computer systems, including:  

● Machine 1: CPU: Intel Xeon 5160 at 3.0 GHz 

● Machine 2: CPU: AMD Athlon 3800+ at 2.0 GHz; GPU NVIDIA Quadro FX 580 (32 CUDA cores 

at 1.12 GHz); NVIDIA drivers: 197.13 

● Machine 3: CPU: Intel Core i7 860 at 2.8 GHz; GPU NVIDIA Geforce GTS 250 (128 CUDA cores 

at 1.78 GHz); NVIDIA drivers: 197.13 

The performance of our GPU program was compared to the commercial Sybyl Database Comparison 
190 program. Sybyl Database Comparison program, as a CPU program, was tested on the three machines, 

while the performance of integer fingerprint and sparse vector algorithms were tested on GPUs of 

machine 2 and 3. It is worth pointing out that the Sybyl Database Comparison program is also based on 

Unity fingerprints. 

6.3 RESULTS AND DISCUSSION 

The GPU-accelerated compound library comparison is developed for the first time using integer 

fingerprint algorithm, and its performance is summarized in Table 6-2 and Table 6-3. For comparisons, 

the performance of sparse vector algorithm is listed in Table 6-4 and Table 6-5. In the tables, the 

calculation time includes the time spent on graphical memory allocation, data transfer, Tanimoto 

calculation using either algorithm, searching for the maximum values, and histogram creation (the 

procedures enclosed by dotted line in Figure 6-1). Tanimoto matrix calculation generally accounts for 

more than 95% of the GPU time. Therefore, kTaninotos/sec (kilo Tanimoto coefficients per second) is 

simply used as performance metric. The results from testing the Sybyl Database Comparison program on 

the three machines can be found in Table 6-6.  

  

http://www.cbligand.org/gpu�
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6.3.1 GPU-based Sparse Vector Algorithm Compared with Published Results 

Our implementation of sparse vector algorithm achieved an average throughput of 28634 kTanimotos/sec 

on GTS 250, the graphics device of machine 3 (Table 6-5). Haque et al. 198 attained 60900 to 64230 

kLINGOS/sec on the same GPU, GTS 250. Despite certain difference between Tanimoto and LINGO, the 

same underlying algorithms find the overlapping structural patterns. In addition, the sparse vector 

algorithm has a linear time complexity in the length of sparse vectors. The average length of sparse 

vectors in Haque’s work ranged from 29.31 to 31.65 out of thousands of possible patterns. On the other 

hand, the average of sparse vectors in our sample libraries ranged from 185 to 196 out of a total of 992. 

Given the lower sparsity of the Unity fingerprints and the longer length of the sparse vectors in this study, 

the performance of our implementation of sparse vector algorithm was comparable to Haque’s results. 

Similarly, Liao et al.199 reported that all-vs-all Tanimoto matrix calculation for PB83 library took 17.1 

seconds on device GTX 280 (240 CUDA cores). In their study, PB83 library contained 27674 molecules, 

and the maximum length of sparse vectors was 459. In our case, the library comparison of Library B to 

itself (Table 6-5) took 20.45 seconds on GTS 250 (128 CUDA cores). Library B contained 24755 

molecules and the maximum length of sparse vectors was 440, which was similar to PB83. Note that 

GTX 280 had higher memory bandwidth and more cores than GTS 250. Although these experiments were 

carried out with different machines, fingerprints and datasets, the side-by-side analysis showed that the 

performance of our implemented sparse vector algorithm was at the same magnitude of published results. 

Table 6-2: The computation performance using integer fingerprint algorithm on machine 2 

 

Reference and 
Candidate 
Libraries 

Time (sec) Throughput 
(kTanimotos/sec) 

Effective Bandwidth 
(GB/sec) 

A vs A 2.16 45477 5.75 
A vs B 5.30 46284 5.86 
A vs C 11.97 46398 5.88 
B vs A 5.25 46690 5.91 
B vs B 13.30 46086 5.84 
B vs C 29.61 46885 5.94 
C vs A 11.83 46974 5.95 
C vs B 29.58 46934 5.94 
C vs C 68.09 46184 5.85 
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Table 6-3: The computation performance using integer fingerprint algorithm on machine 3 

Reference and 
Candidate 
Libraries 

Time (sec) Throughput 
(kTanimotos/sec) 

Effective Bandwidth 
(GB/sec) 

A vs A 0.47 209507 26.43 
A vs B 0.95 257483 32.68 
A vs C 2.12 261684 33.18 
B vs A 0.94 261884 33.03 
B vs B 2.29 267136 33.90 
B vs C 4.85 286175 36.26 
C vs A 2.00 278064 35.17 
C vs B 4.80 288914 36.63 
C vs C 11.37 276519 35.03 

Table 6-4: The computation performance using sparse vector algorithm on machine 2 

Reference and 
Candidate 
Libraries 

Time (sec) Throughput 
(kTanimotos/sec) 

A vs A 22.11 4434 
A vs B 52.92 4631 
A vs C 122.75 4523 
B vs A 53.33 4596 
B vs B 126.63 4839 
B vs C 295.00 4705 
C vs A 122.14 4546 
C vs B 291.38 4764 
C vs C 674.17 4664 

Table 6-5: The computation performance using sparse vector algorithm on machine 3 

Reference and 
Candidate 
Libraries 

Time (sec) Throughput 
(kTanimotos/sec) 

A vs A 3.68 26636 
A vs B 8.71 28158 
A vs C 20.08 27658 
B vs A 8.63 28413 
B vs B 20.45 29963 
B vs C 47.35 29320 
C vs A 19.53 28429 
C vs B 46.54 29831 
C vs C 107.33 29301 
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6.3.2 Integer Fingerprint Algorithm versus Sparse Vector Algorithm 

Sparse vector algorithm is designed to handle high-sparsity molecular fingerprints. Nevertheless, many of 

the popular molecular fingerprints are binary and have low sparsity, such as Unity, FP2, MACCS, and 

PubChem fingerprints. The integer fingerprint algorithm is capable of attaining higher computation 

efficiency for these types of fingerprints, because it can process many fingerprint “bits” in a single 

iteration. On the contrary, the sparse vector algorithm scans through every present structural pattern to 

search for the overlapping ones. Moreover, the “while” and “if-else” statements in the algorithm easily 

result in divergent execution paths on GPU, which reduces the degree of parallelism. The advantage of 

integer fingerprint algorithm on low-sparsity fingerprint is demonstrated by the experiment. As shown in 

Table 6-4 and Table 6-5, the throughput of sparse vector algorithm varies from 4434 kTanimotos/sec to 

4839 kTanimotos/sec on the GPU of machine 2, and from 26636 kTanimotos/sec to 29963 

kTanimotos/sec on the GPU of machine 3. Integer fingerprint algorithm delivers much higher throughput 

ranging from 45477 to 46974 on the GPU of machine 2 (Table 6-2), and from 209507 kTanimotos/sec to 

288914 kTanimotos/sec on the GPU of machine 3. Among the nine cases, integer fingerprint algorithm is 

9.5 to 10.3 times faster than sparse vector algorithm on machine 2, and 7.9 to 9.8 times faster than sparse 

vector algorithm on machine 3.  

The performance of integer fingerprint algorithm is further assessed by effective memory bandwidth 

(the rate at which data is read from, and stored to graphical memory). The effective bandwidth of library 

comparison using integer fingerprint algorithm can be determined according to the following equation: 

 
Where n is the size of a candidate library, and m is the size of a reference library. Each virtual core 

reads a candidate fingerprint into cache and compares it to the whole reference library. As there are n 

candidate compounds and a Unity fingerprint occupies 124 bytes, the Tanimoto matrix calculation reads n 

× (m + 1) × 124 bytes from graphical memory. The number of “1” bits of reference fingerprints and 

candidate fingerprints are accessed by each core, which brings n × (m + 1) × 4 byte data. The Tanimoto 

matrix has n × m float-type (32-bit) elements. The matrix is accessed twice (matrix generation and 

searching for maximum Tanimoto coefficients). GPU therefore reads and writes n × m × 2 × 4 bytes. 

Finally, the array containing the maximum of each row of the Tanimoto matrix is accessed, which leads 

to input and output of n × 2 × 4 bytes. In fact, the effective memory bandwidth is somehow 

underestimated by this equation, because the total calculation time includes some other procedures, such 

as memory allocation and host-to-device data transfer. 
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As summarized in Table 6-2 and Table 6-3, the implemented integer fingerprint achieved average 

effective bandwidth of 5.88GB/sec on machine 2 and 33.59GB/sec on machine 3. The program from 

NVIDIA SDK17 was used to test peak memory bandwidth, revealing that the GPU of machine 2 had 

12.88GB/sec device-to-device copy bandwidth, and the GPU of machine 3 had 57.36GB/sec device-to-

device copy bandwidth. The program therefore made good utilization of hardware resources. 

Due to the use of intrinsic instructions (“&” operator and population count), integer fingerprint 

algorithm yielded much higher throughput than sparse vector algorithm regarding Tanimoto calculation. 

The analysis on effective memory bandwidth further depicted absolute computation performance. As a 

result, integer fingerprint algorithm is considerably superior to sparse vector algorithm when Tanimoto 

coefficient is measured on low-sparsity fingerprints, e.g., Unity fingerprint. 

6.3.3 Performance of GPU- and CPU-based Programs for Compound Library 

Comparison 

Table 6-6: The computation performance of Sybyl Database Comparison Program  

 

 Machine 1 Machine 2 Machine 3 
Reference and 
Candidate 
Libraries 

Time 
(sec) 

a Effective 
Throughput 
(kTanimotos/sec)  

Time 
(sec) 

a Effective 
Throughput 
(kTanimotos/sec)  

Time 
(sec) 

a Effective 
Throughput 
(kTanimotos/sec)  

A vs A 8.38 11689 34.38 2852 10.58 9267 
A vs B 23.60 10385 90.19 2718 29.38 8343 
A vs C 78.77 7049 306.57 1811 98.02 5663 
B vs A 21.96 11161 86.14 2845 27.78 8823 
B vs B 52.98 11569 208.63 2937 66.17 9260 
B vs C 190.91 7268 748.42 1854 235.45 5895 
C vs A 73.34 7568 284.55 1951 91.59 6061 
C vs B 176.48 7846 689.49 2013 225.55 6152 
C vs C 393.43 7988 1535.34 2047 511.54 6143 

a For easy comparison, the effective throughput is approximated assuming that the program finishes the whole 

Tanimoto matrix calculation, which is not necessarily required in practice. The throughput is in the unit of 

kTanimotos/sec. 

 

 

Table 6-6 shows that Sybyl Database Comparison, as a traditional CPU program, runs fastest on machine 

1, with an average throughput of 9169kTanomotos/sec. Nevertheless, the program yields an average 

throughput of 2336 kTanimotos/sec on machine 2 and 7290 kTanimotos/sec on machine 3. Thus, the 
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performance of Database Comparison program on machine 1 is compared to the GPU program. The GPU 

implementation of compound library comparison using integer fingerprint algorithm shows an average 

5.28 times speedup on the GPU of machine 2 (Table 6-2) in comparison with Sybyl Database Comparison 

program on machine 1 (Table 6-6). Further speedup can be seen on machine 3. Table 6-3 and Table 6-6 

show that the GPU implementation is up to 39.47 times as fast as the CPU program, and 30.44 times 

speedup on average. FX 580 (the graphic device in machine 2) is considered as a low-end or entry-level 

device, as it only has 32 CUDA cores. Nevertheless, the GPU program still runs much faster than the 

commercial CPU program. This is mainly due to the multi-core parallel computing architecture of modern 

GPUs. In the GPU program, multiple threads are launched concurrently for Tanimoto calculation, 

searching for the maximums, histogram creation, and so on.  

Additionally, the GPU program using sparse vector algorithm shows an average 3.26 times speedup 

relative to Sybyl Database Comparison program, when run on machine 3 (see Table 6-5 and Table 6-6). 

Nevertheless, the implementation using sparse vector algorithm is not necessarily as fast as the CPU 

program, when tested on machine 2. The integer fingerprint algorithm significantly outperforms the 

Database Comparison program even on low-end device, whereas the sparse vector algorithm only shows 

moderate speedup on machine 3. These results illustrate the fact that extra attention is required for GPU 

algorithm design and implementation in order to achieve optimal performance. 

6.3.4 Validation on PubChem Database 

The integer fingerprint algorithm was further tested on a large compound database with the intention to 

examine its scalability and consistency. In this experiment, Library A (9902 compounds) was compared 

with 32.79M PubChem structures (by April 2011). The computation was performed on machine 3, and 

324.69G Tanimoto coefficients were generated. Figure 6-5 plots the amount of aggregated time as a 

function of the number of PubChem structures. The whole process took 1279 seconds, and GPU time 

accounted for 94% of it, i.e., 1207 seconds. Thus, the average throughput was 269041 kTanimotos/sec, 

which resembled the results summarized in Table 6-3. Figure 6-5 also reveals that the elapsed time is 

strictly linear to the quantity of processed structures, suggesting that the program generates stable 

throughput regardless of diverse structures.  
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Figure 6-5: The plot of elapsed time versus processed PubChem compounds.  

Dashed line shows the elapsed GPU time as a function of the number of compounds. The GPU time 
includes time allocated for host-device data transfer, Tanimoto matrix calculation, histogram creation, and 
so on (Figure 6-1). The solid line demonstrates the total calculation time. This is equal to GPU time plus 

CPU time. CPU time is for hard drive I/O, task scheduling, etc. 

 

6.4 CONCLUSION 

The ever-growing chemical libraries demand the development of efficient algorithms and programs for 

chemical similarity calculation that plays a fundamental role in cheminformatics. As a similarity index, 

Tanimoto coefficient is widely involved in data mining of small molecules, such as compound clustering, 

diversity analysis, and k-nearest-neighbor search (kNN). The quadratic time complexity in the number of 

compounds could be a problem for these techniques, particularly when large compound datasets are 

presented.  Parallel Tanimoto calculation on modern GPUs points out a potential solution to these 

challenges. In this chapter, we report a GPU-accelerated integer fingerprint algorithm and its application 

for calculating Tanimoto coefficients. The test calculation shows that the integer fingerprint algorithm 

runs up to 10 times faster than the published sparse vector algorithm on GPUs, and up to 39 times faster 

than the CPU-based commercial program. The GPU-accelerated integer fingerprint algorithm produces 

high throughput for low-sparsity binary fingerprint. For example, more than 200 million Tanimoto 
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coefficients can be calculated every second on a decent device, such as GTS 250. With this speed, 

comparing a 9902 Active Probe compounds with PubChem library, that has totally 324G Tanimoto 

coefficients to calculate, can be completed in about 20 minutes. In this study, compound library 

comparison can be interpreted as 1-nearest-neighbor search. This approach could be easily upgraded to k-

nearest-neighbor search by a minor modification (The source code is accessible 

at http://www.cbligand.org/gpu). Additionally, the all-vs-all Tanimoto matrix calculation in the GPU 

program can also be adapted by other algorithms. Currently, we are conducting the application of the 

GPU-based algorithm to modeling quantitative structure-activity relationship for large datasets. 

 

  

http://www.cbligand.org/gpu�
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7 COMPOUND ACQUISITION ALGORITHM 

 

 
In this chapter, a compound acquisition and prioritization algorithm is reported for rational chemical 

library purchasing or compound synthesis in order to increase the diversity of an existing compound 

collection. This method was established based on chemistry-space calculation using BCUT (Burden CAS 

University of Texas) descriptors. In order to identify the acquisition of compounds from candidate 

collections into the existing collection, a derived distance-based selection rule was applied, and the results 

were well supported by pairwise similarity calculations and cell-partition statistics in chemistry space. 

The correlation between chemistry-space distance and Tanimoto similarity index was also studied to 

justify the compound acquisition strategy through weighted linear regression. Then, a case study is 

followed to demonstrate its application in real world chemical synthesis. As a rational approach for 

library design, the distance-based selection rule exhibits certain advantages in prioritizing compound 

selection to enhance the overall structural diversity of an existing in-house compound collection or virtual 

combinatorial library for in silico screening, diversity oriented synthesis and high-throughput screening. 
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7.1 INTRODUCTION 

   Although modern HTS technologies can screen millions of compounds more quickly and cheaply than 

ever before, it is still challenging for a small pharmaceutical company or an academic institution to cover 

the costs in the absence of significant funds. Moreover, interrogating a large number of compounds 

generates unmanageable false positives. Thus, it is particularly necessary and important to build high-

quality compound screening sets for some bioassays that have low screening throughput capacity or are 

limited by the availability of key reagents (e.g., antibodies, primary cells, or whole organism systems). In 

contrast to a large combinatorial screening collection that targets structural variations for structure-

activity relationship (SAR) studies, a high-quality screening compound set built by rational acquisition of 

structurally diverse compounds potentially improves the HTS/HCS hit rate while preserving resources.   

To build a compound collection for virtual screening or high-throughput screening, an ideal strategy seeks 

balanced tradeoff between overall molecular diversity and the number of compounds. Molecular diversity 

may be assessed by the variety of molecular properties, which is encoded by molecular descriptors such 

as physicochemical properties, topology index, or fingerprints.201 Enhancing molecular diversity or 

removing redundancy can be achieved by four categories of approaches: cluster-based method, 

dissimilarity-based method, cell-based method and optimization-based method.202 A cluster-based method 

is implemented to assign compounds into groups so that compounds possess higher within-group 

similarity than between-group similarity.203 Once compound similarity is solved, a hierarchy-clustering 

algorithm, such as neighbor joining, or non-hierarchy algorithm, such as K-means, can be carried out for 

clustering. The motivation for applying a chemical dissimilarity-based method is to maximize the total 

dissimilarity between each pair of nearest neighboring compounds.204 Relying on some linear or non-

linear binning procedure, a cell based method aims to cover more cells with a minimal number of 

compounds, categorizing compounds in the same cell as similar.60 An optimization-based approach 

enhances the diversity by optimizing the object function that may incorporate a set of descriptors to 

measure the molecular diversity in different criteria.205-206 Although the approaches involving molecular 

diversity are frequently mentioned, there is still no widely accepted quantitative procedure for the 

prioritization and acquisition of new compounds to increase the structural diversity of an existing 

compound collection. 

    Among various molecular descriptors, BCUT descriptors58-61 incorporate comprehensive information 

regarding molecular structure, atom property and more into decimal numbers. A general description of 

BCUT descriptors is given in section 2.2.3 Topological Descriptor. Creating BCUT descriptors is one of 

the most popular approaches to construct low-dimensional chemistry space and perform diversity 

analyses. The performance of BCUT descriptors has been validated through previous QSAR studies62-64 
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and successful applications in library design.207-208 While BCUT descriptors demonstrate the relevance of 

generating a representative PubChem library65 and diversity analysis,66 I am expanding their use for the 

acquisition of new candidate compounds from external compound collections, in order to optimize an 

existing in-house screening set and increase its overall diversity. 

    A compound acquisition and prioritization algorithm is established on the Euclidean distance in BCUT 

chemistry space. This method is validated using weighted linear regression between the Euclidean 

distance and similarity index. Results from two case studies demonstrate that the selected subsets of 

external candidate compound collections enhanced the overall chemical diversity of an existing in-house 

screening collection, according to chemistry-space cell partition statistics and similarity index. 

Discussions are also presented on distance cutoff value and disagreement between the chemistry-space 

distance and similarity index. The algorithm provides useful information to facilitate decision-making for 

acquiring new candidate compounds and prioritizing compound syntheses.  

7.2 ALGORITHM DESIGN AND EXPERIMENTAL PROTOCOLS 

7.2.1  BCUT Chemistry Space and Compound Acquisition Protocol 

The established compound acquisition and prioritization algorithm is based on BCUT chemistry-space 

calculation using the protocol reported.65 Briefly,  BCUT descriptors60 are defined by combining atomic 

descriptors for each atom and description of the nominal bond-types for adjacent and nonadjacent atoms 

into BCUT matrices. The value of each chemistry-space coordinate is specified as the highest or lowest 

eigen-value of BCUT matrix. In this project, the Diverse Solutions program (Tripos Sybyl 8.0) 5 was used 

to generate a set of default 2D BCUT descriptors that covered different scaling factors and atomic 

properties, including H-bond donor, H-bond acceptor, partial charge and polarity. The optimal 

combination of descriptors was selected automatically by the program to construct BCUT chemistry 

space, with the restriction that the correlation coefficient between any pair of BCUT descriptors was less 

than 0.25. 
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Figure 7-1: Motivation of compound acquisition protocol 

A graphic representation of BCUT chemistry space to illustrate the concept and effect of the density 
of an existing compound collection. The compound collection with low density (A) sparsely covers the 

BCUT chemistry space, while the one with high density (B) exhausts the chemistry space more 
specifically. The choice of distance cutoff value depends on the density of the existing compound 

collection. 
 
 
 

The computational protocol of the compound acquisition and prioritization algorithm using chemistry-

space distance calculation is summarized below: 

1. Initialization: define BCUT chemistry space and specify a distance cutoff value, c based on 
Distance Threshold calculated below. 

2. Iteration: for each compound, j, in the candidate compound collection, 
a. Calculate its distance to the nearest neighbor from the current compound collection, 

S: 

ij
i

j xyD −= min  

yj is the descriptor vector of candidate compound j, and xi is the descriptor vector of 
compound i in the current compound collection, S. 

b. If the distance to the nearest neighbor Dj > c, then add the compound j into the 
current compound set: S ← S + candidate compound  j. 

c. Go to step 2 to analyze next candidate compound. 
  

This method is rationally justified through the correlation studies between Euclidean distance in the 

BCUT chemistry space and Tanimoto coefficient from MACCS key fingerprints. The results are given 

later.  
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7.2.2  Distance Threshold 

By default, the distance cutoff value, c, is defined as the estimated density of the existing compound 

collection according to the equation, 

∑
=

≠ −=
N

j
jijii xx

N
c

1
,min1

 

where i, j are the compound indices for the existing collection. The density indicates how well the 

chemistry space was explored or exhausted in the previous experiment. Thus, the new candidate 

compounds are also expected to cover the chemistry space in a similar pattern. Figure 7-1 illustrates how 

the density of an existing compound collection affects the choice of acquired compounds. Candidate 

compounds with large distance to their nearest neighbors in the existing collection are considered 

dissimilar to the compounds in the existing collection, and such candidate compounds are recommended 

for acquisition (like points “a” and “b” in Figure 7-1A). On the other hand, the candidate compound, “c” 

in Figure 7-1A, is excluded from the acquisition list due to its short distance to its nearest neighbor, “d”.  

However, the compound, “f” in Figure 7-1B, is still to be acquired, although the distance to its nearest 

neighbor “e” is almost the same as the distance between “c” and “d” (Figure 7-1A). The different 

acquisition decisions for similar circumstance can be explained by the density of two existing compound 

collections. In Figure 7-1A, the established compound dataset may be primarily designed to search the 

chemistry space sparsely. The high-density dataset in Figure 7-1B may explore the chemistry space more 

thoroughly. Therefore, the decision-making relies on the profile of the existing compound collection. In 

this method, the default distance threshold is equal to the density of the existing compound collection.  

7.2.3 Molecular Diversity Analyses 

A structurally diverse compound collection is expected to cover well-defined chemistry space uniformly. 

The chemical diversity of a compound dataset may be measured in a binning procedure209. The binning 

procedure is used to generate “cells” in a multi-dimensional descriptor space. Each dimension is divided 

uniformly into a finite number of “bins”. The bin-definition defines multi-dimensional “cells”, which 

cover the entire space. The chemical diversity could be accessed by counting the number of filled cells. 

As illustrated in Figure 7-2, the concepts regarding a bin and a filled/void cell are given in a hypothetical 

plot of two-dimensional BCUT chemistry space. As shown in the plot, the acquired compound filling a 
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void cell is believed to increase the overall structural diversity. On the other hand, the new compound in 

the cell that already has compounds (red dots) from the existing compound collection does not contribute 

to increase structural diversity and is not recommended to be acquired or purchased.60  

 

 

 
 

Figure 7-2: Two-dimensional chemistry space and filled/void cells  

 

 

In this study, four-dimensional instead of two-dimensional chemistry-space was constructed. The entire 

space was partitioned into 1004 cells with the same volume by dividing each axis into 100 bins equally. 

Each cell was indexed by (I1, I2, I3, I4). Indices Ik were integers ranging from 0 to 99. A cell indexed by 

(I1, I2, I3, I4) represented a subspace R(I1, I2, I3, I4) = { (x1, x2, x3, x4): Ik × 0.1 ≤ xk< Ik × 0.1+0.1, k=1, 2, 3, 

4 }. Finally the number of filled void cells by candidate compounds was sorted out to describe diversity 

increment. 

Candidate compounds could also be compared to an established compound collection to characterize 

the degree of similarity between two compound datasets, according to molecular fingerprint.  This 

approach measures how closely the candidate compounds are represented in the existing compound 

collection by Tanimoto coefficient.14 The degree of similarity between candidate compounds and the 

existing compound collection was evaluated by Database Comparison program (Tripos Sybyl) based on 

UNITY fingerprint, as described below. 
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7.3 RESULTS AND DISCUSSION 

Similar to other drug screening centers or institutes, the University of Pittsburgh Drug Discovery Institute 

(UPDDI) faces the issue of building a high-quality chemical library in terms of library size and structural 

diversity associated with the cost of purchasing and storage.  In this section, the rationality of the 

compound acquisition and prioritization algorithm, together with its application, is presented through 

guiding candidate compound acquisition in order to increase diversity of the current PMLSC screening set 

that contains 230k compounds from the Pittsburgh Molecular Libraries Screening Center (PMLSC, 

pmlsc.pitt.edu). For this illustration, two commercial libraries, TimTec 3k Natural Derivatives Library 

(NDL)210-211 and TimTec 2k Active Probes Library (APL) were selected as candidate compound 

collections, from which compounds were prioritized and selectively deposited into the PMLSC screening 

set.  

 

 

Table 7-1: The specifications of BCUT descriptors for constructing four-dimensional chemistry space 

 

Diagonal Element Off-
diagonal 

Element 

Scaling 
factor 

Remove(R) or 
keep(K) hydrogen 

Use lowest(L) or 
highest(H) Eigen 

value 
GasTchrg 

(Atomic Charge) 
Burden 0.1 R H 

Haccept (HBA) Burden 0.9 R H 
Hdonor (HBD) Burden 0.75 R H 

Tabpolar (polarity) Burden 0.5 R H 
 

 

Four atom properties (partial charge, polarity, H-bond donor, and H-bond acceptor in diagonal elements) 

were considered to calculate BCUT. According to PMLSC screening set, the best combination of scaling 

factor and the choice of eigen-value were selected to construct chemistry space. The value of each BCUT 

descriptor was scaled to range from 0 to 10. The distribution of each BCUT descriptor of the PMLSC 

screening set is shown in Figure 7-3, and the specifications of BCUT descriptors are listed in Table 7-1. 

The correlation coefficient, r2, between any pair of dimensions was less than 0.11, suggesting that every 

dimension independently described different aspects of molecular properties.  
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Figure 7-3: The distribution of four chemistry-space descriptors for the PMLSC screening set 

(a) the histograms of atomic partial charge descriptor, (b) H-bond acceptor descriptor, (c) H-bond 
donor descriptor, and (d) polarity descriptor. 

 

 

In the compound selection or prioritization algorithm, high acquisition priority was assigned to the 

candidate compounds that had large chemistry-space distances to their nearest neighbors in the existing 

compound collection. For the validation of this method, 1991 pairs of compounds were selected 

sequentially from the Active Probes Library (APL) in order to study the correlation between Tanimoto 

coefficient (Tc) and chemistry-space distance through weighted linear regression. MACCS 9 key 

molecular fingerprints were then generated to calculate Tanimoto coefficient for these compounds pairs, 

and their chemistry-space distances were evaluated in the chemistry space defined by PMLSC screening 

set. Figure 7-4A displays the scatter plot of the raw Euclidean distance in chemistry space and the 
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calculated Tanimoto coefficient (Tc) similarity score of 1991 pairs of compounds in APL. The Tc values 

of 1991 compound pairs range from 0.023 to 1.000 and their distances range from 0.002 to 12.824.  

 

 
 

Figure 7-4: Correlation between Tanimoto Coefficient and Euclidean distance in BCUT chemistry space 

(A) The scatter plot between the Euclidean distance in BCUT chemistry space and Tanimoto 
coefficient (Tc) of 1991 pairs of compounds in Active Probes Library (APL). The fitted regression line 
and five labeled outliers are also shown. The Tanimoto coefficients are calculated according to MACCS 
fingerprint; (B) The scatter plot of Tanimoto coefficient (Tc) and transformed Euclidean distance for the 

1991 pairs of APL compounds with the weighted regression line. The weight for each point is its Tc 
value. 

 

 

For a correlation study, the distance in chemistry space was transformed to normalize its variance as a 

function of Tc (Figure 7-4B). As fingerprints were developed to measure compound similarity instead of 

dissimilarity,60 weighted regression was performed to emphasize the significance of high Tc values. 

Figure 7-4B shows the scatter plot of D×2 (D: chemistry-space distance along y-axis) and Tanimoto 

coefficient (Tc along x-axis) of 1991 pairs of APL compounds together with the fitted regression line. 

The regression equation was then solved as: 

 Tc2 ×+=× βαD
 

where α = 6.13, β = -5.23; and the correlation coefficient, r2, was 0.61.  

    The corresponding normal Q-Q plot of regression residuals is shown in Figure 7-4C. Q-Q plot is an 

effective technique to examine the distributions of two sets of samples by plotting quantiles against each 

other. According to the Q-Q plot, the distribution of regression residuals that were the difference between 

fitted values and corresponding observed values was close to standard normal distribution, allowing for 

hypothesis testing to examine the correlation of those two variables. Based on Figure 7-4B, hypothesis 
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testing resulted in a two-sided p-value < 0.0001, which was strongly against null hypothesis 0=β and 

favored alternative hypothesis 0≠β . This statistical result suggested a fine negative correlation between 

the chemistry-space distance and Tanimoto coefficient calculated by MACCS fingerprint. Therefore, 

candidate compounds with large distances to their nearest neighbors were expected to be dissimilar to the 

compounds in the existing compound collection, and acquiring such compounds would efficiently 

enhance the overall chemical diversity. 

    Despite favorable correlations, discrepancies still existed between chemistry-space distance and Tc, as 

illustrated by five pairs of labeled outliers in Figure 7-4A. The structures of the compound pairs are listed 

in Table 7-2. MACCS fingerprint based similarity Tc calculation did not detect the structural difference 

for the compound pair 1 (AP-49 and AP-50), showing a Tc value of 1.0 (Table 7-2). However, the 

distance between them was considered to be relatively large (distance = 1.16) in the BCUT chemistry 

space, which could reflect different π-conjugated systems between two compounds. The subtle feature is 

sometimes important for biological activities. On the other hand, the compound pair 2 (AP-526/AP-527) 

and pair 3(AP-230/AP-231) were quite similar with reported distance of 0.031 and 0.095 respectively, 

while the Tc value was less than 0.85, indicating structural difference between them. The large distances 

between compound pair 4 and pair 5 (distance = 6.65 and 4.61 respectively) were essentially due to the 

BCUT polarity descriptor. 

 

 
 

Figure 7-5: Histogram and probability density 

(A) The histogram of the distances between nearest neighboring compounds in the existing screening 
collection. (B) The normalized histogram with fitted exponential probability density function (PDF). The 

default distance cutoff value is 0.072. 
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Table 7-2: Five pairs of compounds illustrate some outliers in Figure 7-4A.  

 

Compound Pair Distance Tc 

 
AP-49 

 
AP-50 

1.16 1.0 

 
AP-526 

 
AP-527 

0.031 0.44 

 
AP-230 

 
AP-231 

0.095 0.53 

 
AP-1685 

 
AP-1686 

6.65 0.81 

AP-1665 
 

AP-1666 

4.61 0.85 
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For example, the calculated electric dipole of compound AP-1665 was 2.61 Debye, while the dipole of 

AP-1666 was 5.34 Debye (according to original structure and Gasteiger–Hückel charge). Thus, BCUT 

descriptors characterize structural topology together with atom properties and possess certain advantages 

for constructing low-dimensional chemistry space, compared to molecular fingerprint.  

 

 

The distribution of distances between all pairs of nearest-neighboring compounds in the PMLSC 

screening set is shown in Figure 7-5A.  The probability density function (Figure 7-5B) of exponential 

distribution was fit to the normalized histogram: .0,072589.0);exp(1)( ≥=−= xxxf λ
λλ

  

Thus, the expectation of distance between one pair of nearest-neighboring compounds was 0.072. As 

shown Figure 7-5B, λ  could be regarded as the density of an existing compound collection, so λ  was 

the default threshold for compound selection. In the present case, the distance threshold value, c, was 

equal to 0.072.  

    For comparison, different subsets of commercial compound collections (NDL and APL) were 

generated and compared to the current PMLSC screening collection, with the intention to justify the 

compound acquisition method. As shown in Table 7-3, 1648 compounds from NDL (NDL-B) and 1096 

compounds from APL (APL-C) were selected according to the acquisition protocol, using distance 

threshold 0.072. Alternatively, the top 1000 and 500 compounds were selected to create another two 

subsets, NDL-C and NDL-D respectively, after ranking NDL compounds descendingly according to their 

distances to the nearest neighbors from the PMLSC screening set. The same strategy was also applied to 

select 1500 and 500 APL compounds (APL-B and APL-D). 

 

 

Table 7-3: The average and standard deviation of Tc for different NDL and APL compound subsets, 

compared to the PMLSC screening collection.  

Natural Derivatives Library Active Probes Library 
Subset Size Mean/Stdev Tanimoto Subset Size Mean/Stdev Tanimoto 
NDL-A 3000  0.8593±0.11 APL-A 2000 0.8134±0.15 
NDL-B 1648 0.8211±0.11 APL-B 1500 0.7636±0.13 
NDL-C 1000 0.8071±0.11 APL-C 1096 0.7460±0.13 
NDL-D 500 0.7851±0.12 APL-D 500 0.7004±0.13 

The Tanimoto coefficients are calculated by Database Comparison program that is based on UNITY fingerprint. 
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To investigate the correlation between chemistry space distance and Tc in a larger scale, the whole NDL, 

APL and their subsets were compared to the PMLSC screening set using Database Comparison program. 

It is worth pointing out that Database Comparison program characterizes the degree of overlapping 

between two compound collections using UNITY fingerprint and Tanimoto coefficient. As subsets NDL-

C, NDL-D, APL-B and APL-D were not created by compound acquisition protocol, they might possess 

high intra-subset similarity. Database Comparison program was used to examine the between-collection 

similarity, i.e. comparing NDL or APL subsets to the PMLSC screening set, to show the effect of 

chemistry space distance on Tanimoto similarity index. Table 7-3 summarizes the sample mean and 

standard deviation of Tc values for different NDL and APL subsets, when compared to the PMLSC 

screening set. As shown in the table, the subset NDL-A, the whole NDL, possesses average Tc 0.8593 in 

comparison to the PMLSC screening set, whereas the subsets, NDL-B, NDL-C and NDL-D, have average 

Tc values of 0.8211, 0.8071 and 0.7851, when the number of acquired compounds is 1648, 1000 and 500 

respectively. A similar trend is also observed with the APL, which possesses an average Tc value of 

0.8134 to the PMLSC collection. The average Tc values between the APL subsets and the PMLSC 

collection decrease from 0.8134 to 0.7004, as the size of acquired compounds is reduced from 2000 to 

500.  

 
 

Figure 7-6: Distribution of Tanimoto Coefficients from Database Comparison 

(A) The distribution of Tanimoto coefficient (Tc) values for four NDL subsets: NDL-A with 3000 
compounds, NDL-B with 1648 compounds, NDL-C with 1000 compounds, NDL-D with 500 compounds; 

(B)  The distribution of Tanimoto coefficient (Tc) values for four APL subsets: APL-A with 2000 
compounds, APL-B with 1500 compounds, APL-C with 1096 compounds, APL-D with 500 compounds. 

The Y-axis is the percentage of Tanimoto values that fall into every 0.01 interval. 
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The Database Comparison program calculates the Tanimoto between all candidate compounds and their 

nearest neighboring compounds in the PMLSC screening set. Thus, a set of Tanimoto coefficients were 

reported after comparing NDL or APL to the PMLSC screening set, and a histogram was created to 

examine the distribution of these Tc values. The distributions of Tc values are plotted in Figure 7-6A for 

NDL subsets and Figure 7-6B for APL subsets. In Figure 7-6A, the solid line represents the density 

profile of Tc values between all the NDL compounds and their most similar counterparts in the PMLSC 

compound collection in 0.01 intervals. While the data shows 12% NDL compounds with Tc=1.0 to the 

PMLSC screening set (data point not shown in Figure 7-6A), the peak of the curve is around Tc = 0.91, 

indicating a relatively large portion of NDL compounds with Tc = 0.91. The distributions of Tc values 

from NDL subsets with size 1648, 1000 and 500 are represented by a dashed line, a dotted line and a 

dash-dotted line, respectively. Any of the three subsets contains less than 1% of compounds that possess 

Tc = 1.0 to the PMLSC collection. As the size of NDL subsets decreases from 3000 to 500, the 

distribution shifts to the lower Tc value, indicating that smaller subsets tend to be increasingly dissimilar 

to the PMLSC screening set.   

    Figure 7-6B reveals a similar pattern for APL. 15% of APL compounds have Tc = 1.0 to their most 

similar counterpart in PMLSC collection, while none of APL-B, APL-C and APL-D possesses more than 

1% of Tc that is 1.0 (data point not shown in the Figure). The peaks also shift towards the lower value of 

Tc as the size of APL subsets decreases. In general, the correlation between subset size and Tc 

distribution can be explained by the regression study as shown in Figure 7-4 above. Figure 7-4 reveals the 

negative correlation between Tc values and chemistry-space distance. In other words, the Tc value 

between a pair of compounds tends to decrease as their chemistry-space distance increases. As the NDL 

or APL candidate compounds were selected according to the distances to their nearest neighbors, smaller 

subset had larger average distance to the PMLSC screening set. Thus, the smaller subset tended to be 

dissimilar to the PMLSC compound collection, even if the similarity score was calculated by Database 

Comparison program based on UNITY fingerprint (Figure 7-6 and Table 3). While any novel candidate 

compounds would add certain structural diversity to an existing compound collection, the amount of to-

be-acquired candidate compounds should be carefully determined to balance the quality and quantity 

through the choice of distance cutoff value. The density of an established compound collection is the 

recommended distance cutoff value, because it reflects how the compound dataset explores the chemistry 

space. Furthermore, the chemistry-space distance between identical compounds is zero, because identical 

compounds have the same coordinate values. Import of any duplicate candidate compounds into the 

PMLSC screening set is avoided by applying an appropriate distance cutoff value. For example, 12% of 

compounds in NDL were duplicates to the PMLSC screening set and removed from the wish list. 
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Conversely, in the case studies, less than 1% of compounds present in NDL-B, NDL-C and NDL-D 

possessed Tc = 1.0 to the PMLSC screening set. This is attributed to the fact that a pair of compounds 

possessing Tc = 1.0, such as the compound pair 1 (AP49/AP50) from Table 7-2, may not necessarily be 

identical.  

    The similarity assessment from Database Comparison program described the degree of overlapping 

between two compound collections, yet it was unable to provide a quantitative measure of the overall 

diversity increment. Therefore, a “binning” procedure described in Methods section was applied to the 

BCUT chemistry space for diversity assessment. For the binning procedure, the bin size was required to 

determine the volume of “cells” in chemistry space. A large bin size would reduce the sensitivity of 

diversity measurement, where as a small bin size would trap most candidate compounds in void cells and 

make counting the filled void cells meaningless. A reasonable bin size could be determined in 

consideration of the size and density of an existing compound collection, or the regression analysis 

illustrated in Figure 7-4. For this study, the size of one bin was set to 0.1, which was at the magnitude of 

the density of the PMLSC compound collection. 
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Figure 7-7: The number of filled void cell versus the number of acquired compounds 

The plots of the number of filled void cells as a function of the number of candidate compounds that 

are selected sequentially or acquired by the compound acquisition method. Plot (a) is for NDL 

compounds and plot (b) is for APL compounds. 

Figure 7-7 visualizes the number of filled void cells by applying the established compound acquisition 

and prioritization algorithm and gradually relaxing the threshold distance value, c, until all the NDL and 

APL compounds were deposited into the PMLSC screening set. The X-axis denotes the number of the 

deposited compounds, while the Y-axis denotes the number of void cells filled by the corresponding 

compounds. Figure 7-7 shows an approximate linear growth of the number of filled cells (dotted lines), 

when less than 1500 NDL compounds or less than 1000 APL compounds are deposited into the PMLSC 

screening set (data points circled in Figure 7-7). At the early stage, the deposited candidate compounds 

surely filled a void cell due to the large distance to their nearest neighbors in the PMLSC compound 
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collection. As the number of acquired compounds increased, newly acquired ones tended to be closer to 

their nearest-neighbors, and some of them might be located in the same cells where some PMLSC 

compounds were already present. As the circled points marked in Figure 7-7, the derivative of the number 

of filled cells began to decrease after acquiring more than 1500 NDL compounds or 1000 APL 

compounds, respectively. Subsequently, fewer and fewer void cells were filled as more candidate 

compounds were acquired. Finally, the number of filled cells reached a plateau after depositing 

approximately 2500 NDL compounds with 1844 filled void cells, and 1500 APL compounds with 1290 

filled void cells. For comparison, candidate compounds from NDL and APL were sequentially merged 

into the PMLSC compound collection. Because the candidate libraries and the PMLSC screening set were 

prepared independently for the calculation, there was an equal probability to fill a void cell by any NDL 

or APL compound. 

    A close analysis of plots in Figure 7-7 also reveals that the solid lines, representing the number of filled 

cells under the sequential compound acquisition, demonstrate nearly linear growth with the number of 

candidate compounds. The dashed lines in Figure 7-7 represent the difference in the number of filled cells 

between the established compound acquisition method and sequential compound selection. The dashed 

lines reached the plateau when approximately 1700 NDL compounds and 1200 APL compounds were 

acquired. After the plateau of the dashed lines, the diversity analysis showed that the low priority 

compounds did not significantly fill the void cells or increase the diversity of the PMLSC screening set. 

Consequently, the plateau indicated the optimal number of compounds to be acquired under the current 

chemistry space binning procedure. This conclusion was also supported by the number of acquired 

compounds with the default distance threshold, which instructed us to acquire 1648 compounds from 

NDL and 1096 compounds from APL.  

 

7.4 CONCLUSION 

Through the application of BCUT descriptors, I have constructed multiple dimensional chemistry space 

for compound acquisition and prioritization. As pointed out above, high-quality diverse compound 

collections play a significant role in virtual screening and HTS/HCS campaigns. In general, a structurally 

diverse library, or representative subset, is constructed directly or indirectly from compound collections in 

order to minimize the experimental bioassay costs, but this may result in a failure to identify active 

compounds or promising “leads”, namely false negatives. Thus, thoughtfully expanding the screening sets 
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and testing these newly acquired compounds provide opportunities to cover more structural chemistry 

space, while avoiding duplicating the testing of structurally similar compounds. However, the acquisition 

of candidate compounds should be performed in carefully designed chemistry space that is within a 

biological meaningful context, because the interpretation of “diversity” is directly determined by 

chemistry-space coordinates. Cautions should be taken that solely blinded pursue of structural 

dissimilarity may bring in irrelevant compounds and impair the outcome of virtual screening or high-

throughput screening. 

In the compound acquisition protocol, candidate compounds are acquired or deposited into an 

existing compound collection according to Euclidean distance in BCUT chemistry space. In order to 

rationalize this approach, a regression analysis was carried out to model the correlation between 

chemistry distance and Tanimoto coefficient based on MACCS key. Statistical results indicated negative 

correlation between the two variables, supporting the conclusion that a pair of compounds tended to be 

dissimilar if the chemistry distance between them was large. Different sizes of NDL and APL subsets 

were then generated and compared to the PMLSC screening set in order to show the correlation between 

Tanimoto similarity index and chemistry space distance in a compound collection scale. Next, the 

diversity assessment was implemented to demonstrate how the number of filled void cells grew along 

with the number of acquired candidate compounds using either sequential selection or the compound 

acquisition protocol. We also wanted to point out that the choice of bin size would affect the diversity 

assessment as discussed above. The result illustrated the diversity increment by importing candidate 

compounds and helped to determine the optimal number of acquired compounds in a specific binning 

procedure.  

Taken together, the compound acquisition and prioritization algorithm using BCUT descriptors is 

capable of retrieving compounds from candidate compound collections to increase structural diversity of 

an existing compound dataset. Currently, this method is being used for prioritizing to-be-synthesized 

combinatorial libraries in order to enhance the diversity-oriented library design and synthesis; however, it 

could also be view as a necessary complement to the existing techniques for building quality chemical 

libraries for HTS/HCS and virtual screening. 

7.5 CASE STUDY 

This section describes the application of BCUT descriptors and derived chemistry-space-oriented 

selection rule, in order to determine whether the newly synthesized compound library contributes any 
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chemical diversity value to the existing NIH small molecular repository (SMR). The chemical structures 

of the synthesized compounds and synthetic route can be found in the following publication: 

Construction of a Bicyclic β-Benzyloxy and β-Hydroxy Amide Library through a Multicomponent 

Cyclization Reaction Li Zhang, Qing Xiao, Chao Ma, Xiang-Qun Xie, Paul E. Floreancig Journal of 

Combinatorial Chemistry 2009 11 (4), 640-644  

The established 3D chemistry-space BCUT metrics calculation and 2D fingerprint similarity 

calculation approaches are applied to analyze structural diversity of 43 compounds. All computational 

works were performed using a Linux PC/dual-core dual-CPU Xeon-based HPCC 30-processor Dell 

cluster, loaded with Tripos Sybyl molecular modeling package (version 8.0). 330K SMR compound 

library was downloaded from NIH Small Molecular Repository (SMR) 2. 57K Maybridge screening 

collection was downloaded from Maybridge website 3. As all the 43 synthesized compounds were chiral 

molecules, molecular conformation was considered as one of the key molecular features for diversity 

analysis. Tripos CONCORD 1 was used to generate 3D conformation for each library. 

Multi-dimensional chemistry space coordinates were calculated for each compound in the target 

library according to four main classes of atomic properties including atomic Gasteiger-Huckel charge, 

polarity, H-bond donor (HBD) and H-bond acceptor (HBA) attributes. BCUT descriptors were generated 

for both SMR and Maybridge libraries using DiverseSolutions 212. For visualization and dimension 

reduction purpose, the chemistry space was defined by the best three BCUT descriptors and raw 

descriptor values were rescaled to range from 0 to 10. A diversity analysis was performed by cell statistics 

under the chemistry space. 

To further evaluate the similarity properties of the new 43 sets compound library in comparing with 

the NIH SMR library, pair-wise Tanimoto coefficient (Tc) calculation was carried out based on 2D 

molecular fingerprint. The comparison of 43 sets versus SMR (330K) was done using the Tripos 

SELECTOR program. Molecular fingerprints were calculated using the standard Tripos UNITY 2D 

fingerprints and the data processes were carried out using Sybyl Molecular Spreadsheet 213. 
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Figure 7-8: 3D chemistry-space plots 

Plotting 43 synthesized compounds (red dots) in comparison with Maybridge chemical database (57K 
compounds, grey dots). Three axes were defined by atomic partial charge, H-Bond acceptor and polarity 
BCUT descriptors.  

 

 

Figure 7-8 shows a 3D chemistry-space plot of the newly synthesized 43 compounds versus a Maybridge 

library. As shown in Figure 7-8, eight points representing 23c, 24c, 23f, 24f, 23h, 24h, 23g and 24g filled 

a void cell ranging approximately from 5.31 to 5.47 along the GH-charge axis, from 5.97 to 6.17 along 

the HBA axis and from 5.69 to 5.79 along the Polarity axis. To approximate the density of Maybridge 

library locally, the number of compounds was counted in a unit cubic cell which was centered at (5.39, 

6.07, 5.74). The volume of void cell was 0.0033 and the local density of Maybridge library was 214, so 

214 × 0.0033 ≈ 0.7 compound was expected to be found in the cell. None of Maybridge structures were 

observed in that cell and eight synthesized compounds filled the void region instead. This calculation 

showed that the size of the void cell filled by 8 new compounds was reasonable and the diversity 

increased by filling the void was also significant. 
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Figure 7-9: A database similarity comparison of 43 compounds with SMR library  

 

 

Interestingly, Figure 7-8 also revealed that the chemistry-space coordinates of compound 23c, 23f, 23h, 

23g and 23i followed almost the same pattern as those of 24c, 24f, 24h, 24g and 24i did. They were 

arranged in the same order and distributed over the space in a similar manner. The difference between 

scaffold 23 and 24 was the chirality. This indicated that the molecular conformation generated by 

Concord and BCUT 3D descriptors reflected the property of those compounds. 

 

Figure 7-9 shows a distribution of Tanimoto coefficient (Tc) for each of 43 compounds in comparison 

with its most similar compound in SMR database, showing a mean TC values of 0.77 and a standard 

deviation of 0.06.  As 2D molecular fingerprints could not reflect the chirality, the compounds 23a and 

24a were indistinguishable under 2D fingerprint algorithm. Thus, there were totally 31 distinct 2D 

structures considered. It is generally accepted that Tanimoto coefficient value 0.85 214 is a threshold for 

UNITY 2D fingerprints. If the Tc value between a pair of compound is higher than 0.85, they are 

considered similar. 2D molecular fingerprint similarity calculations of two chemical libraries revealed 

that none of the compounds except three cases between two libraries possess a pair wise TC value higher 
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than 0.85. Four newly synthesized compounds and their nearest neighbors by TC were also illustrated in 

Figure 7-9. These results further confirmed that the newly synthesized compound library improved the 

molecular diversity of existing libraries. The combined 3D chemistry-space and 2D fingerprint pair-wised 

Tc similarity calculation approaches conclude that the newly synthesized compound library adds certain 

structural diversity value to the existing chemical libraries.   
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8 CONCLUSIONS AND FUTURE DIRECTIONS 

The following conclusion may be drawn from the plot studies in this thesis: 

It may be feasible to derive quantitative structure-activity relationship (QSAR) or structure-

property relationship (QSPR) from modern machine learning techniques and appropriate 

molecular descriptors. 

The novel ligand classification technique, LiCABEDS reported in Chapter 4, was successfully applied to 

the prediction of ligand functionality, selectivity and blood-brain-barrier passage. Its performance was 

validated and compared with other data mining techniques, including Naive Bayes classifier, Tree and 

support vector machine. LiCABEDS provides an alternative option to the mainstream QSAR/QSPR 

methods. For example, CoMFA was reported to study the structure requirement for 5-HT1A agonists and 

antagonists using a small set of compounds. On the other hand, the LiCABEDS models were derived 

from hundreds of compounds in cheminformatics database, and the algorithm design guaranteed a 

prediction throughput of a few thousand compounds per second. The implementation of LiCABEDS 

further demonstrated that QSAR/QSPR modeling could be as straightforward as similarity calculation. 

Molecular fingerprints exhibit decent performance in QSAR/QSPR studies. 

This dissertation reviews molecular descriptors in many categories, including frequently referred 

descriptors, for example, the number of H-bond donors. Many descriptors have been proven effective in 

predicting physicochemical properties, but variable selection and multivariate analysis are generally 

complicated in QSAR/QSPR modeling. Hybrid descriptors, including a diverse set of descriptors, seem to 

be the favored choice in publications. In this dissertation, MACCS, FP2, Unity, PubChem and Molprint 

2D fingerprints revealed their relevance to molecular property and bioactivity prediction. According to 

scientific papers and experiments described in this thesis, molecular fingerprints are good starting point 

for QSAR/QSPR modeling even if they may be not the best. 

Robustness, interpretability, and simple parameter tuning are major advantages of LiCABEDS. 

The valuable attributes of LiCABEDS were exemplified through case studies. The limited variance in its 

consisted components suggested the robustness of LiCABEDS for prospective predictions. Furthermore, 
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LiCABEDS models were interpreted by examining highly weighted decision stumps. Last but not least, 

the simple parameterization was shown to be another advantage of LiCABEDS. It was free of structure 

alignment and time-consuming parameter optimization. A large number of iteration steps produced 

models that were close to the optimal. Modeling using LiCABEDS did not involve much subjectiveness.  

Non-linear classifiers with appropriate parameters may outperform the linear classifiers. The 

distance or similarity between any pair of queries may be sufficient to develop a robust 

classification model, without explicit representation of explanatory variables. 

The use of non-linear kernel functions in support vector machine (Chapter 5) outperformed default linear 

kernel according to benchmarked dataset. This result indicated that the contribution of compound 

fragments to biological properties was not linear. However, the choice of kernel function and parameters 

was computationally expensive, but quite critical to model robustness. Tanimoto kernel and RBF kernel 

were generally the default non-linear choice, supported by recent publications. Tanimoto kernel is free of 

kernel parameter, while RBF kernel function is not. 

GPUs show significant performance advantage over CPUs regarding computationally expensive 

cheminformatics tasks, but extra attention must be paid to algorithm design and implementation. 

Computation power still remains as limitation for virtual screening. The GPU-accelerated chemical 

similarity calculation proposed a very efficient algorithm to calculate Tanimoto coefficients based on 

molecular fingerprints represented in dense array formats. Nowadays, famous molecular mechanics 

software, CHARMM, has already integrated GPU implementation in order to accelerate molecular 

dynamics simulation, which levels up molecular modeling to a new time frame. In the near future, it is 

expected to have more molecular modeling software targeting at GPU platform.  

 

Despite the novel approaches proposed in this thesis, mapping chemical structures to bioactivity space 

still remains as a significant challenge to both information science and artificial intelligence. First, 

extensive variability in bioassays and frequent false positives in HTS experiments demand robust and 

specific learning algorithms to catch meaningful information and predictive features from assorted data 

sources. Furthermore, learning algorithms are supposed to be capable of modeling numerous molecular 

properties and pharmacological properties, with the intention to insure the wide applicability in drug 

development projects, which may target at enzymes, GPCRs or other receptors. Finally, the developed 

predictive models are expected to be interpretable and chemically suggestive to bridge the gap between 

computer science and pharmaceutical science. Accordingly, the future directions of this thesis may 

include but not limited to: 

Developing effective ensemble learning algorithms and hypothesis selection methods for the 

predictions of ligand bioactivity and pharmacological properties 
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Linear and non-linear ensemble methods will be developed for classification and regression purposes in 

order to predict various ligand properties. Medicinal chemists refine the structures of “lead” compounds 

according to a set of empirical hypotheses drawn from observations in most cases. This approach is 

frequently referred as SAR (structure-activity relationship). In SAR studies, researchers usually attempt to 

derive certain heuristic trends or assumptions from experimental data. However, these hypotheses are 

usually put into practice without systematic validation and quantification. The motivation of this aim is to 

model the hypothesis-driven SAR: each hypothesis i, Hi, Hi ∈ ℋ, is quantitatively correlated with certain 

property of interest, y, through function f, i.e. y = f(Hi(x)). ℋ represents the possible hypothesis space 

and x represents chemical structure. However, in ensemble-learning framework the property (y) of any 

novel structure (x) is determined by weighted hypothesis ensemble: y = f(∑ wiHi(x)i ).  

Designing active learning strategies for iterative model refinement, together with retrospective and 

prospective model validation 

The dependence on training data restricts the applicability of supervised learning in many application 

domains. At the beginning stage of many drug design projects, the knowledge or annotated compounds 

may be not sufficient to develop supervised learning models. In this case, we propose active learning 

strategy to selectively acquire additional compound annotation through bioassays, and iteratively improve 

established prediction models. Compared to random compound annotation, this experimental design 

ensures early model convergence, but yields equivalently robust models. Most importantly, models are 

validated prospectively, which is considered as the most reliable way to assess generalization error. 

Implementing the proposed algorithms targeting at high-performance computing architecture and 

providing intuitive graphical interface for medicinal chemists 

Millions of chemical structures are deposited into public cheminformatics database annually. Data mining 

the vast database and making predictions on enormous virtual compounds are sometimes questioned due 

to the limitation of computation power. The advent of CUDA, NVIDIA’s solution to GPGPU (General-

purpose computing on graphics processing units), suggests an alternative path to scientific computing. 

Once implemented efficiently, arithmetic-intensive calculations can be accelerated up to 30 folds by 

GPUs, typically.  
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The overall goal of this thesis is to present an objective high-through computational 

methodology for computer-aided drug design in order to enhance the productivity of the 

pharmaceutical industry. As a relatively new research field, QSAR/QSPR modeling using 

modern machine learning techniques is still not widely accepted by medicinal chemists and 

pharmacologists. Nevertheless, statistical inference and machine leaning are proven to be 

helpful in many fields, and the pharmaceutical industry should not be an exception. Finally, the 

author would like to end this thesis by quoting prestigious statistician, George E. P. Box: "All 

Models Are Wrong But Some Are Useful." (George E. P. Box, 1979) 
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