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Malignant gliomas are the most common primary brain tumors with dismal prognosis. A 

growing line of evidence supports significant roles of immunosurveillance for prevention 

and regulation of cancer development. For example, tumor infiltrating T-cells are 

capable of killing tumor cells and are a positive prognostic factor for cancer patients. T-

cell immune responses are classified into distinct effector cell types, type-1 or type-2, 

based on their cytokine-secreting profiles. We have demonstrated that tumor-specific 

type-1 T-cells, but not type-2 T-cells, can efficiently traffic into CNS tumor sites and 

mediate effective therapeutic efficacy via a type-1 chemokine CXCL10 and an integrin 

receptor VLA-4. Despite the importance of the type-1 T cell response, cancers, 

including GBMs, secrete numerous type-2 cytokines that promote tumor proliferation 

and immune escape.  The hallmark cytokines of type-1 and type-2 immune responses 

are IFNs and IL-4, respectively. We therefore sought to better understand the role of IL-

4 and IFN signaling in gliomas. We herein demonstrate that the miR-17-92 cluster is 

down-regulated in T-cells in both human and mouse tumors, dependent on IL-4R 

signaling. Further, ectopic expression of miR-17-92 cluster in T-cells resulted in 

enhanced IFN-γ and IL-2 production and resistance to activation induced cell death 

(AICD) (Aim 1).  We next examined IL-4Rα on immunosuppressive myeloid derived 
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suppressor cells (MDSCs). Interestingly we found that IL-4Rα was up-regulated on 

human and mouse glioma infiltrating, but not peripheral, MDSCs. Additionally, IL-4Rα 

expression promoted arginase activity, T-cell suppressing abilities and glioma growth 

(Aim 2).  

As type I IFNs are important for anti-glioma type-1 immunity, we further 

examined how type I IFNs impact glioma patient prognosis. As there are multiple type I 

IFNs, our collaborators assisted us to identify potentially important genes by single 

nucleotide polymorphism (SNP) analysis. We found that IFN-pathway genes IFN- alpha 

receptor-1 (IFNAR1) and the IFN-alpha-8 (IFNA8) promoter both had SNPs associated 

with glioma prognosis. By luciferase assay and electrophoretic mobility shift assay 

(EMSA) we demonstrated that the A-allele, which is associated with better glioma 

patient survival, but not the C-allele of rs12553612 in the promoter region of IFNA8 

allows for OCT-1 binding and activity of the IFNA8 promoter (Aim 3).   

Overall, our data suggests that type-2 promoting has a dual role in suppressing 

glioma immunity through decreased T-cell functioning and enhanced MDSC function. 

Type-2 promoted suppression of glioma immunity can thus lead to better glioma patient 

prognosis, a significant public health achievement.  
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1.0  INTRODUCTION 

1.1 GLIOBLASTOMA MULTIFORME 

1.1.1 Classification  

Malignant gliomas are the most common type of primary brain tumor and a major 

unsolved public health problem, with more than 12,000 new cases diagnosed each year 

in the United States  (Mulholland, Thirlwell et al. 2005).   

Based on the World Health Organization (WHO) classification, the four main 

types of gliomas are astrocytomas, oligodendrogliomas, ependymomas, and mixed 

gliomas (usually oligoastrocytomas).  Astrocytomas are typically classified as pilocytic 

(grade I), diffuse (grade II), anaplastic (grade III), or Glioblastoma (GBM) (grade IV) in 

order of increasing anaplasia.  Categorization of astrocytomas as low (I and II) or high 

(III and IV) grade is generally dependent on nuclear atypia, mitotic activity, 

microvascular proliferation, and focal necrosis.  GBM is by far the most common and 

most malignant glial tumor.  Composed of poorly differentiated neoplastic astrocytes, 

GBM primarily affect adults, and they are located preferentially in the cerebral 

hemispheres. 
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Patients with GBM have a median survival of approximately 15 months, whereas 

those with anaplastic astrocytoma (AA) have a median survival of 24 to 36 months.  For 

patients with recurrent malignant gliomas, the median time to further tumor progression, 

even with therapy, is only 8 weeks (Wen and Kesari 2004).  In addition, low-grade 

gliomas often progress to more malignant gliomas when they recur (Ashby and Shapiro 

2004).  With over 12,000 new cases diagnosed in the United States each year, short 

survival time and the lack of curative treatment GBM tumors represent a significant 

public health problem.   

1.1.2 Epidemiology  

As reviewed by Ohgaki (Ogaki 2009), GBM occurrence seems most prevalent in 

industrialized countries, and Caucasians have higher incidence than both African and 

Asian populations. Limited data is available on causes of GBM however occupational 

exposures have been shown to be associated with GBM such as plastics, formaldehyde 

and lead. Other factors such as smoking and electromagnetic field have shown no 

association with GBM in most studies. According to Ohgaki the only factor 

“unequivocally associate” with GBM is X-irradiation, a therapy used to treat acute 

lymphoblastic leukemia.   

A single nucleotide polymorphism (SNP) is a single nucleotide variation that 

occurs within a gene of members of the same species. Several SNPs in immune 

regulatory genes correlate with glioma risks and/or prognosis (Rodero, Marie et al. 

2008; Scheurer, Amirian et al. 2008; Fujita, Scheurer et al. 2010). Previous studies have 
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shown a significant impact of SNPs in innate immune pathways, such as ones in Toll-

Like Receptor (TLR)3  (Dhiman, Ovsyannikova et al. 2008; Yang, Stratton et al. 2008), 

TLR4 (Apetoh, Ghiringhelli et al. 2007) as well as interleukin (IL)-4 receptor (IL-4Rα), 

which are associated with differential risk and prognosis of GBM  (Schwartzbaum, 

Ahlbom et al. 2007; Scheurer, Amirian et al. 2008). SNPs in other genes that are 

associated with glioma prognosis include cyclo-oxygenase (COX)-2 (Fujita, Kohanbash 

et al. 2011) and CX3CR1 (Rodero, Marie et al. 2008). 

                            

Figure 1: Kaplan-Meier survival curves beyond 12 months by genotype for IL4R SNPs among high-grade 

gliomas. (A), patients with the TT genotype for IL4R rs1805016 SNP experienced a median survival 4 mo longer 

than those with the GT/GG genotypes. (B), patients with the TT genotype for IL4R rs1805015 SNP experienced a 

median survival 5 mo longer than those with the CT/CC genotypes. The benefit of the TT genotypes seemed to 

increase as the patients lived longer.  (Figure and Caption taken from M Scheurer et al. Clinical Cancer 

Research, 2008.)  
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1.1.3 Treatment  

Despite extensive research, the treatment options for these tumors remain limited (Wen 

and Kesari 2004).  No significant advancements in the treatment of GBM have occurred 

in the past 25 years except for chemotherapy with Temozolomide (TMZ) combined with 

radiotherapy, which demonstrates only a limited prolongation (approximately 3 months 

compared with radiotherapy only) of patients’ survival (Stupp, Dietrich et al. 2002).  The 

primary reason that no current treatment is curative is that the tumor is beyond the 

reach of local control when it is first detected clinically or radiologically. Clearly, there is 

an unmet clinical need for further improving treatment outcomes for patients with 

malignant gliomas.   

Immunotherapy, based on the idea of taking advantage of the body’s 

physiological mechanisms to defend itself, may develop as an effective and safe 

treatment modality for gliomas.  However, the immunological microenvironment of the 

central nervous system (CNS) and tumors arising in the CNS are still believed to be 

sub-optimal for sufficient anti-tumor immune responses to mediate clinically-meaningful 

changes in situ  [reviewed in (Prins and Liau 2004)].  Immunotherapies may be 

classified as either passive or active, either transferring the immune components or the 

stimulating of host immunity, respectively.  

1.1.3.1 Passive Immunotherapy 

Passive immunotherapy is defined as the use of products of a simulated immune 

response ex vivo to specifically target tumor cells.  This consists of modalities that utilize 
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a variety of molecules, including monoclonal antibodies (mAb) and cytokines. Some 

potential therapeutics and targets are discussed below.   

(a) Antibodies 

An attractive candidate for Immunoglobulin (Ig)G-based inhibition has been epidermal 

growth factor receptor (EGFR).  EGFR is overexpressed on 40-50% of tumors (Rivera, 

Vega-Villegas et al. 2008).  EGFR overexpression is associated with increased tumor 

growth rate and shorter survival (Shinojima, Tada et al. 2003).  EGFR, a 

transmembrane receptor tyrosine kinase, binds its ligands epidermal growth factor 

(EGF) and transforming growth factor (TGF)-α.  EGFR activation generates gene 

transcription modulations resulting in stimulated proliferation, angiogenesis, and 

metastasis (Batra, Castelino-Prabhu et al. 1995).  A mutation of EGFR, termed EGFR 

variant III (EGFRvIII), is frequently expressed in GBM and enhances tumorigenicity 

(Fukai, Nishio et al. 2008).  There are several mAbs that specifically target EGFR 

including: Cetuximab and Nimotuxumab. 

Cetuximab (Imclone, Bristol Meyers Squibb, New York, NY) has been shown to 

enhance the anti-tumor effects of chemotherapy and radiotherapy by inhibiting the 

EGFR pathway. Cetuximab specifically targets the extracellular domain of EGFR 

(Ramos, Figueredo et al. 2006).    EGFRvIII can be bound by Cetuximab, and it has 

been suggested that Cetuximab has antitumor efficacy against EGFRvIII+ glioma cells 

(Belda-Iniesta, Carpeno Jde et al. 2006).   

Nimotuzumab (h-R3, YM Biosciences, Mississauga, ON, Canada) has been used 

in phase II trials for GBM (Rosenberg 2000).  Ramos et al. observed a 17.5 month MST 
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for GBM patients.  In high grade glioma patients, there was a 37.9% objective response 

rate and stable disease in another 41.4% of patients (Rosenberg 2000). 

The efficient use of mAbs against brain tumors presents unique challenges.  

First, passage of therapeutic agents from circulation through the blood brain barrier 

(BBB) favors small, uncharged, lipid soluble molecules.  The large size of antibodies as 

macromolecules requires novel delivery strategies to administer antibodies directly to 

the brain tumors.  Indeed, an IgG antibody has a molecular weight of approximately 150 

kDa whereas many chemotherapeutic agents have a molecular weight on the order of 1 

kDa (DeVita, Hellman et al. 1995).   While most small molecule drugs rely on diffusion 

as a mode of transport through tissue, antibodies must rely on bulk fluid flow 

(convection) in which antibodies flow down their pressure gradient.  It has been shown 

that interstitial pressure in solid tumor mass is elevated above the interstitial pressure of 

the surrounding normal tissue (Butler, Grantham et al. 1975).  This increased pressure 

may be a result of a less developed lymphatic system which is thereby less able to drain 

interstitial fluid, increased cell density of the tumor could be a contributing factor to this 

phenomenon (Jain and Baxter 1988; Williams, Duda et al. 1988). 

The use of antibodies as inhibitors has the advantage of being precise and 

specific, but the challenges of delivery and penetrance remain. As cancer biology and 

the mechanisms of tumor cell proliferation and immune escape are increasingly 

understood, more candidates for therapeutic inhibition will be found. 
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(b)  Coupled Targeted Toxins 

A number of cytokine receptors have been observed to be up-regulated in glioma 

including IL-4R and IL-13Rα2.  By harnessing these and other receptor-ligand 

interactions that are up-regulated in GBM, targeting of tumor cells can be achieved and 

by fusing cytokines with toxins, selective cytotoxicity can be achieved (Joshi, Leland et 

al. 2001; Liu, Yu et al. 2004).  

IL-4R is up-regulated in glioma cells relative to normal tissue.  In fact, 83% of 

GBM tumors and 86% of astrocytoma tumors were found to be moderately to highly 

positive for IL-4R in situ by Joshi et al. (Joshi, Leland et al. 2001)  Puri et al. have 

developed a chimeric fusion protein including domains of IL-4 and Pseudomonas 

exotoxin (PE), which is produced by expressing chimeric genes in E. coli and purifying 

the protein using inclusion bodies (Puri, Hoon et al. 1996) .  Phase I studies have been 

executed to determine safety and tolerability (Rand, Kreitman et al. 2000; Weber, Asher 

et al. 2003).  Also, it was reported that in one preliminary study, 6 out of 9 patients with 

recurrent malignant glioma demonstrated tumor necrosis after receiving IL4-PE via 

convection-enhance delivery (CED) with multiple catheters as evidenced by gadolinium-

enhanced MR images.  One patient remained disease free for greater than 18 months 

(Rand, Kreitman et al. 2000). 

IL-13R is also found to be overexpressed on a majority of glioma cell lines and 

resected GBM specimens (Debinski, Obiri et al. 1995).  A mutated form of PE fused to 

human IL-13, named IL-13PE38QQR or cintredekin besudotox (CB), has been 

developed and has been shown to elicit specific cytotoxicity on glioma cell lines (Mut, 

Sherman et al. 2008).  CB has been studied in a number of phase I clinical trials to 
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investigate dosimetry and catheter positioning and is reportedly more active against 

glioma cell lines than IL-4 targeted toxins in vitro (Mut, Sherman et al. 2008). A total of 

51 GBM patients have been treated with CB with a median survival time of 42.7 weeks 

(Kunwar, Chang et al. 2006).  Kioi et al. developed a strategy in which PE is conjugated 

to a smaller single chain variable fragment (scFv) anti-IL13R human antibody (Kioi, 

Seetharam et al. 2008) which may allow for better GMB penetration.  Overall, IL-13-

based toxins have potential to be utilized as an adjuvant therapy for malignant glioma 

pending further positive clinical studies. 

(c)  Adoptive T-cell Therapy 

Adoptive transfer of tumor-reactive autologous cytotoxic CD8+ T lymphocytes (CTLs) 

may hold promise as an attractive future immunotherapeutic intervention against 

malignant glioma.  The earlier form of this therapeutic approach was mostly used to 

treat malignant melanoma, in which autologous lymphocytes infiltrating tumor nodules 

were isolated, expanded in vitro in the presence of IL-2 and subsequently returned to 

the patients (Rosenberg, Packard et al. 1988).  In glioma, ex vivo activated lymphokine-

activated killer (LAK) cells have been applied as an adjunct to surgery, often in 

combination with low-dose IL-2 (Barba, Saris et al. 1989; Hayes, Koslow et al. 1995).  

Although clinical responses have been observed in some cases, this approach relies 

upon innate immune effector cells (i.e., LAK cells), whose killing activity may not be 

tumor-specific.  In contrast, antigen-specific CD8+ CTLs survey the CNS parenchyma 

and selectively kill astrocytes that express a model antigen hemagglutinin (HA) without 

collaterally damaging neurons and oligodendrocytes or myelin.  This was demonstrated 
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in an elegant study using HA-specific T-cells obtained from a TCR transgenic mouse 

line and recipient transgenic mice expressing HA in their astrocytes (Cabarrocas, Bauer 

et al. 2003).  Importantly, i.v. injected tumor-specific CTLs have established their 

antitumor potency in syngeneic rodent models of glioma (Holladay, Heitz et al. 1992).  

Antigen-nonspecific LAK cells, in contrast, fail to eradicate tumor in most of these 

experimental models (Holladay, Heitz et al. 1992).  Collectively, these studies 

demonstrate that CTLs have the capacity to migrate into brain parenchyma and have 

anti-tumor effects. 

Recently, the approach has been vastly improved by the use of recent advances 

in several areas of human T-cell biology including in vitro human T-cell culture and ex 

vivo genetic manipulation.  Although adoptive T-cell therapy remains the experimental 

therapy for a limited types of cancers (mainly malignant melanoma), there have been 

increasing attempts to widen the use of adoptive T-cell therapy to treat other types of 

tumors including malignant glioma (Ghazi, Ashoori et al. 2012).   

1.1.4 Active Immunotherapy (Tumor Vaccines) 

Although numerous preclinical studies in mouse models have shown the efficacy of 

peripheral vaccinations against intracranial gliomas, therapeutic vaccines face a 

substantial challenge in glioma patients since they must overcome a variety of 

immunoregulatory mechanisms that have already established the immune escape of 

tumors.  Nevertheless, a number of clinical trials have been attempted to generate 

therapeutic immune responses against gliomas and shown some positive effects.    
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(a)  T-Cell Epitopes Derived From Glioma-Associated Antigens  

Many studies have demonstrated the safety and preliminary efficacy of whole glioma 

cell-based vaccine approaches (Liau, Prins et al. 2005; Okada, Lieberman et al. 2007; 

Wheeler, Black et al. 2008).  However, the use of whole glioma cell-derived antigens, 

such as glioma lysate, may limit the feasibility and safety of the approach due to the 

cumbersome preparation procedures and theoretical concerns for autoimmune 

encephalitis (Bigner, Pitts et al. 1981).  Therefore, the effectiveness and safety of T-cell-

mediated immunotherapy of glioma depends on the proper selection of the targeted 

antigens; i.e. glioma-associated antigens (GAAs), and, more specifically, the CTL 

epitopes in GAAs.  In addition, the use of “off the shelf” synthetic peptides coding GAA-

derived CTL epitopes may be feasible, especially for multi-center clinical trials.  Some, 

GAA epitopes known to elicit T-cell responses include: IL-13Rα2, Survivin, WT1 and 

EGFR-VIII (Okada, Kohanbash et al. 2009).  

(i) Peptide-based vaccines targeting glioma-associated antigens 

In vaccines using synthetic peptides for shared GAA-epitopes, advantages and 

disadvantages are distinct from those in whole glioma cell approaches.  While synthetic 

GAA peptide-based vaccines may not adequately target antigens in each patient’s 

tumor, these vaccines have less concern for autoimmunity and provide “off the shelf” 

feasibility.  Indeed, a wide range of peptide-based vaccines have been evaluated.  

Yajima et al. reported a phase I study of peptide-based vaccinations in patients with 

recurrent malignant gliomas (Yajima, Yamanaka et al. 2005).  In this study, prior to the 

first vaccine, each patient’s PBMCs were evaluated in vitro for cellular and humoral 



 

 

 11 

responses against a panel of antigens, and peptides that induced positive response 

were used for vaccinations.  The regimen was well tolerated and resulted in an 89-week 

median survival of treated patients.  However, there is little evidence that the antigens 

used in this study are expressed in gliomas at high levels.  Izumoto et al. reported a 

Phase II clinical trial using a single peptide, WT1 (Izumoto, Tsuboi et al. 2008).  In this 

study, they reported a median PFS of 20 weeks and a possible association between the 

WT1 expression levels and clinical responses.  When single or oligo antigens are 

selected and targeted by vaccines, it also seems necessary to harness the concepts of 

epitope spreading to address the problems of tumor immune escape, while avoiding the 

augmentation of deleterious CNS autoimmune responses (Vanderlugt and Miller 2002). 

(ii) Whole glioma cell vaccines   

Initial vaccination strategies for gliomas consisted of subcutaneous inoculations of 

irradiated, autologous (Wikstrand and Bigner 1980) or allogeneic (Zhang, Eguchi et al. 

2007) glioma cells.  This type of vaccine has the advantage of providing a panel of 

multiple potential GAAs that are naturally expressed by glioma cells.  Especially, 

autologous glioma cells should allow immunizations against the most relevant GAAs 

expressed in the patient’s tumor (i.e. tailored medicine).  Potential downsides of this 

approach, however, include: 1) cumbersome procedures and quality control 

(QC)/quality assurance (QA) issues associated with large scale cultures of autologous 

glioma cells  and 2) theoretical risks of autoimmune encephalomyelitis (reviewed in 

(Wikstrand and Bigner 1980)).  Nevertheless, this type of vaccine strategy has been 

carefully examined.  Schneider et al. (Schneider, Gerhards et al. 2001) and Steiner et 
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al. (Steiner, Bonsanto et al. 2004) recently reported pilot clinical trials using autologous 

glioma cells modified with Newcastle-Disease-Virus (NDV), which is known to serve as 

an vaccine adjuvant and therefore to improve the efficacy of glioma vaccines.  More 

recently, Ishikawa et al. reported a Phase I clinical trial using formalin-fixed glioma 

tissues as a source of antigens (Ishikawa, Tsuboi et al. 2007).  The advantage of this 

strategy is that formalin fixation preserves the specific antigenicity of glioma cells.  

These studies reported no major adverse events.  

(iii) Dendritic cell (DC) vaccines 

DCs are the most potent antigen presenting cells, driving the activation of T-cells in 

response to invading microorganisms (Banchereau, Briere et al. 2000).  The availability 

to culture DCs from human peripheral blood monocytes has generated significant 

interest in using DCs in novel cancer vaccination strategies (Banchereau and Palucka 

2005). 

Yu et al. reported a phase I trial of vaccinations using DCs pulsed with peptides 

eluted from autologous glioma cells (Yu, Wheeler et al. 2001).  Later, Liau et al. also 

reported a phase I trial in patients with newly diagnosed GBM using DCs pulsed with 

acid-eluted glioma peptides (Liau, Prins et al. 2005).  In this study, the authors reported 

a median overall survival of 23.4 months and that the benefit of the vaccine treatment 

was more evident in the subgroup of patients with slowly-progressing tumors and in 

those with tumors expressing low levels of TGF-β2. 

However, pulsing DCs with eluted peptides requires a large culture of autologous 

glioma cells and time-consuming procedures, for which QC/QA is not always feasible.  
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To overcome this issue, glioma cell lysate has been used to pulse DCs in a number of 

trials (Yamanaka, Homma et al. 2005; De Vleeschouwer, Fieuws et al. 2008; Wheeler, 

Black et al. 2008).  Yamanaka et al. reported a phase I/II study using DC pulsed with 

glioma lysate (Yamanaka, Homma et al. 2005).  Patients received either DCs matured 

with OK-432 or DCs without OK-432-mediated maturation.  GBM patients receiving 

matured DCs presented longer survival than those receiving DCs without OK-432-

mediated maturation.  Furthermore, patients receiving both intratumoral and intradermal 

DC administrations demonstrated longer overall survival periods than those with 

intradermal administrations alone (Yamanaka, Homma et al. 2005).  Wheeler et al. has 

reported a phase II clinical trial with lysate-pulsed DCs (Wheeler, Black et al. 2008).  

IFN-γ production levels from post-vaccine PBMC correlated significantly with patients’ 

survival and time to progression. We have recently reported the results of a phase I/II 

clinical trial using α-type-1 polarized DCs (αDC1) cells loaded with GAA-derived 

peptides in combination with the adjuvant poly-ICLC. The regime was safe, well 

tolerated and a type-1 skewed CD8 T-cell response was observed in patients following 

treatment (Okada, Kalinski et al. 2011).   

Several pilot and phase I/II clinical studies of active vaccination have been 

undertaken in patients with glioma.  Despite the fact that feasibility and safety have 

been sufficiently documented in most studies, clinical efficacy has not yet been 

convincingly proven.  Although some studies demonstrated improved survival of 

patients and objective clinical responses, the ultimate judgment for clinical activity has 

to be made by rigorous evaluation in randomized studies. 
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1.1.5 Immunity 

A large number of observations suggest that certain types of tumor microenvironment 

immune cells are not innocent bystanders at brain tumor sites, and that they actively 

promote or target tumor development and progression.  Inflammatory cells, primarily 

macrophages/microglia, MDSCs and regulatory T-cells, may affect these processes via 

their ability to express a large variety of factors, including immunoregulatory cytokines. 

These cytokines may be secreted not only by inflammatory cells, but also by the tumor 

and stroma cells, together establishing a network of factors that significantly affects 

brain tumor. 

1.1.5.1 Regulatory T-Cells (Treg)  

The suppressive activity of Tregs has been implicated as an important factor limiting 

immune-mediated destruction of tumor cells.  An increased FoxP3+ Treg to CD4+ T-cells 

ratio correlates with impairment of CD4+ T-cell proliferation in peripheral blood 

specimens obtained from patients with GBM (Fecci, Mitchell et al. 2006).  In this 

referenced study, in vivo depletion of Tregs led to glioma rejection in murine model 

systems.  Other studies have shown that an immunosuppressive population of Tregs is 

present within the GBM microenvironment (Hussain, Yang et al. 2006; Andaloussi, Han 

et al. 2008).  Moreover, it has been demonstrated that Tregs are not present in normal 

brain tissue and were very rarely found in low-grade gliomas and oligodendrogliomas 

(Heimberger, Abou-Ghazal et al. 2008). The same study also observed that Treg 

infiltration differed significantly in the tumors according to lineage, pathology, and grade.  
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Tregs seemed to have the highest predilection for gliomas of the astrocytic lineage 

(over oligodendroglioma) and specifically in the high-grade gliomas, such as GBM.  In 

both univariate and multivariate analysis, the presence of Tregs in GBMs seemed to be 

prognostically neutral (Heimberger, Abou-Ghazal et al. 2008).  However, in a study with 

a mouse GL261 glioma model (Mahaley, Bigner et al. 1983), treatment of glioma-

bearing mice with anti-CD25 mAb delayed the tumor growth and prolonged the survival 

of mice, suggesting that CD4+CD25+ Treg cells play an important role in suppressing 

the immune response to CNS tumors (Andaloussi, Han et al. 2008). 

Furthermore, Grauer et al. demonstrated a time-dependent accumulation of 

CD4+FoxP3+ Treg in brain tumors with syngeneic murine glioma GL261 model (Grauer, 

Nierkens et al. 2007). They observed that the expression of CD25, CTLA-4, GITR and 

CXCR4 on intratumoral CD4+FoxP3+ Treg during tumor growth is up-regulated in a 

time-dependent manner.  They also demonstrate that treatment with anti-CD25 mAbs 

significantly provokes a CD4 and CD8 T-cell dependent destruction of the glioma cells.  

Moreover, combining Treg depletion with administration of blocking CTLA-4 mAbs 

further boosted glioma specific CD4+ and CD8+ effector T-cells as well as antiglioma 

IgG2a antibody titers resulting in complete tumor eradication. This study illustrated that 

intratumoral accumulation and activation of CD4+FoxP3+ Treg act as a dominant 

immune escape mechanism for gliomas and underline the importance of controlling 

tumor-infiltrating Treg in glioma immunotherapy (Grauer, Nierkens et al. 2007). 
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1.1.5.2 Macrophages/Microglia 

In the CNS, macrophages/microglial cells constitute the first line of cellular defense 

against a variety of stressors, participating in the regulation of innate and adaptive 

immune responses in human and rat gliomas (Badie and Schartner 2001). Many human 

gliomas exhibit prominent macrophage/microglia infiltration.  Glioma infiltrating 

macrophages (GIM) can account for as much as 30% of the tumor mass (Giometto, 

Bozza et al. 1996).  GIM represent the largest subpopulation infiltrating human gliomas 

from postoperative tissue specimens of glioma patients (Hussain, Yang et al. 2006).   

With regard to distinction between resident microglia (CD11b+/CD45dim) versus 

macrophages (CD11b+/CD45high), most studies have demonstrated glioma infiltrating 

CD11b+ cells are mostly CD45high macrophages (Ford, Goodsall et al. 1995). Indeed, it 

has been described that “microglia” in human gliomas appears mostly amoeboid and 

morphologically distinct from the resting microglia present in the intact brain (Graeber, 

Scheithauer et al. 2002). Intratumoural macrophage/microglia density is higher than in 

normal brain and abundance of microglia correlates with the grade of malignancy.  In 

patients with gliomas, the number of macrophages in GBM (grade IV) is higher than that 

in grade II or III gliomas, and it is closely correlated with vascular density in the tumors 

(Nishie, Ono et al. 1999; Nishie, Masuda et al. 2001).  

It is postulated that the defense functions of macrophage/microglia against 

glioma are compromised in the tumor microenvironment. These GIM expressed 

substantial levels of Toll-like receptors (TLRs), which are critical components for antigen 

presenting cells to mediate innate immune responses to any infectious or traumatic 

challenge and activating adaptive immune responses.  However, GIM did not appear 
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stimulated to produce pro-inflammatory cytokines (TNF-α, IL-1, or IL-6), and in vitro, 

lipopolysaccharides could bind TLR-4 but could not induce GIM-mediated T-cell 

proliferation (Nishie, Ono et al. 1999).  Moreover, it has been found that these GIM, in 

addition to decreased surface expression of MHC class II (Schartner, Hagar et al. 

2005), lack expression of the costimulatory molecules CD86, CD80, and CD40 critical 

for T-cell activation, thereby unable to activate T-cells properly ex vivo (Hussain, Yang 

et al. 2006).  

Macrophages/microglia can release many factors, including extracellular matrix 

proteases and cytokines, which may directly or indirectly influence tumor 

migration/invasiveness and proliferation (Platten, Kretz et al. 2003; Watters, Schartner 

et al. 2005). In Boyden chamber assays, glioma cell migration is stimulated by the 

presence of macrophage/microglia or macrophage/microglia-conditioned medium 

(Bettinger, Thanos et al. 2002).  It has been recently demonstrated in an organotypic 

brain culture that the invasive potential of GBM was lower in macrophage/microglia-

depleted slices and addition of microglial cells to microglia-depleted slices restored the 

invasiveness (Markovic, Glass et al. 2005).  These findings suggest that 

macrophage/microglia in human gliomas may promote and support the invasive 

phenotype of these tumors.  
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1.2 MYELOID DERIVED SUPPRESSOR CELLS (MDSCS)  

MDSCs represent a heterogenic population of immature myeloid cells (IMCs) that 

consists of myeloid progenitors and precursors of macrophages, granulocytes, and 

dendritic cells and has a strong ability to suppress a variety of T-cell and NK cell 

functions (Gabrilovich and Nagaraj 2009; Hoechst, Voigtlaender et al. 2009; Condamine 

and Gabrilovich 2011; Gabrilovich, Ostrand-Rosenberg et al. 2012) 

In mice, MDSCs are identified as cells that simultaneously express the two 

markers CD11b and Gr-1 (Gabrilovich and Nagaraj 2009; Fujita, Scheurer et al. 2010; 

Fujita, Kohanbash et al. 2011). Recently, MDSCs were subdivided into two different 

subsets based on their expression of the two molecules Ly6C and Ly6G, both of which 

react with anti-Gr1 mAb RB6-8C5 (Hestdal, Ruscetti et al. 1991; Youn, Nagaraj et al. 

2008). CD11b+Ly-6G−Ly6Chigh cells have monocytic-like morphology and are termed 

monocytic-MDSCs (M-MDSCs). CD11b+Ly6G+Ly6Clow cells have granulocyte-like 

morphology and are termed granulocytic-MDSCs (G-MDSCs).  

 In cancer patients, MDSCs are defined as cells that express the common 

myeloid marker CD33 but lack markers of mature myeloid cells, such as the MHC class 

II molecule HLA-DR (Almand, Clark et al. 2001; Schmielau and Finn 2001; Zea, 

Rodriguez et al. 2005; Filipazzi, Valenti et al. 2007; Hoechst, Ormandy et al. 2008). 

Expression of the granulocytic marker CD15 divides patient MDSCs into at least two 

subsets that likely parallel those in the mouse model, such that the CD15+ (human) and 

the Gr1hi (mouse) MDSC are G-MDSCs, and the CD15– (human) and the Gr1–/lo 

(mouse) MDSC are M-MDSCs(Movahedi, Guilliams et al. 2008). M-MDSCs with the 
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phenotype CD14+CD11b+HLA-DRlow/neg have been detected in melanoma patients 

(Filipazzi, Valenti et al. 2007; Poschke, Mougiakakos et al. 2010). In patients with 

melanoma or colon carcinoma, the two main subpopulations, CD14+ monocytes and 

CD15+ neutrophils, both of which express IL-4 receptor-α (CD124), functionally 

suppress immune responses (Mandruzzato, Solito et al. 2009). MDSCs are also defined 

as CD11b+CD14−CD15+CD33+ cells in patients with advanced non-small cell lung 

cancer (Srivastava, Bosch et al. 2008; Liu, Wang et al. 2010).  

MDSCs utilize a number of mechanisms to suppress T-cell function, including a 

high level of arginase activity as well as the production of nitric oxide (NO) and reactive 

oxygen species (ROS) (Gabrilovich and Nagaraj 2009; Condamine and Gabrilovich 

2011). These main pathways are linked with different subsets of MDSCs: ROS with G-

MDSCs, and arginase and NO with M-MDSCs (Movahedi, Guilliams et al. 2008; Youn, 

Nagaraj et al. 2008; Youn and Gabrilovich 2010). Several other suppressive 

mechanisms have recently been suggested: secretion of TGF-β (Yang, Huang et al. 

2008; Li, Han et al. 2009), induction of regulatory T-cells (Huang and et al. 2006; 

Serafini, Mgebroff et al. 2008; Pan, Ma et al. 2010), depletion of cysteine (Srivastava, 

Sinha et al. 2010), and up-regulation of COX-2 and prostaglandin E2 (PGE2) 

(Rodriguez, Hernandez et al. 2005).  
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1.2.1 MDSCs in Glioma 

We have reported substantial numbers of glioma-infiltrating CD11b+Gr1+ cells in both de 

novo  (Fujita, Scheurer et al. 2010; Fujita, Kohanbash et al. 2011) and transplantable 

syngeneic GL261 cell line mouse models (Zhu, Fujita et al. 2011), depletion of which 

can inhibit the development of gliomas. In humans, healthy donor-derived human 

CD14+ monocytes exposed to glioma cells acquire MDSC-like properties, including 

increased production of immunosuppressive IL-10, TGF-β, and B7-H1 and the 

increased ability to induce apoptosis in activated lymphocytes (Rodrigues, Gonzalez et 

al. 2010). Patients with GBM have increased circulating CD33+HLA-DR− MDSC in 

peripheral blood compared with healthy donors (Rodrigues, Gonzalez et al. 2010; 

Raychaudhuri, Rayman et al. 2011). Furthermore, significant increases in arginase 1 

activity and G-CSF levels were observed in plasma specimens obtained from patients 

with GBM (Raychaudhuri, Rayman et al. 2011; Sippel, White et al. 2011). Interestingly, 

T-cell suppression in GBM was completely reversed through the pharmacologic 

inhibition of arginase 1 or with arginine supplementation (Sippel, White et al. 2011). 

Several studies have demonstrated that human glioma-infiltrating macrophages express 

CD45 and MHC Class I and II but lack CD14, suggesting that the cells are immature 

inflammatory antigen-presenting cells from circulation rather than microglia, a 

phenotype similar to what is observed in rodent models  (Ford, Goodsall et al. 1995; 

Hussain, Yang et al. 2006; Parney, Waldron et al. 2009; Kees, Lohr et al. 2012).  
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Although GBM are highly infiltrated by monocytes/macrophages, there are no published  

studies on human glioma-infiltrating MDSC to date, thus warranting further studies into 

human GBM-associated MDSCs in the tumor microenvironment. 

1.2.2 Translational Approaches Targeting MDSCs in Gliomas 

As we understand more about the biological mechanisms underlying the MDSC-

mediated immunosuppression, the list of pharmacologic agents that can antagonize the 

MDSC effects expands. Those can be directed against a variety of MDSC properties:  

blockade of MDSC generation, differentiation of these cells into mature myeloid cells 

which lack immunosuppressive properties, and targeting individual suppressive 

features. Especially in combination with glioma immunotherapies such as vaccination, 

targeting either MDSCs or their suppressive molecules may allow for enhanced anti-

tumor immunity and better clinical outcomes.  

1.2.2.1 Direct MDSC Depletion 

In murine glioma models, antibody-mediated depletion of MDSCs is often achieved with 

the anti-Gr-1 mAb RB6-8C5 (Fujita, Scheurer et al. 2010; Fujita, Kohanbash et al. 

2011), which can deplete both G-MDSCs and M-MDSCs in the brain. While the ability of 

the antibodies to cross the blood brain barrier may be limited, as MDSCs are known to 

be recruited from bone marrow and systemic circulation with a relatively rapid turnover 

rate (Tadmor, Attias et al. 2011), antibody-based approaches may have a potential to 

block further MDSC infiltration of the brain. However, a human antibody-mediated 
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depletion of MDSCs is challenging as human MDSCs demonstrate significant 

heterogeneity and not a single unique MDSC marker has been identified. CD33 for 

example is found on other myeloid cell but is also present on human activated T and NK 

cells (Hernandez-Caselles, Martinez-Esparza et al. 2006), thus its use would be self-

defeating as it would also target anti-tumor immune cells. For example, Gemtuzabam, a 

toxin conjugated anti-CD33 mAb previously used for treating AML, has been withdrawn 

from the market in the United States due to adverse events such as myelo-suppression 

and possible hypersensitivity reactions, (Sievers, Larson et al. 2001; Hanbali, Wollner et 

al. 2007).  

 A tumor-associated receptor tyrosine kinase, vascular endothelial growth factor 

receptor (VEGFR) signaling has been implicated in MDSC generation (Ko, Zea et al. 

2009). A receptor tyrosine kinase inhibitor (RTKI) Sunitinib reverses M- and G-MDSC-

mediated immunosuppression (Ko, Zea et al. 2009) and their accumulation in tumor-

bearing mice (Ko, Rayman et al. 2010) and G-MDSC accumulation renal cell carcinoma 

patients (Ko, Zea et al. 2009). While many chemotherapeutics cause lymphopenia, 

Sunitinib promotes type-1 immunity without interfering with the induction of antigen 

specific T-cells and also reduces the immune suppressive T-regulatory cells (Tregs) 

(Finke, Rini et al. 2008; Hipp, Hilf et al. 2008). Although Sunitinib may have no direct 

anti-tumor effect on recurrent malignant gliomas (Reardon, Vredenburgh et al. 2011), 

Sunitinib may be used solely for its ability to promote anti-tumor immunity. Another RTKI 

Sorafenib has also been shown to reduce MDSCs (Cao, Xu et al. 2011). However, 

Sorafenib can also reduce the induction of antigen specific anti-tumor T-cells (Hipp, Hilf 

et al. 2008). Thus, more research is warranted to identify the most suitable 
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chemotherapeutic agents and/or RTKIs, which can reduce MDSCs and promote tumor 

antigen specific T-cell induction as well as direct anti-tumor affects. Separately, it is 

important to note that signal transducer and activator of transcription (STAT)3, an 

important signaling molecule for MDSC development (Wu, Du et al. 2011), might be 

targeted by inhibitors such as miRNAs to block MDSC generation and/or function 

(Kohanbash and Okada 2012). 

 One of the surface markers commonly found on MDSCs is the IL-4R-α chain (IL-

4Rα). IL-4Rα mediates the signaling of both IL-4 and IL-13 and is important for the 

suppressive activity of MDSCs mediated by arginase and TGF-β (Terabe, Matsui et al. 

2003; Highfill, Rodriguez et al. 2010). A recent study demonstrated that RNA aptamer-

mediated blocking of IL-4Rα on MDSCs resulted in  MDSC apoptosis through 

suppression of STAT6 signaling (Roth, De La Fuente et al. 2012). Importantly, while the 

IL-4Rα aptamer could bind to both M- and G-MDSCs, the aptamer displayed 

preferential binding to M-MDSCs compared to G-MDSCs (Roth, De La Fuente et al. 

2012).  Furthermore, aptamer-mediated blocking of IL-4Rα was associated with an 

increased number of tumor-infiltrating T-cells and suppressed growth of 4T1 mammary 

carcinoma (Roth, De La Fuente et al. 2012). Thus, blockade of IL-4Rα may provide a 

mechanism by which MDSCs can be depleted in glioma patients. 

1.2.2.2 Promotion of MDSC Maturation  

Since MDSCs are immature cells, multiple studies have attempted to promote MDSC 

maturation in which they lose their suppressive phenotype. This strategy may be 

effective to promote the transition of MDSCs from suppressive cells into cells that 
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contribute to anti-tumor immunity. Pak and colleagues demonstrated that treatment of 

mice with low dose IFN-γ and TNF-α could promote maturation of granulocyte 

macrophage suppressive progenitor cells into mature macrophages which lost the 

ability to suppress T-cells (Pak, Ip et al. 1995). Following maturation of these progenitor 

cells, intratumoral T-cells had an increased cytolytic capacity toward autologous tumor 

cells and an increased capacity to proliferate and secrete IL-2, leading to reduced 

growth and metastasis of murine metastatic Lewis lung carcinoma cell line (Pak, Ip et al. 

1995).  

 Type I interferons (IFNs) have been extensively evaluated for their anti-tumor 

effects. Recent studies demonstrate that hematopoietic cells in the host (rather than 

tumor cells) are the crucial mediators of the antitumor activity elicited by endogenous 

type I IFNs (Dunn, Koebel et al. 2006; Hervas-Stubbs, Perez-Gracia et al. 2011). The 

TLR9 agonist CpG can promote a type I IFN, IFN-α to force the maturation of Ly6Ghi 

MDSCs into plasmacytoid dendritic cells and promote anti-tumor immunity (Zoglmeier, 

Bauer et al. 2011). This has particular relevance to gliomas as we have demonstrated 

increased MDSCs in IFN-alpha deficient (Ifna-/-) mice using a de novo glioma model, 

and that glioma patients with the SNP rs12553612 in IFNA8 promoter is associated with 

altered IFNA8 promoter activity and survival of glioma patients (Fujita, Scheurer et al. 

2010; Kohanbash, Ishikawa et al. 2012). These studies demonstrate the relevance of 

IFN-α-mediated MDSC differentiation for gliomas. Similarly, the adjuvant polyinosinic-

polycytidylic acid stabilized by lysine and carboxymethylcellulose (poly-ICLC) which has 

been shown to be safe and effective in glioma patients (Okada, Kalinski et al. 2011) is 
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also a potent inducer of type I IFNs (Zhu, Nishimura et al. 2007) and may reduce 

MDSCs.  

Curcumin, the major component found in turmeric, can directly reduce survival of 

human glioma cell lines (U87MG, T98G and T67) and sensitize them to both 

chemotherapeutic reagents and radiation (Dhandapani, Mahesh et al. 2007). Further, 

athymic mice bearing intracerebral U87 glioma xenografts receiving curcumin 

experience a decrease in angiogenesis and better survival (Perry, Demeule et al. 2010). 

Using an in vitro BBB model curcumin can efficiently cross the BBB (Perry, Demeule et 

al. 2010).  More recently curcumin has been shown to inhibit STAT3 and NF-κB 

activation in MDSCs (Tu, Jin et al. 2012). Curcumin treatment also decreases MDSC 

expansion and promotes the MDSC differentiation into M-1 macrophage phenotype (Tu, 

Jin et al. 2012), which are known to kill  tumor cells and produce copious amounts of  

pro-inflammatory cytokines (Mantovani, Sozzani et al. 2002). Thus, glioma patients may 

be administered curcumin to reduce MDSCs and promote anti-tumor immunity.  

Other promising approaches for the therapeutic targeting of MDSC development 

are anti-inflammatory therapies, since pro-inflammatory cytokines such as IL-1β and IL-

6 are frequently present in the tumor microenvironment and promote MDSC 

accumulation (Ostrand-Rosenberg and Sinha 2009; Ostrand-Rosenberg 2010). The 

reduction of inflammation through the use of the naturally occurring IL-1 receptor 

antagonist, IL-1 receptor blockade, or PGE2 blockade (Gabrilovich, Ostrand-Rosenberg 

et al. 2012) can reverse MDSC development and accumulation. Additionally, as G-CSF 

can promote MDSC development, particularly G-MDSCs, a blockade of G-CSF remains 

a possible therapeutic target (Waight, Hu et al. 2011; Luyckx, Schouppe et al. 2012).   
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1.2.3 Translational Approaches Blocking MDSC-Associated Suppressor 

Molecules 

Although completely ridding the body of MDSCs may seem most effective, strategies to 

reduce individual components may be more feasible and more controlled. Further, 

MDSC in different tumors have a variety of phenotypes, thus direct targeting of specific 

pathways may be more appropriate than less targeted approaches. In the next section, 

we discuss suppression of individual MDSC-mediated immune suppressive molecules.  

1.2.3.1 Arginase inhibitors or arginine supplementation and gliomas 

Arginase-1 can be secreted by MDSCs directly into the tumor microenvironment or the 

serum of tumor-bearing mice and deplete l-arginine (Gabrilovich, Ostrand-Rosenberg et 

al. 2012). Further, MDSCs express the cationic amino acid transporter CAT-2B, which 

allows them to sequester and deplete their microenvironment of arginine (Ochoa, Zea et 

al. 2007; Gabrilovich, Ostrand-Rosenberg et al. 2012). Depletion of arginine in the 

tumor microenvironment leads to suppression of T-cells through inhibition of the CD3-

zeta chain and IL-2 production, resulting in T-cell apoptosis (Rodriguez, Zea et al. 2003; 

Sica and Bronte 2007; Klink, Kielbik et al. 2012). There are multiple compounds which 

can suppress arginase, including Nw-hydroxy-nor-arginine (nor-Noha), 2(S)-amino-6-

boronohexanoic acid (ABH), (S)-(2-Boronoethyl)-L-cysteine(BEC), and DL-alfa-

Difluoromethylornithine (DFMO) (Baggio, Emig et al. 1999; Berkowitz, White et al. 2003; 

Santhanam, Christianson et al. 2008). While there are some reports of arginase 

inhibitors used in vivo in animal studies (Reviewed in (Morris 2009)), future studies are 
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warranted to evaluate the feasibility of these compounds in patients. Alternatively, l-

arginine supplementation may be used to overcome the arginase-mediated arginine 

depletion. L-arginine supplements are relatively cost effective and can be purchases as 

an over-the-counter supplement. When arginine was supplemented to T-cells which 

were attenuated by glioma patient-derived CD11b+ cells (Sippel, White et al. 2011), it 

completely reversed the suppression and restored the T-cells’ ability to produce IFN-γ 

(Sippel, White et al. 2011). Lastly, CAT-2B may be targeted by inhibitors, such as lysine 

(Yang, Ma et al. 2002) to prevent MDSC uptake of arginine, blocking the ability of 

MDSC-intracellular arginase. Despite the fact that arginase may have some direct anti-

tumor properties (Lam, Wong et al. 2011), the use of arginase inhibitors in glioma 

patients may provide enhanced anti-tumor immunity as a monotherapy or in 

combination with immunotherapies.  Future studies in patients are warranted to 

establish such benefits.  

1.2.3.2 COX-2 inhibitors  

Recent epidemiological studies have suggested associations between the regular use 

of nonsteroidal anti-inflammatory drugs (NSAIDs) and reduced glioma risks in humans 

(Sivak-Sears, Schwartzbaum et al. 2004; Scheurer, El-Zein et al. 2008). Significantly, 

host MDSCs have receptors for PGE2, which induces the differentiation of Gr-1+CD11b+ 

MDSC from bone marrow stem cells (Sinha, Clements et al. 2007). Treatment of tumor-

bearing mice with the COX-2 inhibitor, SC58236, delayed primary tumor growth and 

reduced MDSC accumulation (Sinha, Clements et al. 2007). Furthermore, PGE2 

produced by the tumor induced arginase I and CAT-2B (the arginase transporter) in 
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MDSC, both of which lead to depletion of arginine from the tumor microenvironment and 

impaired T-cell signal transduction and function (Rodriguez, Quiceno et al. 2007).  

MDSC derived from mice bearing GL261 murine glioma suppress the proliferation of 

activated splenic CD8+ T-cells (Umemura, Saio et al. 2008). With regard to the role of 

glucocorticoids (GC), which are often used in clinical management of patients with 

glioma, GC-treated murine monocytes not only demonstrated immunosuppressive 

effects, but also they were CD11b+Gr-1+ (Varga, Ehrchen et al. 2008). We recently 

demonstrated that deletion of Cox2 or treatment with acetylsalicylic acid or celecoxib 

decreased tumor-infiltration of G-MDSC in the SB-induced de novo glioma model 

(Fujita, Kohanbash et al. 2011). Hence, COX-2 blockade may promote the tumor-

immune surveillance by reducing the induction of MDSC.   

These data provide strong rationale for the use of COX-2 inhibitors for blockade 

of MDSC activity. In high grade glioma patients, the use of COX-2 inhibitors have been 

investigated in combination with retinoids (Giglio and Levin 2004), low-dose 

chemotherapy (capecitabine or temozolomide) (Hau, Kunz-Schughart et al. 2007), or 

irinotecan (Reardon, Quinn et al. 2005) , and these regimens were well-tolerated. 

Celecoxib has been approved by the US food and drug administration (FDA) to prevent 

development of colon cancers in patients with familial adenomatous polyposis as a 

premalignant condition, while celecoxib increases cardiovascular risk (Solomon, Wittes 

et al. 2008) and gastrointestinal hemorrhage (Fidler, Argiris et al. 2008). Although 

aforementioned celecoxib-containing regime only demonstrated modest therapeutic 

activity in patients with high grade glioma (Giglio and Levin 2004; Reardon, Quinn et al. 

2005; Hau, Kunz-Schughart et al. 2007), investigation of COX-2-inhibitors, such as 
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celecoxib, may be justified in low-grade glioma patients as they are at extremely high 

risks for recurrence with high grade glioma. Indeed, our recent study with de novo 

mouse gliomas demonstrated that these gliomas have low-grade glioma characteristics 

on day 21 and treatment of those with celecoxib lead to rejection or inhibition of glioma 

growth (Fujita, Kohanbash et al. 2011).  

1.2.3.3 Antihistamines 

Histamine is a biogenic amine that has well-defined roles in allergic responses and 

gastric acid secretion and has also been linked to the modulation of immune responses. 

For example, histamine has been shown to enhance T helper type 1 (TH1) responses 

through the H1 receptor and down-regulate both TH1 and TH2 responses through the H2 

receptor (Jutel, Watanabe et al. 2001). Furthermore, histamine is believed to have an 

immune regulatory function in myeloid cells (Elenkov, Webster et al. 1998; van der 

Pouw Kraan, Snijders et al. 1998). Histamine can be taken up in the diet, but 

endogenous histamine is generated through the conversion of L-histidine to histamine 

by the action of a unique enzyme, histidine decarboxylase (HDC). Although mast cells 

are known to store histamine, recent studies have suggested that other types of myeloid 

cells may be key sources of histamine production (Zwadlo-Klarwasser, Vogts et al. 

1998; Higuchi, Tanimoto et al. 2001; Sasaguri, Wang et al. 2005). In mouse models of 

atherosclerosis, HDC-expressing myeloid cells are primarily bone marrow-derived and 

appear more like monocytic precursors rather than mature macrophages (Sasaguri, 

Wang et al. 2005). Knockout of the Hdc gene has been reported (Ohtsu, Tanaka et al. 

2001; Ohtsu and Watanabe 2003; Ercan-Sencicek, Stillman et al. 2010), but little is 
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known regarding the role of histamine in carcinogenesis. Individuals with atopic allergy 

and excessive histamine release are reported to have a reduced incidence of cancer, 

but patients who chronically use anti-histamines rather have increased glioma risks 

(Scheurer, Amirian et al. 2010). However, the mechanism underlying these 

observations remains unclear (Prizment, Folsom et al. 2007; Vajdic, Falster et al. 2009).  

 Wang’s group recently showed that Hdc is primarily expressed in CD11b+Ly6G+ 

immature myeloid cells (IMCs) within the bone marrow, where histamine promotes 

myeloid cell differentiation, thus suppressing carcinogenesis (Yang, Ai et al. 2011). In 

this study, Hdc-knockout mice had a high rate of colon and skin cancer. Using Hdc-

EGFP bacterial artificial chromosome transgenic mice in which EGFP expression is 

controlled by the Hdc promoter, they showed that Hdc is expressed primarily in 

CD11b+Ly6G+ IMCs that are recruited early on in chemical carcinogenesis. Transplant 

of Hdc-deficient bone marrow to wild-type recipients results in increased CD11b+Ly6G+ 

cell mobilization and reproduced the cancer susceptibility phenotype seen in Hdc-

knockout mice. In addition, Hdc-deficient IMCs promoted the growth of tumor allografts, 

whereas mouse CT26 colon cancer cells down-regulated Hdc expression through 

promoter hypermethylation and inhibited myeloid cell maturation. Exogenous histamine 

induced the differentiation of IMCs and suppressed their ability to support the growth of 

tumor allografts. These data indicate key roles for Hdc and histamine in myeloid cell 

differentiation and CD11b+Ly6G+ IMCs in early cancer development. Thus the use of 

anti-histamines may be used to enhance anti-tumor immunity though the reduction of 

IMCs and/or MDSCs. 
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1.2.3.4 TGF-β regulation 

TGF-β is produced by GBM cells, Tregs and MDSCs and can both promote tumor 

growth and suppress anti-tumor immunity (Uhm, Kettering et al. 1993; Bierie and Moses 

2010). The anti-mouse TGFβ1, 2 and 3 antibody 1D11 can cross-react with bovine, 

chicken, mouse, and human TGF­β. Further Cat-192 a human anti-TGF-β1 mAb has 

been developed by Genzyme corporation however in a phase I/II clinical trial in patients 

with systemic sclerosis treatment with Cat-192 resulted in more serious adverse events 

than patients in the placebo control group (Denton, Merkel et al. 2007). We have 

demonstrated that TGF-β neutralization by 1D11 enhances the induction, persistence 

and IFN-γ production of antigen-specific CTLs in glioma-bearing mice. Neutralization of 

TGF-β also up-regulates plasma levels of IL-12, macrophage inflammatory protein-1α 

and CXCL-10, suggesting a promotion of type-1 immune response.  

 Suramin is a polysulfonated naphthyl urea originally developed as a treatment for 

African trypanosomiasis and later found useful in the treatment of onchocerciasis 

(Grossman, Phuphanich et al. 2001). Suramin has been shown to block TGF-β-binding 

to its receptor at clinically achievable concentrations (50-400 micrograms/ml) (Kloen, 

Jennings et al. 1994). One study examining human glioma xenografts in nude mice 

treated with suramin revealed a decrease in hypoxia, more abundant but decreased 

blood vessel size, and a decrease in tumor growth (Bernsen, Rijken et al. 1999). 

Despite the lack of immunity in the nude mouse model, the suramin mediated decrease 

in hypoxia and change in the tumor vasculature may allow for a more potent and viable 

anti-tumor immune response (Sun, Zhang et al. 2010). A clinical trial evaluating suramin 

in high grade recurrent glioma patients demonstrated achievable levels of suramin in 
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patients between 100-700 micrograms/ml with levels remaining at between 100 and 400 

micrograms/ml 5 days after treatment (Grossman, Phuphanich et al. 2001). In this 

study, toxicity was modest and reversible, and positive response was observed in 3 

patients (of 12 who were enrolled on the trial) with 2 patients achieving disease 

stabilization and survival of 16 and 27 months (Grossman, Phuphanich et al. 2001). 

Further, 1 patient had a marked reduction in tumor size and maintained a partial 

response for over 2 years without other therapy (Grossman, Phuphanich et al. 2001). In 

a phase II clinical trial administering suramin therapy in an intermittent fixed-dosing 

regimen during cranial RT was generally well tolerated. However no benefit in overall 

survival was observed compared with the New Approaches to Brain Tumor Therapy 

GBM database or other comparable patient population (Laterra, Grossman et al. 2004). 

Why only a subpopulation of patients responded warrants further studies, however such 

treatment may be more suitable and potent in patients with low-grade gliomas or in 

combination with immunotherapies.   

 Another class of molecules that can interfere with TGF-β signaling are the TGF-β 

receptor (TGFβR)-I kinase inhibitors, particularly SD-208 and SB-431542 (Hjelmeland, 

Hjelmeland et al. 2004; Uhl, Aulwurm et al. 2004; Halder, Beauchamp et al. 2005). SB-

431542 is a small molecule inhibitor with the ability to block the tumor-promoting effects 

of TGF-β, including cell motility, migration, invasion, and vascular endothelial growth 

factor (VEGF) secretion in human colon cancer cells (HT29) (Halder, Beauchamp et al. 

2005). Further, treatment of human glioma cell lines, including U87MG cells, with SB-

431542 blocks TGF-β-induced activity of SMAD as a transcription factor, VEGF 

expression and morphological changes in U87MG cells (Hjelmeland, Hjelmeland et al. 
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2004). Interestingly, SD-208, another TGFβR-1 kinase inhibitor, reduces SMAD2 

phosphorylation in both the brain and spleen 3 days following oral administration. 

Further, systemic SD-208 treatment prolongs survival of mice challenged with SMA-560 

glioma cells into the brains. Interestingly, SD-208 did not alter tumor cell growth or 

vascularization; rather, an increased tumor infiltration by natural killer cells, CD8 T-cells 

and macrophages was observed (Uhl, Aulwurm et al. 2004). Thus the confirmed 

bioavailability in the brain together with the ability to improve anti-tumor immunity 

supports the use for SD-208 for treatment of glioma patients.  

1.2.3.5 MDSC attracting chemokines 

Multiple chemokines can attract MDSCs toward the tumor. These include inflammatory 

chemokines S100A8, S100A9 and CCL-2. CCL-2, also known as macrophage 

chemoattracting protein (MCP)-1, was originally isolated from glioma cells (Yoshimura, 

Robinson et al. 1989). We have demonstrated that intraperitoneal injection of CCL-2 

neutralizing antibodies into C57BL/6 murine GL261 glioma bearing mice or severe 

combined immunodeficiency (SCID) mice bearing intracranial human U87 glioma 

xenografts results in significantly prolonged symptom free survival compared to control 

treated animals(Zhu, Fujita et al. 2011). Further, brain infiltrating leukocytes from treated 

animals reveal a significant decrease of CD11b+Gr-1+ infiltrating cells.  

The S100 family members S100A8 and S100A9 chemokines are expressed both 

by tumor cells and immune infiltrating cells (Gebhardt, Nemeth et al. 2006). In addition 

to forming homodimers, S100A8 and S100A9 often form heterodimers and 

heterotetramers, which may be important for their biological activity (Sparvero, Asafu-
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Adjei et al. 2009). MDSCs are known to express S100A8 and S100A9 at high levels and 

have receptors for both molecules (Gabrilovich and Nagaraj 2009), suggesting that they 

can be recruited to a tumor and support additional MDSC recruitment to tumors. In a 

recent study of human CD14+HLA-DR- MDSCs from colon cancer patients, Zhao and 

colleagues found these MDSC express S100A8, S100A9, and S100A12 (Zhao, Hoechst 

et al. 2012). Analysis of whole blood from colon cancer patients also demonstrated 

increased MDSCs compared to healthy donors. A couple of studies have assessed the 

role of S100 proteins and glioma MDSCs (Deininger, Pater et al. 2001; Murat, 

Migliavacca et al. 2009). In a gene expression set from 80 GBM patients, S100A8 and 

S100A9 expression levels were inversely associated with survival (Murat, Migliavacca 

et al. 2009). Further, in recurrent GBM tissues following radiation therapy, there are 

significantly more macrophages/microglial cells expressing S100A9 compared with 

recurrent GBM tissues without prior radiation therapy (Deininger, Pater et al. 2001). 

Thus, treatment courses may have a critical impact on MDSCs and their effector 

functions. Based on the limited data on S100 proteins and gliomas, more studies are 

warranted to determine if blockade of S100A8 and A9 can improve T-cell functioning 

and reduce MDSCs in glioma patients. 

1.2.4 Summary  

With a growing amount of supporting literature, strategies to overcome the detrimental 

impact of MDSC on anti-tumor immunity in glioma patients may serve as potential 

therapeutics (Summarized in Table 1 and Figure 2). With direct mechanisms to 
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reduce MDSCs by depletion or forced maturation, as well as indirect interventions by 

targeting immune suppressive features of MDSCs available as potential therapies, 

further studies are warranted to elucidate the benefits and pitfalls of each strategy. The 

ideal therapy would not only reduce immune cell suppression but also promote type-1 

immunity, reduce hypoxia, and have some direct tumor suppressing effects. In addition, 

multiple MDSC-related strategies may be combined for maximal effect, and these 

strategies may be used in combination with other immunotherapies to further enhance 

their response.  

 

 

 

 

 

 



 

 

 36 

 

Figure 2: Strategies to Block MDSC Development and Function in Gliomas 
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Table 1: Summary of Mechanisms to Block MDSC-Mediated Suppression 

Category  Function  
Blocking 

agent/mechanism References 
MDSC 

Inhibition  
Block MDSCs 

generation 
 Sunitinib, Sorafenib, IL-

4Ra aptamer,  
Ko, et al. 2009, Cao, 
et al. 2011, Roth, et 

al. 2012  

MDSC 
Maturation  

Mature MDSCs to cells 
with anti-tumor 

properties  
 IFN-γ and TNF-α, CpG 

or Poly-ICLC   
  adjuvant, Curcumin  

Pak, et al. 1995, 
Zoglmeier, et al. 
2011 ,Zhu, et al. 

2007,  Tu, et al. 2012 

Arginase  
Depletes arginine 

necessary for T-cell 
growth and function 

  Arginase inhibitors (nor-
Noha, ABH,              

  DFMO), L-arginine 
supplementation,  

  Lys  (CAT-2B inhibitor) 
Baggio, et al. 1999, 
Sippel, et al. 2011, 
Yang, et al. 2002,  

COX-2 

Prostaglandin E2 
synthesis and MDSC 
recruitment from bone 

marrow 
 SC58236, Acetylsalicylic 

Acid (ASA),   
 celecoxib  

Condamine, et al. 
2010, Fujita, et al. 

2011 

Histamine 
Recruitment of immune 

suppressor cells such as 
MDSCs   

  
 Anti-histamines  

Scheurer et al 2010, 
Yang et al. 2011 

TGF-β 
CTL and NK cell 

inhibition and Treg 
recruitment 

 1D11, Suramin, SD-208, 
SB-431542 

Ueda, et al. 2009, 
Grossman, et al. 

2001, Halder, et al. 
2005, Uhl, et al. 

2004 

Chemokines  

Chemotaxis of 
immunesuppressor cells  

to the tumor including 
MDSCs 

  
  Antibody mediated 

blockade of  
  S100A8, S100A9 and 

CCL-2  
Zhu, et al. 2011, 

Murat, et al. 2009 
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1.3 MICRORNA 

1.3.1 MicroRNA Biology  

MicroRNAs (miRNAs) are endogenous small single-stranded RNA molecules which are 

18-24 nucleotides long. MiRNAs are highly conserved between species and have been 

identified in plants, animals and viruses (Carrington and Ambros 2003). These small 

RNA are located in various parts of the genome, usually in segments not associated 

with known genes. Mature miRNA molecules have the ability to repress translation and 

therefore serve an important role in regulating post transcriptional activities(Elmen, 

Lindow et al. 2008). There are predicted to be over 800 microRNAs in the human 

genome which are predicted to regulate 2/3 of all genes (Bentwich, Avniel et al. 2005; 

Hammond 2006; Ueda, Kohanbash et al. 2009).  

1.3.2 MiRNA Processing and Function  

Genes encoding miRNAs are transcribed by RNA polymerase II into long primary 

miRNA sequences (pri-miRNAs) with a 5’ cap, 3’ untranslated region (UTR), and a 

hairpin sequence that encodes the mature miRNA. The hairpin of the pri-miR is then 

cleaved by the enzyme Drosha to form precursor microRNAs (pre-miRNAs). Pre-

miRNAs are then transported via Exportin V to the cytoplasm. Once in the cytoplasm 

dicer, an Rnase III superfamily member cleaves one of the strands and attaches the 

mature miRNA to an RNA-induced silencing complex (RISC). The full RISC complex 
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(miRNA and RISC) are then able to bind to 3’ UTR regions of mRNAs, and inhibit 

translation. Translational inhibition may occur either through mRNA degradation or 

translational suppression. When there is complete complementarity of the miRNA to the 

mRNA 3’ UTR, the mRNA is degraded, however, partial complementarity of the miRNA 

to the 3’ UTR sequence results in inhibition of the circularization of the mRNA needed 

for ribosomal attachment(Ying and Lin 2009). 

1.3.3 Previous Findings from my Master’s Degree  

Data generated from my master’s thesis concluded that the miRNA cluster, miR-17-92 

is expressed at higher levels in type-1 helper T-cells (Th1) cells compared with type-2 

helper T-cells (Th2) cells. IL-4 suppresses miR-17-92 through the STAT6 signaling 

pathway. MiR-17-92 cluster expression levels in T-cells correlate with cell proliferation, 

and overexpression of miR-17-92 downregulates E2F1 and E2F2. We proposed a 

model in which IL-4 from Th2 cells or from the tumor environment (Roussel, Gingras et 

al. 1996)  is able to decrease the proliferative ability of T-cells. However, more work is 

necessary to determine other biological effects of the miR-17-92 cluster, the effects of 

ectopic overexpression of miR-17-92 cluster in T-cells and the relevance to gliomas.   
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2.0  THESIS AIMS 

Enhancing the host immunological response to tumors remains a challenge for glioma 

researchers. We have previously demonstrated the importance of type-1 T-cells for anti-

glioma immunity. However cancers, including gliomas, secrete numerous type-2 

cytokines that promote tumor proliferation and immune escape.  The hallmark cytokines 

of type-1 and type-2 skewing are IFNs and IL-4, respectively. The overall goal of this 

study was to better understand the role of IFN and IL-4 signaling in glioma prognosis. 

Specifically we examine in the context of gliomas: (1) the role of IL-4R regulated miR-

17-92 expression on T-cells (Aim 1) (2) the role of IL-4Rα on the suppressive activity of 

MDSCs (Aim 2) and (3) the beneficial effects of SNPs in type I IFN genes that are 

associated with glioma patient survival (Aim 3).    
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2.1 SPECIFIC AIMS 

Specific Aim #1 (miR-17-92 cluster in T-cells): To determine whether IL-4R signaling 

in the glioma microenvironment inhibits miR-17-92 expression in human and mouse 

glioma-infiltrating T-cells and suppresses T-cell function. 

Hypothesis: We hypothesize that miR-17-92 expression is down-regulated in T-cells 

from human glioma patients and glioma bearing wild type (WT) but not Stat6 deficient 

mice and that ectopic expression of miR-17-92 in T-cells enhances their function.   

Results: miR-17-92 cluster members are down-regulated in T-cells of glioma patients 

and in glioma-bearing WT but not Stat6 deficient mice. Ectopic expression of miR-17-92 

in T-cells promotes IFN-γ, IL-2 and VLA4 expression and reduces activation induced 

cell death (AICD).  

 

Specific Aim #2 (IL-4Rα on MDSCs): IL-4Rα enhances MDSC function and promotes 

glioma development.  

Hypothesis: Il4ra deficient (Il4ra-/-) mice exhibit prolonged survival following de novo 

glioma challenge and decreased MDSC expression of suppressive molecules. 

Results: Human and mouse glioma up-regulates IL-4Rα expression on tumor infiltrating 

myeloid cells via GM-CSF. Il4ra-/- MDSCs have reduced arginase activity and 

suppressive activity on T-cells. Il4ra-/- mice challenged with de novo gliomas exhibit 

prolonged survival compared to WT mice.   

 



 

 

 42 

Specific Aim #3 (SNP in IFNA8): To determine whether SNPs in the type I IFN genes 

associated with glioma prognosis impact downstream signaling and IFNA expression. 

Hypothesis: A SNP in the promoter of a type I IFN gene that is associated with glioma 

prognosis impacts binding of transcription factors to the IFN promoter and reduces 

promoter activity.  

Results: The A- genotype of the rs12553612 SNP in the IFNA8 promoter which is 

associated with better survival of glioma patients enhances IFNA8 activity and Oct-1 

binding compared with the C-genotype of the rs1255612 SNP in the IFNA8 promoter 

region.  
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3.0  AIM 1 BACKGROUND (MIR-17-92 CLUSTER IN T-CELLS) 

MiRs in miR-17-92 cluster have been reported to be amplified in various tumor types, 

such as B-cell lymphoma and lung cancer, and are found to promote proliferation and 

confer anti-apoptotic function in tumors, thereby promoting tumor-progression 

(Hayashita, Osada et al. 2005; He, Thomson et al. 2005; Lawrie 2007; Matsubara, 

Takeuchi et al. 2007; Rinaldi, Poretti et al. 2007).  Knockout and transgenic studies of 

the miR-17-92 cluster in mice have demonstrated the importance of this cluster in 

mammalian biology (Xiao and Rajewsky 2009).  Transgenic mice with miR-17-92 

overexpressed in lymphocytes develop lymphoproliferative disorder and autoimmunity 

but not cancer (Xiao, Srinivasan et al. 2008).  These findings demonstrate a critical role 

for miR-17-92 cluster in T-cell biology.   

During the course of my M.S degree I demonstrated that miR-17-92 cluster is up-

regulated in Th1 cells compared with Th2 cells as determined by microRNA microarray 

(not shown) and by RT-PCR analysis (Figure 3). The down-regulation of miR-17-92 

cluster was mediated by IL-4 signaling as blockade of IL-4 (Figure 4A) and T-cells from 

mice deficient of STAT6 (Figure 4B), the major IL-4 receptor signaling molecule, 

blocked the down-regulation of miR-17-92 in Th2 cells. Furthermore, miR-17-92 

expression correlated with the proliferation of T-cells (Figure 5). 
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Figure 3: RT-PCR analysis of all miRs in the miR-17-92 cluster.  Data represent relative expression of mature 

miRs in Th1 compared with Th2 cells.  SNO202 was used as the internal control and 2ΔΔCT method was used to 

examine expression relative to the Th2 cell value.  Relative expression is shown for miR-17-92 cluster members. 

Error Bars indicate standard deviation of the triplicate samples.  Each experiment was repeated at least 3 times.  Up-

regulation in Th1 vs. Th2 is significant in with p<.01 for miR-92 and p<.0001 for all other miRs. 
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Figure 4: Down-regulation of miR-17-5p and miR-92 by IL-4 and STAT6. (A) Immuno-magnetically isolated 

mouse splenic CD4+ T-cells were cultured with 5 µg/ml plated anti-CD3, feeder cells and 100U/mL hIL-2 

(“Neutral” condition).  Anti-IL-4 (2.5 µg/ml) or isotype control mAb was added to the appropriate wells and 

cultured for 5 days prior to extraction of total RNA.  Statistical analysis was carried out using the student t test. 

Blockade of IL-4 up-regulates MiR-17-5p and miR-92 significantly with p<.001 and p<.005, respectively.  (B), Th1 

and Th2 cells were induced from splenic CD4+ T-cells isolated from either wild-type or STAT6-/- mice.  Total 

RNA was extracted and RT-PCR was performed using specific primers against miR-17-5p and miR-92.  Data is 

representative from one of 2 two independent experiments with similar results, and error bars represent standard 

deviations.  STAT6-/- cells demonstrated significantly higher levels of miR-17-5p and miR-92 compared with WT 

cells in both Th1 and Th2 conditions (p<.001) using the student t test. 

A 
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Figure 5: WST-1 Assay of Th1 and Th2 cultured cells. 1x 104 cells were cultured in a 96 well plate for 24-48 

hours in 100ul of complete media. After this time 10ul of WST-1 reagent was added to each well. Cells were 

incubated at 370C, 5% CO2 for 4 hours, and placed on a shaker for 1 min. The plates were then read on a micro 

plate reader with a wavelength of 420 nm. Columns represent the mean of 2 separate Th1 and Th2 cultures, each run 

in quadruplicate; error bars represent standard deviation of all 8 samples. Statistical analysis was carried out on 

Graphpad prism using the student t test. Values are significant with a p<.01 
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Based on the findings from work completed during my M.S degree, we 

suggested the following mechanism (Figure 6). As SNPs in the Il4ra gene are 

associated with glioma prognosis further exploration of IL-4-regulated miR-17-92 cluster 

in T-cells in cancer conditions seemed relevant and could explain a possible 

mechanism for better survival of some patients. It remained unknown if miR-17-92 is 

down-regulated in cancer conditions and the effect of ectopic expression of miR-17-92 

cluster in T-cells.   
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Figure 6: Model of miR-17-92 signaling pathway in T-cells. Based on our current data we propose that IL-4 from 

Th2 skewing conditions such as the tumor environment down-regulates miR-17-92 through the STAT6 pathway in 

T-cells. This down-regulation of mIR-17-92 results in up-regulation of anti-proliferative E2F1 and E2F2 molecules 

resulting in decreased proliferation relative to Th1. Conversely Th1 conditions lack activation of STAT6 and 

therefore have up-regulation of miR-17-92, decreased E2F1 and E2F2, and increase proliferation relative to Th2. 
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4.0  AIM 1 MATERIALS AND METHODS (MIR-17-92 CLUSTER IN T-CELLS) 

4.1 REAGENTS 

RPMI 1640, fetal bovine serum, sodium pyruvate, 2-mercaptoethanol, 

nonessential amino acids, and penicillin/streptomycin were obtained from Invitrogen 

Life Technologies.  Recombinant murine (rm) IL-12 was purchased from Cell Sciences 

Technologies.  RmIL-4, recombinant human (rh) IL-4 and rhIL-2 were purchased from 

PeproTech. Purified mAbs against IL-12 (C15.6), IFN-γ (R4–6A2), IL-4 (11B11), CD3 

(145-2C11), CD4 (RM4-5), CD8 (53-6.7) and CD49d (R1-2) were all purchased from BD 

Pharmingen. Purified mAbs against CD3 (UCHT1) and CD28 (CD28.2) and IL-4 (MP4-

25D2) were purchased from Biolegend.  RT-PCR reagents and primers were purchased 

from Applied Biosystems and analyzed on a BioRad IQ5.  WST-1 reagent was 

purchased from Roche.   For isolation of T-cells, immunomagnetic isolation kits from 

Miltenyi Biotec were used.  All reagents and vectors for lentiviral production were 

purchased from System Biosciences with the exception of Lipofectamine 2000, which 

was from Invitrogen. 
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4.2 MICE 

C57BL/6 mice and C57BL/6 background STAT6 deficient mice (B6.129S2[C]-

Stat6tm1Gru/J; The Jackson lab) (both 5–9 wk of age) were purchased from The Jackson 

Laboratory.  C57BL/6-background miR-17-92 transgenic (TG) mice (C57BL/6-

Gt[ROSA]26Sortm3(CAG-MIRN17-92,-EGFP)Rsky/J; The Jackson Lab) were maintained in the 

Hillman Cancer Center Animal Facility at University of Pittsburgh as breeding colonies 

and bred to C57BL/6-background mice transgenic for Cre recombinase gene under the 

control of the Lck promoter (B6.Cg-Tg[Lck-cre]548Jxm/J, the Jackson Lab) to obtain 

mice, in which T-cells expressed miR-17-92 at high levels (miR-17-92 TG/TG).  For 

mouse tumor experiments, C57BL/6 mice and C57BL/6 background STAT6-/- mice 

received subcutaneous injection of 1x 106 B16 tumor cells resuspended in PBS into the 

right flank.  On day 15 following tumor inoculation, mice were sacrificed and splenic T-

cells were isolated. Animals were handled in the Hillman Cancer Center Animal Facility 

at University of Pittsburgh per an Institutional Animal Care and Use Committee-

approved protocol. 

4.3 SUBCUTANEOUS TUMOR MODEL 

B16 melanoma cells were harvested in the exponential growth phase by trypsinization, 

washed twice with ice-cold PBS and then resuspended in ice-cold PBS. C57BL/6  
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background WT or Stat6-/- mice were subcutaneous injected with B16 cells (2 x105 

cells/mouse) on the right back flank. Mice were sacrificed on day 15 post-tumor cell 

injection. 

4.4 T-CELLS FROM HEALTHY DONORS AND PATIENTS WITH GBM 

This study was approved by the local ethical review board of University of Pittsburgh.  

All healthy donors and patients with GBM signed informed consent before blood 

samples were obtained.  To determine the impact of IL-4, healthy donor-derived CD4+ 

T-cells were isolated with immunomagentic-separation and stimulated with 100 IU/ml 

rhIL-2, anti-CD3 and anti-CD28 mAbs (1 µg/ml for each) in the presence or absence of 

rhIL-4 (10ng/ml).  RT-PCR analyses were performed with both healthy donor- and 

patient-derived T-cells to determine the expression of miR-17-92 as described in the 

relevant section.  
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4.5 QUANTITATIVE RT-PCR 

Total RNA was extracted using the Qiagen RNeasy kit and quality was confirmed with a 

A260/A280 ratio greater than 1.85.  RNA was subjected to RT-PCR analysis using the 

TaqMan microRNA Reverse Transcription Kit, microRNA Assays (Applied Biosystems), 

and the Real-Time thermocycler iQ5 (Bio-Rad).  The small nucleolar SNO202 was used 

as the housekeeping small RNA reference gene for all murine samples and RNU43 for 

human samples.  All reactions were done in triplicate and relative expression of RNAs 

was calculated using the ΔΔCT method (Livak and Schmittgen 2001). 

4.6 ASSAYS USING JURKAT LYMPHOMA CELLS TRANSDUCED WITH MIR-17-

92 

Jurkat human T-cell lymphoma cells (American Type Culture Collection) were 

transduced by either one of the following pseudotype lentiviral vectors: 1) control vector 

encoding GFP; 2) the 17-92-1 expression vector encoding miR-17 18 and 19a, or 3) the 

17-92-2 expression vector encoding miR 20, 19b-1, and 92a-1.  All vectors were 

purchased from Systems Biosciences (SBI).  Lentiviral particles were produced by co-

transfecting confluent 293TN cells (SBI) with pPACK-H1 Lentivirus Packaging Kit (SBI) 

and the miR containing expression vectors (SBI) noted above using Lipofectamine 2000 

reagent (Invitrogen).  Supernatant was collected after 48 hour incubation at 37°C with 

5% CO2 and placed at 4°C with PEG-it Virus Concentration Solution (SBI) for 24 hrs.  
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Supernatants/PEG solutions were then centrifuged and the pellet was resuspended in a 

reduced volume of media as viral stock.  Jurkat cells were further resuspended in the 

viral stock together with polybrene (8μg/ml) for 24 hrs.  Fresh media was then added to 

the cells and transduction efficiency was evaluated by GFP expressing cells.  For IL-2 

production, transduced Jurkat cells were stimulated with Phorbol 12-myristate 13-

acetate (PMA) (10ng/ml) and ionomycin (500nM) for overnight and supernatant was 

assayed for IL-2 by a human IL-2 ELISA kit.  For activation induced cell death (AICD), 

cells were treated with 10 μg/ml purified anti-CD3 mAb (UCHT1) from Biolegend for 24 

hours and then cell viability was measured using WST-1 reagent. 

4.7 STATISTICAL METHODS   

All statistical analyses were carried out on Graphpad Prism software. The statistical 

significance of differences between groups was determined using student t- test.  We 

considered differences significant when p < 0.05.  
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5.0  AIM 1 RESULTS (MIR-17-92 CLUSTER IN T-CELLS) 

5.1 SUPPRESSION OF MIR-17-92 MAY OCCUR IN CANCER-BEARING HOSTS  

Data from our previous experiments (Aim 1 background) led us to hypothesize that 

suppression of miR-17-92 would occur in cancer-bearing hosts where tumor-derived 

factors likely promote Th2-skewed immune responses and secretion of IL-4(Roussel, 

Gingras et al. 1996).  Indeed, CD4+ and CD8+ splenocytes (SPCs) derived from WT 

C57BL/6 mice bearing B16 subcutaneous tumors expressed lower levels of miR-17-5p 

when compared with those derived from non-tumor bearing mice (Figure 7A).  

Interestingly, the tumor bearing condition did not suppress miR-17-5p expression in 

CD4+ T-cells from Stat6-/- mice. Furthermore, CD8+ T-cells in Stat6-/- mice demonstrated 

enhanced levels of miR-17-5p expression when these mice bore B16 tumors when 

compared with non-tumor bearing mice.  When WT CD4+ T-cells were stimulated with 

anti-CD3 mAb in vitro for 24 hours, the CD4+ T-cells from tumor-bearing mice produced 

lower levels of IFN-γ when compared with ones from non-tumor bearing WT mice 

(Figure 7B). Tumor-associated immunosuppression may involve the down-regulation of 

miR-17-92 through a STAT6-dependent pathway.   

We next evaluated whether the observed IL-4-mediated and tumor-induced 

suppression of miR-17-92 are relevant in human T-cells. Healthy donor-derived CD4+ T-
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cells were stimulated with rhIL-2, anti-CD3 and anti-CD28 mAbs, consistent with the 

mouse data, addition of rhIL-4 in the cultures suppressed expression of miR-17-5p 

(Figure 7C).  Moreover, CD4+ T-cells obtained from patients with GBM exhibited 

significantly decreased levels of miR-17-5p when compared with ones from healthy 

donors (Figure 7D).  Thus both IL-4 and GBM-bearing conditions suppress miR-17-5p 

expression in CD4+ T-cells. Although not statistically significant, we observed a similar 

trend with CD8+ T-cells demonstrating decreased levels of miR-17-5p expression in 

GBM patient-derived CD8+ T-cells when compared with healthy donor-derived CD8+ T-

cells (not shown).  
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Figure 7: Tumor bearing conditions down-regulate miR-17-5p expression in T-cells.  SPCs were harvested 

from C57BL/6 or Stat6-/- mice bearing day 15 subcutaneous B16 melanoma (T+) or control non-tumor bearing mice 

(T-).  (A), CD4+ and CD8+ T-cells were isolated by immuno-magnetic bead separation, and evaluated for miR17-5p 

expression.  (B), 1 x 106 CD4+ cells from WT mice were briefly stimulated with anti-CD3 mAb for 6 hours.  

Concentration of IFN-γ secreted in culture media was evaluated by specific ELISA.  (C), CD4+ T-cells were isolated 

from healthy donor-derived peripheral blood mononuclear cells (PBMC) and stimulated with 5 µg/ml plated anti-

CD3, feeder cells (irradiated PBMC) and 100IU/ml hIL2 in the presence or absence of hIL-4 (10 ng/ml) for 5 days 

prior to extraction of total RNA. (D), Non-stimulated CD4+ T-cells were isolated by immuno-magnetic beads from 

PBMC derived from healthy donors (n=6) or patients with GBM (n=8) and miR-17-5p expression was analyzed by 

RT-PCR.  Data in (A), (B) and (C), are representative of 2 identical experiments with similar results.  Columns 

represent the mean of triplicates from a single experiment and error bars represent standard deviation. * indicates 

p<0.01 and ** indicates p<0.05 between the two groups using the student t test. 
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5.2 T-CELLS DERIVED FROM MIR-17-92 TRANSGENIC ANIMALS DISPLAY AN 

ENHANCED TYPE-1 PHENOTYPE 

The data discussed above strongly suggest GBM-associated factors, and a type-2 

promoting cytokine (IL-4) down-regulate miR-17-92 in T-cells.  MiR-17-92 is expected to 

play pivotal roles in T cell functions.  We therefore sought to determine whether ectopic 

expression of miR-17-92 would promote the type-1 phenotype of T-cells.  As detailed in 

Materials and Methods, we produced mice that overexpress miR-17-92 specifically in T-

cells (miR-17-92 TG/TG).  We isolated CD4+ SPCs from these mice and evaluated the 

expression of miR-17-5p (Figure 8A).  CD4+ cells from TG/TG mice displayed a >15 

fold increase in miR-17-p5 expression as compared with controls.  These cells also 

expressed elevated levels of CD49d, which is a subunit composing a type-1 T-cell 

marker VLA-4 (Figure 8B).   Although CD49d (α4) can form heterodimers with both β1 

(CD29) and β7 integrins, α4β7 complexes are not expressed by either Th1 cells or Th2 

cells, suggesting that CD49d is a suitable surrogate for VLA-4 expression levels  (Zhu, 

Nishimura et al. 2007; Sasaki, Zhao et al. 2008). MiR-17-92-TG/TG CD4+ cells also 

demonstrated enhanced ability to produce IFN-γ upon stimulation (Figure 8C).  Similar 

data were obtained with CD8+ T-cells isolated from these TG/TG mice (data not shown).  

These findings suggest that miR-17-92 promotes the type-1 phenotype in differentiating 

T-cells.  
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Figure 8: T-cells from miR-17-92 transgenic mice demonstrate enhanced Th1 phenotype.  Splenic CD4+ T-

cells were Immuno-magnetically isolated from miR-17-92 TG/TG or control animals.  (A), miR-17-5p expression 

was analyzed in total RNA extracted from these freshly isolated cells.  (B), Flow analysis was carried out on these 

freshly isolated cells for surface expression of CD49d, a subunit composing VLA-4. The grey shaded region 

represents CD4+ T-cells isolated from control animals and the un-shaded region represents CD4+ T-cells from miR-

17-92 TG/TG mice (C), Isolated cells were stimulated in Th1 skewing condition for 9 days and 5 x 106 cells were 

then plated in fresh media for 24 hours, at which point supernatant was collected and analyzed for IFN-γ by ELISA.  

Both in (A), and (C), values in the two groups were statistically different with p<.01 using the student t test.   
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5.3 ECTOPIC EXPRESSION OF MIR-17-92 PROMOTES IL-2 PRODUCTION AND 

RESISTANCE AGAINST ACTIVATION-INDUCED CELL DEATH (AICD) IN JURKAT 

CELLS 

Based on our discussion in the background section, miR-17-92 is expected to play 

pivotal roles in T cell survival as well as functions.  To evaluate these aspects, we 

transduced Jurkat human T lymphoma cells with lentiviral vectors encoding green 

fluorescence protein (GFP) and either the miR-17-92-1 expression vector encoding 

miR-17 18 and 19a, or  the 17-92-2 expression vector encoding miR 20, 19b, and 92.  

The control vector encodes GFP, but not miRs. Transduced Jurkat cells were stimulated 

with PMA and ionomycin overnight before the supernatants were assayed for IL-2 

production by ELISA (Figure 9A). Transduction of either miR-vector promoted IL-2 

production in Jurkat cells. It was somewhat expected the both vectors would have 

similar effects to one another as miRs from both miR-17-92-1 and miR-17-92-2 share 

similar seed sequences.  

AICD and chemotherapy-induced suppression of T-cells represent major obstacles 

for efficient T cell-based cancer immunotherapy (Brenner, Krammer et al. 2008; 

Kennedy and Celis 2008).  We next examined whether transfection of Jurkat cells with 

miR-17-92 makes T-cells resistant to AICD.  AICD was induced by cultivation of Jurkat 

cells in the presence of 10 µg/ml anti-CD3 mAb, which is hyper-stimulatory and used as 

a standard method to induce AICD (Jiang, Han et al. 2009). As demonstrated (Figure 

9B), the growth of control Jurkat cells was significantly suppressed by nearly 25% in the 

AICD inducing condition compared with the same cells with the regular (growth-
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promoting) dose of anti-CD3 mAb (1 µg/ml).  In contrast, the growth of Jurkat cells 

transduced with either miR-17-92-1 or miR-17-92-2 was not significantly altered by the 

high dose (10 μg/ml) of anti-CD3 mAb, suggesting that the miR-17-92 transfection 

confers T-cells with substantial resistance against AICD. These findings point to a 

potential utility for engineered T-cells in cancer immunotherapy. 
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Figure 9: Ectopic expression of miR-17-92 cluster members in the human Jurkat T-cell line confers increased 

IL-2 production and resistance to AICD.  Jurkat cells were transduced by either one of the following pseudo 

typed lentivirus vectors: 1) control vector encoding GFP; 2) the 17-92-1 expression vector encoding miR-17 18 and 

19a, or 3) the 17-92-2 expression vector encoding miR 20, 19b-1, and 92a-1.  (A), Transduced Jurkat cells (5x104) 

in the triplicate wells were stimulated with PMA (10 ng/ml) and ionomycin (500 nM) for overnight and supernatant 

was harvested and tested for the presence of IL-2 by specific ELISA.  The figure shows mean values and standard 

deviations of the amount of IL-2 released from each group.  Statistical analysis was carried out using the student t 

test, and significant (p<.005) increase of IL-2 production was confirmed in both 17-92-1 and the 17-92-2 transduced 

groups compared with the control group.  (B), Transduced Jurkat cells were treated with the AICD inducing 

condition (10 µg/ml anti-CD3 mAb) or in complete media (No Tx) for 24 hrs.  Then, the relative numbers of viable 

cells were evaluated using the WST-1 assay (Roche).  The figure shows mean values and standard deviations of 8 

wells/group each containing 5 x 105 cells. For each group, the relative OD readings at 450 nm of AICD-treated cells 

compared with control Jurkat cells without AICD-treatment is indicated. * indicates p<0.05 between the two groups 

using student t test.    

 

 

* 
* 



 

 

 62 

6.0  AIM 1 CONCLUSION (MIR-17-92 CLUSTER IN T-CELLS) 

Attaining effective anti-tumor immunity is a major goal of modern biologic therapy, 

limited by the tumor microenvironment and profound regulatory mechanisms that limit T-

cell and NK cell effectors. In Aim 1 we show that the type-2-skewing tumor 

microenvironment induces down-regulation of miR-17-92 expression in T-cells, thereby 

hampering anti-tumor T-cell responses. It also suggests that development of 

immunotherapy using miR-17-92-transduced T-cells is warranted based on our findings 

demonstrating that ectopic expression of miR-17-92 in T-cells leads to improved type-1 

functions, including increased VLA-4 expression and IFN-γ production.  

It remains obscure as to how IL-4 and the STAT6 signaling pathway negatively 

influence miR-17-92 expression at molecular levels. Our findings indicate that the 

tumor-bearing host down-regulates miR-17-92 in T-cells, systemically (Figure 7).  

Interestingly, not only are Stat6-/- T-cells resistant to tumor-induced inhibition of miR-17-

5p, but CD8+ T-cells in tumor bearing Stat6-/- mice exhibited higher levels of miR-17-5p 

when compared with CD8+ T-cells obtained from non-tumor bearing Stat6-/- mice.  In 

addition to IL-4, other tumor-derived factors are likely to be involved in these events. 

Additionally, IL-13 expression in tumor conditions may also signal through the IL-

4R/STAT6 pathway and suppress miR-17-92 expression.  
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Ectopic expression of miR-17-92 cluster members in Jurkat cells lead to 

increased IL-2 production levels and viability following treatment with AICD condition   

(Figure 9). The Jurkat cell line was isolated from the peripheral blood of a T-cell 

leukemia patient in the 1970s, they are often used to recapitulate what would happen in 

humans T-cells as they retain many T-cell properties such as CD4, a T cell receptor, 

and ability to produce IL-2. Additionally, being a cell line, Jurkat cells survive after many 

passages making them ideal in experiments.  For these reasons we chose to use Jurkat 

cells in our study.  We recognize that this cell line may have pitfalls since they are an 

immortalized cell line and have better survival than non-immortalized human T-cells. 

Messenger RNA  that are targeted by miR-17-92 cluster miRs include: E2F1, 

E2F2, E2F3 (O'Donnell, Wentzel et al. 2005; Sylvestre, De Guire et al. 2007), P21 

(Inomata, Tagawa et al. 2009), anti-angiogenic thrombospondin-1 and connective tissue 

growth factor (Dews, Homayouni et al. 2006), proapoptotic Bim, and phosphatase and 

tensin homolog (PTEN) (Xiao, Srinivasan et al. 2008).  These proteins are all involved in 

cell cycle regulation or apoptotic cell death, further supporting the importance of miR-

17-92 cluster in T cell biology.  In fact, Bim and PTEN are down-regulated in T-cells 

overexpressing miR-17-92 (Xiao, Srinivasan et al. 2008).  Furthermore, TGF-β receptor 

II (TGFBRII) is one of the established targets of miR-17-92 (Volinia, Calin et al. 2006).  

We predict based on this that miR-17-92 transgenic T-cells should show down-

regulated TGFBRII and decreased sensitivity to TGF-β.    

In agreement with others (Xiao, Srinivasan et al. 2008), our findings 

demonstrating increased IFN-γ production from miR-17-92 TG/TG T-cells compared 
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with control cells suggests that miR-17-92 may promote the type-1 skewing of T-cells 

(Figure 8).  As miR-17-92 targets hypoxia-inducible factor (HIF)-1α in lung cancer cells 

(Taguchi, Yanagisawa et al. 2008), enhanced miR-17-92 expression in activated T-cells 

may promote the type-1 function of T-cells at least partially through down-regulation of 

HIF-1α.  HIF-1 expression provides an important adaptation mechanism of cells to low 

oxygen tension (Semenza 1998; Sitkovsky and Lukashev 2005).However, it does not 

appear to be critical for survival of T-cells, unlike its apparent role in macrophages 

(Cramer, Yamanishi et al. 2003).  T-cells do not depend on HIF-1α for survival to the 

same degree as macrophages since activated T-cells produce ATP by both glycolysis 

and oxidative phosphorylation (Brand and Hermfisse 1997).  Rather, HIF-1α in T-cells 

appears to play an anti-inflammatory and tissue-protecting role by negatively regulating 

T-cell functions (Eltzschig, Thompson et al. 2004; Neumann, Yang et al. 2005; 

Sitkovsky and Lukashev 2005).  T-cell-targeted disruption of HIF-1α leads to increased 

IFN-γ secretion and/or improved effector functions (Kojima, Gu et al. 2002; Lukashev, 

Klebanov et al. 2006; Thiel, Caldwell et al. 2007; Guo, Lu et al. 2009).  These data 

collectively suggest that miR-17-92 expression in activated T-cells may promote the 

type-1 function of T-cells at least partially through down-regulation of HIF-1α.   

MiRs in the miR-17-92 clusters are amplified in various tumor types including B-

cell lymphoma and lung cancer, and promote proliferation and confer anti-apoptotic 

function in tumors, thereby promoting tumor-progression and functioning as oncogenes 

(Hayashita, Osada et al. 2005; He, Thomson et al. 2005; Lawrie 2007; Matsubara, 

Takeuchi et al. 2007; Rinaldi, Poretti et al. 2007).  However, miR-17-92 by itself may not 
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be responsible for oncogenesis as transgenic mice with miR-17-92 overexpressed in 

lymphocytes develop lymphoproliferative disorder and autoimmunity but not cancer 

(Xiao, Srinivasan et al. 2008).  MiR-17-92 may cooperate with other oncogenes to 

promote the oncogenic process.  Transgenic mice overexpressing both miR-17-92 and 

c-Myc in lymphocytes develop early-onset lymphomagenesis disorders (He, Thomson 

et al. 2005).  On the other hand, knockout studies of the miR-17-92 cluster in mice have 

demonstrated the importance of this cluster in mammalian biology.  While knockout of 

the miR-17-92 cluster results in immediate post-natal death of all progeny with lung and 

heart defects, knockout of either or both the miR-106a or miR-106b (miR-17-92 

homologs) clusters are viable without an apparent phenotype(Ventura, Young et al. 

2008). However, disruption of the miR-17-92 cluster together with miR-106a or 106b 

cluster results in embryonic lethality (Xiao and Rajewsky 2009).  During lymphocyte 

development, miR-17-92 miRs are highly expressed in progenitor cells, with the 

expression level decreasing 2- to 3-fold following maturation (Xiao, Srinivasan et al. 

2008).  

These studies reviewed above provide us with critical insights as to what has to 

be expected if we develop therapeutic strategies by modulating miR-17-92 expression.  

One major barrier for successful T-cell–based cancer immunotherapy is the low 

persistence of tumor antigen (TA)-specific T-cells in tumor-bearing hosts (Morgan, 

Dudley et al. 2006; Pule, Savoldo et al. 2008).  It seems promising to generate 

genetically modified TA-specific T-cells ex vivo that are resistant to tumor-mediated 

immune suppression and mediate robust and long-lived anti-tumor responses.  MiR-17-

92 miRs have the potential to confer resistance to tumor-derived immunosuppressive 
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factors and to improve type-1 reactivity.  Further characterization of the role of miR-17-

92 cluster in tumor antigen (TA)-specific CTLs is clearly warranted and may provide us 

with ability to develop novel immunotherapy strategies with genetically engineered T-

cells.  Additionally, identification of diminished miR-17-92 expression in the peripheral 

blood may emerge as an important biomarker in patients with malignancy.  
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7.0  AIM 2 BACKGROUND (IL-4RΑ ON MDSCS)  

As mentioned previously, while the risk factors for gliomas still remain unclear, genome 

wide analyses have demonstrated an association of SNPs with glioma risk and 

prognosis (Scheurer, Amirian et al. 2008; Shete, Hosking et al. 2009). Of particular 

interest are the glioma-related SNPs in the Il4rα gene, rs1805015 and rs1805016, which 

are associated with altered glioma prognosis. To follow our findings from Aim 1 

demonstrating the negative impact of IL-4R signaling in T-cells through the regulation of 

mIR-17-92, we next sought to understand whether IL-4rα could also impact other cells 

which would promote tumor growth.  As IL-4rα is expressed on murine MDSCs and is 

important for their suppressive activity, we examined whether IL-4Rα expression on 

MDSCs plays a role in glioma development. Of note, IL-4Rα chain is a necessary 

component of both the IL-4 and IL-13 receptors. 

MDSCs in the tumor contribute to the harsh tumor environment promoting 

angiogenesis, recruitment of other inhibitory cells and blocking anti-tumor T-cell 

activation and function (Serafini, Meckel et al. 2006; Ostrand-Rosenberg and Sinha 

2009)  through molecules including CCL2, arginase, TGFβ, S100A8/A9 and IL-10 

(Ostrand-Rosenberg and Sinha 2009; Boelte, Gordy et al. 2011). We therefore sought 

to examine the role of IL-4Rα on the suppressive function of MDSCs in gliomas.   
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Animal models that mimic the complexity of human gliomas would be useful in 

understanding glioma biology and in predicting therapeutic responses. In this regard, a 

novel Sleeping Beauty (SB) transposon–mediated de novo murine glioma model has 

been recently developed in which tumor initiation and progression can be monitored by 

bioluminescent imaging (WIESNER, DECKER ET AL. 2009). These murine tumors 

share many features with the human disease including glial marker expression, 

pseudopalisading necrosis, and invasive growth into the surrounding brain. In contrast 

to traditional models with transplantation of cultured glioma cells, these tumors evolve 

with the host immune system; herein, we show that they are profoundly infiltrated by 

regulatory immune cells that suppress antitumor immunity, which is similar to human 

gliomas (Parney, Waldron et al. 2009). Therefore, this de novo glioma model allows us 

to address biological mechanisms of gliomagenesis in a clinically relevant manner. 
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8.0  AIM 2 MATERIALS AND METHODS (IL-4RΑ ON MDSCS) 

8.1 ANIMALS 

WT Balb/c and Balb/c-background Il4ra-/- mice were obtained from The Jackson 

Laboratory. Animals were bred and handled in the Animal Facility at the University of 

Pittsburgh per an Institutional Animal Care and Use Committee–approved protocol. 

8.2 FLOW CYTOMETRY 

The procedure used in the current study has been described previously (Fujita, 

Scheurer et al. 2010). Briefly, single cell suspensions were surface-stained with 

fluorescent dye-conjugated antibodies. Due to the small number of BILs obtained per 

mouse, BILs obtained from all mice in a given group (5 mice/group) were pooled and 

then evaluated for the relative number and phenotype of monocyte-gated brain 

infiltrating leukocytes (BILs) between groups by Accuri C6 Flow cytometer (Beckman 

Coulter, Fullerton, CA). 
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8.3 BONE MARROW (BM)-MDSC GENERATION 

A similar procedure has been previously described (Highfill, Rodriguez et al. 2010) . BM 

was harvested from Balb/c-background femur and tibia bones, depleted of red blood 

cells and plated at 2x105  cells/ml in DMEM, 10% FBS, 50mM 2-ME, 10mM HEPES 

buffer, 1mM sodium pyruvate, 100U/ml penicillin, 100mg/ml streptomycin, and amino 

acid supplements (MEM NEAA). G-CSF (Peprotech) was added at 100ng/ml and 

mouse GM-CSF (Peprotech) was added at 250U/ml. Cultures were incubated at 37ºC 

10% CO2. On day 4 and 9, recombinant murine IL-13 (Peprotech) was added at 

80ng/ml and on day 10 cells were positively selected with CD11b by MACS 

immunomagnetic separation and used for experiments.  

8.4 ARGINASE ACTIVITY ASSAY 

The QuantiChromeTM arginase assay detection kit was used (DARG-200) according to 

the manufacturer’s recommendations. Briefly, 40µl of cell culture supernatant was 

incubated with 10 µl of 5x substrate buffer and incubated at 37ºC for 2 hours. Urea 

reagent was then added to the wells to stop the reaction and following a 60 minute 

incubation at room temperature optical density was determined at 430nm using a 

multiscan RC plate reader (Thermo). 
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8.5 MDSC T-CELL INHIBITION ASSAY 

T-cells were isolated from WT Balb/c mouse spleen using MACs bead negative 

separation, labeled with .1µM CFDA SE (Invitrogen) and incubated with varying 

amounts of day 10 cultured BM-MDSCs for 5 days in the presence of anti-CD3/anti-

CD28 Dynabeads (Invitrogen) and 30U/ml of hIL-2 (Peprotech). Cells were then 

analyzed by flow cytometry on an AccuriC6 (BD) for proliferation (reduced CFSE 

levels).    

8.6 ANTIBODY-MEDIATED IMMUNE CELL DEPLETION ASSAY 

The procedure has been described previously (Fujita, Scheurer et al. 2010). Anti–Gr-1 

(RB6-8C5) mAb was obtained from Taconic; control IgG was obtained from Sigma-

Aldrich. Mice with developing gliomas received intraperitoneal (i.p.) injections of mAb 

(0.25 mg/dose) 3x/week starting on day 21 after SB plasmid DNA transfection. A similar 

procedure was used for depletion of CD4 (GK1.5) and CD8 (TIB105) with 0.5 mg/dose 

give 2x/week. Depletion was confirmed to be effective with greater than 95% depletion 

of cells by flow cytometry.  
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8.7 REAL-TIME PCR 

The procedure has been described previously (Muthuswamy, Urban et al. 2008). 

Primers and probes were obtained from Applied Biosystems:  The following primers and 

probes were used for murine samples: Arg1, Il4ra, Ccl2, Inos, Il13, Gmcsf, Cd49d and 

the following primers for human samples TGF-β, CD49d and Arg1. Human or mouse 

GAPDH was used as the internal control.  

8.8 INTRACEREBROVENTRICULAR DNA INJECTION FOR SLEEPING BEAUTY-

SPONTANEOUS GLIOMA INDUCTION 

The procedure has been described previously (Wiesner, Decker et al. 2009). Briefly, 

DNA transfection reagent (In vivo-JetPEI) was obtained from Polyplus Transfection. The 

following DNA plasmids were used for glioma induction: pT2/C-Luc//PGK-SB13 (0.125 

μg), pT/CAGGS-NRASV12 (0.125 μg), pT2/shP53 (0.125 μg) and PT3.5/CMV-EGFRvIII 

(0.125 μg). For survival studies mice were sacrificed at the first sign of symptoms 

(symptom free survival) which included weight loss, inability to self-feed and drink water, 

seizures, hemiparesis, weight-loss as well as hunch-back. For immunological evaluation 

of WT and Il4ra-/- tumors we conducted bioluminescence imagining (BLI) using an 

IVIS200 (Caliper Life Sciences) and evaluated tumors of comparable size (BLI of 

2x108).  



 

 

 73 

8.9 BONE MARROW CHIMERA 

Donor WT or Il4ra-/- mice were sacrificed and placed in a 70% ethanol solution to 

sterilize skin, and femur and tibia bones were removed. Bone marrow cells were 

isolated by flushing the femur and tibia with PBS.  Cells were then centrifuged for 10 

min at 2000 X G followed by RBC lysis with ACK buffer and filtering through a 45 micron 

filer. Host Balb/c background WT mice received 10 Gy of total body irradiation.  At 24 

hours after irradiation mice received an i.v (tail vein) injection of 100 µl (1-2 X 106) viable 

BM cells. Mice were >90% chimeric by day 15 and were used for subsequent 

experiments. 
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9.0  AIM 2 RESULTS (IL-4RΑ ON MDSCS) 

9.1 IL4RΑ-/- MICE EXHIBIT DELAYED GROWTH OF SB DE NOVO GLIOMAS 

COMPARED WITH WT MICE.  

To evaluate the role of IL-4Rα on glioma growth we induced de novo gliomas by SB 

transposon-mediated intracerebroventricular transfection of EGFRvIII, NRAS, and short 

hairpin (sh)P53 in neonatal Balb/c-background WT and Il4ra-/- mice (Figure 10A). We 

have previously shown that pathological characteristics of SB tumors closely resemble 

those of human gliomas (Wiesner, Decker et al. 2009; Fujita, Scheurer et al. 2010).  

While the median symptom-free survival (SFS) for WT mice was 55.5 days, Il4ra-/- mice 

exhibited prolonged survival with a median SFS of 90 days.  As IL-4Rα is expressed on 

some myeloid derived suppressor cells (MDSC) (Terabe, Matsui et al. 2003; 

Mandruzzato, Solito et al. 2009; Ostrand-Rosenberg and Sinha 2009), we next 

evaluated whether the genetic deletion of Il4ra impacts the glioma infiltration of myeloid 

cells, such as CD11b+Gr-1+ cells, which are likely MDSC (Figure 10B). In WT mice, SB 

glioma-bearing brains demonstrated higher numbers of CD11b+Gr-1+ cells compared 

with non-tumor bearing brains. Further, in the presence of the SB gliomas, WT 

CD11b+Gr-1+ expressed higher levels of IL-4Rα than those in non-tumor bearing 

animals. Compared with WT animals, Il4ra-/- hosts had a significantly fewer number of 
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CD11b+Gr-1+ cells in the non-tumor bearing brain which did not increase significantly in 

the presence of the SB tumor (Figure 10B).  

To determine whether the different expression level of IL-4Rα and numbers of 

CD11b+Gr-1+ cells in tumor-bearing hosts also in periphery, we analyzed splenic cells 

from SB glioma bearing mice (Figure 10C). Similar to our observation in the brain, WT 

but not Il4ra-/- hosts demonstrated an increase of CD11b+Gr-1+ cells in the spleen 

following induction of SB glioma. However, unlike the brain, peripheral CD11b+Gr-1+ 

cells maintained low IL-4Rα expression even in tumor-bearing animals. Thus IL-4Rα 

expression on MDSCs in the SB glioma model appears to be a tumor-brain specific 

phenomenon. 
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Figure 10: IL4Rα in glioma development. Gliomas were induced in neonatal mice by intracerebroventricular 

transfection of the following plasmids: pT2/C-Luc//PGK-SB13 (0.125 μg), pT/CAGGS-NRASV12 (0.125 μg), 

PT35/CMV-EGFR(0.125 μg) and pT2/shp53 (0.125 μg). (A), SFS following SB challenge plotted on a Kaplan 

Meier plot. The survival of Il4ra-/- mice with SB tumors was significantly longer than WT mice (p < 0.0001, by log-

rank test). (B), Brains from tumor bearing and non-tumor bearing mice were removed from BALB/C (WT) and 

Il4ra-/- mice with tumors of similar size (BLI ~3x108). Brain infiltrating leukocytes were isolated by percol 

separation, pooled and were analyzed for CD11b+Gr-1+ cells and IL-4Rα expression. (C) Peripheral cells were 

isolated from the spleen and were analyzed for CD11b+Gr-1+ cells and IL-4Rα expression. 
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9.2 IL4RΑ-/- MICE EXHIBIT DELAYED GROWTH OF SB DE NOVO GLIOMAS 

COMPARED WITH WT MICE IN THE ABSENCE OF CD4+ AND CD8+ T-CELLS. 

T-cells deficient of IL-4R or its major signaling molecule, signal transducer and activator 

of transcription (STAT)-6 are typically skewed towards type-1 which is known to 

promote better anti-tumor immunity (Fujita, Zhu et al. 2009; Okada 2009; Okada, 

Kohanbash et al. 2009; Sasaki, Pardee et al. 2009). To exclude a possibility that the 

prolonged survival of Il4ra-/- mice is due solely to enhanced anti-tumor type-1 T-cell 

skewing, we induced SB gliomas in WT and Il4ra-/- hosts in which CD4+ and CD8+ T-

cells were depleted (Figure 11A). Although depletion of T-cells significantly accelerated 

the growth of gliomas in WT and Il4ra-/- mice, Il4ra-/- mice still demonstrated improved 

SFS over WT mice when both were depleted of T-cells (Figure 11B). These data 

demonstrate that the improved survival of Il4ra-/- mice is partially independent of type-1 

T-cell skewing of Il4ra-/- T-cells and suggest the involvement of other immune cells 

(possibly MDSCs).  
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          A  

                   

           B 

           

Figure 11: Effects of IL-4Rα on glioma development in the absence of T-cells. (A), Efficiency of T-cell 

depletion was evaluated in SPCs of WT animals by flow cytometry from mice receiving 3x, 50μg doses of anti-CD4 

(GK1.5) and anti-CD8 (TIB105) (depleted) or control rat igG (Control IgG). (B), SFS was monitored in SB-bearing 

Balb/c and Il4ra-/- mice receiving i.p. injections of 50μg of neutralizing mAbs for CD4 (GK1.5) and CD8 (TIB105) 

2x/week beginning when mice reached 23 days old.   
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9.3 IL4RΑ-/- TUMOR TISSUE AND TUMOR-DERIVED MDSCS HAVE REDUCED 

EXPRESSION OF INHIBITORY MOLECULES COMPARED TO WT TUMOR TISSUE.  

To examine the impact of IL-4Rα on the effector function of CD11b+Gr-1+ cells, total 

RNA was isolated from WT or Il4ra-/- SB glioma tumors of similar size and using  RT-

PCR expression of MDSC-associated genes was evaluated  (Figure 12A).  SB tumor 

tissue from WT mice overall demonstrated significantly higher levels of Tgfb and Arg1 

than Il4ra-/-, which directly suppresses T-cell induction and anti-tumor immune 

surveillance (Terabe, Matsui et al. 2003; Kropf, Baud et al. 2007). Our data also 

demonstrated a trend of increased CCL-2, a primary MDSC chemo-attractant in WT 

compared with Il4ra-/- tumor tissue. Notably, while similar levels of IL-13 were detected 

in WT and Il4ra-/- tumors, IL-4 expression was undetectable. These data suggest an 

important role of IL-13 on MDSC function in SB tumor bearing mice.  

To better understand the significance of MDSCs in SB tumors we isolated 2 

subsets of CD11b+Gr-1+ cells by flourescence-activated cell sorting (FACs), 

CD11b+Ly6Chigh monocytic cells and CD11b+Ly6Ghigh granulocytic cells, and analyzed 

MDSC-associated genes by RT-PCR (Figure 12B).  While CD11b+Ly6Chigh cells 

expressed higher levels of both Tgfb and Arg1 than CD11b+Ly6Ghigh cells, Arg1 

expression was significantly lower in Il4ra-/- CD11b+Ly6Chigh cells than WT cells. 

Conversely, Inos which can suppress tumor cells (Chang, Liao et al. 2001) is expressed 

in both subsets of Il4ra-/- CD11b+Gr-1+ cells at elevated levels compared with WT 

CD11b+Gr-1+ cells. Surprisingly, our data did not support a difference in Tgfb 

expression in sorted WT and Il4ra-/- MDSCs, thus the observed difference in the bulk 
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tumor expression of Tgfb appears to be due to other cells, possibly ones induced by 

MDSCs, like T-regs. Thus, IL-4Rα appears important for MDSC inhibitory function 

mediated through Arg1 and possibly Inos and Tgfb.                                                                    

.      

Figure 12: Effect of IL-4Rα on tumor infiltrating MDSCs and the tumor microenvironment.  (A), Total RNA 

was isolated from either brain of non-tumor bearing mice (normal brain), or the contralateral (contra) or tumor-

bearing (tumor) hemisphere of WT and Il4ra-/- mice bearing SB glioma. RT-PCR for mRNA expression levels of 

Tgfb, Il-13, Arg1, Ccl2 and Il4ra were analyzed. (B), BILs from WT or Il4ra-/- mice were sorted for double positive 

cells with either CD11b and Ly6C or CD11b and Ly6G. Total RNA was immediately isolated and RT-PCR was 

used to examine Arg1, Tgfb, Inos  mRNA levels from these cells.  
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9.4 MDSC DEPLETION PROLONGS SURVIVAL OF MICE CHALLENGED WITH 

SB GLIOMAS.    

We next examined whether depletion of CD11b+Gr-1+ cells prolongs survival in mice 

challenged with SB gliomas. While there are multiple methods to deplete CD11b+Gr-1+ 

cells, many of them also have direct anti-tumor activities. Thus, to deplete CD11b+Gr-1+ 

cells, we used anti-Gr-1 (RB6-8C5) mAb which should have no direct anti-tumor activity. 

As SB challenged mice start developing detectable tumors at around 30 days (data not 

shown), we started anti-Gr-1 treatments at 23 days. To maintain complete depletion we 

administered 50mg/dose anti-Gr-1 3x/week (Figure 13A) (Fujita, Scheurer et al. 2010; 

Fujita, Kohanbash et al. 2011) . Mice depleted of CD11b+Gr-1+ cells experienced 

significantly prolonged SFS as shown by Kaplan Meier curve (Figure 13B) with some 

animals surviving past 120 days. BLI of mice revealed that some anti-Gr-1 treated mice 

even experienced tumor regression below the level of detection (Figure 13C). These 

data demonstrate the importance of CD11b+Gr-1+ cells in promoting tumor growth.  
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Figure 13: Depletion of MDSCs in SB tumor bearing animals. Sleeping beauty tumor bearing animals received 

anti–Gr-1 mAb (RB6-8C5; 0.25 mg/dose) 3 times per week beginning at 23 days old. (A), CD11b+Gr-1+ cells in 

BILs from mice receiving control rat IgG or anti-Gr-1 antibody. (B), SFS was monitored in mice bearing SB 

gliomas until day 120.  (C), Representative of BLI imaging showing tumor growth in control treated animals and 

tumor regression below the limit of detection in anti-Gr-1 treated animal. 
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9.5 BONE MARROW CHIMERIC MICE REVEAL THAT IL4RΑ ON 

HEMATEPOETIC CELLS IS CRITICAL FOR MDSC ACCUMALATION IN THE BRAIN 

We observed that gliomas in Il4ra-/- mice had fewer infiltrating MDSCs that in WT 

controls. To assess whether the difference was due to intrinsic factors in MDSCs or 

other factors such as the IL-4Rα void nature of the CNS and tumor microenvironment in 

Il4ra-/- mice we evaluated MDSC infiltration using a bone marrow chimera system. To 

confirm the efficiency of the system, mice received 10 Gy of whole body irradiation 

followed by (within 24 hours) tail vein injection 1 x 106 RBC-depleted BM cells from GFP 

transgenic mice. On day 15 post irradiation mice received SB-derived glioma cells. 

Fifteen days after tumor cell inoculation mice were sacrificed and BILs were analyzed 

by flow cytometry for CD11b+IL-4Rα+ cells (Figure 14A).  Consistent with our previous 

results, peripheral CD11b+ cells in both tumor-free and tumor-bearing mice lacked IL-

4Rα expression. However, BILs in tumor-bearing mice but not tumor-free mice had high 

expression of IL-4Rα, suggesting that the tumor microenvironment, but not the brain 

specifically induces IL-4Rα. Further CD11b+ cells were mostly GFP+ confirming the 

efficiency of our BM chimera system.        
After validating the BM chimera system we next asked whether tumor depletion 

of IL-4Rα in BM cells impacts the infiltration in MDSCs and T-cells in the tumor. We 

observed greater numbers of CD11b+Gr-1+ cells in mice with WT BM compared with 

ones with Il4ra-/- BM both in the spleen (26.5% WT vs. 11.7% Il4rα-/-) and brain (20.9% 

WT vs. 8.4% Il4ra-/-). Consistently, we observed increased numbers of CD4+ and CD8+  
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T-cells in the spleen (Figure 14C) and BILs (Figure 14D) of mice receiving Il4ra-/-  

BM, compared to mice receiving WT BM. This data further supports the more 

suppressive nature of WT MDSCs compared to Il4ra-/- MDSCs. 
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Figure 14: A critical role of IL-4Rα on BM cells in the immunological environment of glioma. Host Balb/c 

background WT mice received 10 Gy of total body irradiation.  At 24 hours after irradiation mice received an i.v 

(tail vein) injection of 100 µl (1 X 106) viable bone marrow cells from either WT, Il4rα-/- or GFP transgenic mice.  

(A), Mice received GFP-transgenic mouse derived from BM and tumor cells derived from SB glioma bearing mice 

on day 15. BILs were isolated on day 15 following tumor cell injection and analyzed for CD11b+IL-4Rα+ cells and 

the % of these cells that were GFP+ to determine the extent of chimerism by flow cytometry. (C-D),  15 days after 

whole body irradiation mice received either WT or Il4ra-/- donor BM followed by i.c injections of 5x105 glioma cells 

derived from SB beauty animals.  Three weeks after glioma cell injection splenocytes (SPC) and BILs were 

harvested and analyzed by flow cytometry for Gr-1, CD11b, CD4 and CD8 expression.  
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9.6 IL-13 BUT NOT IL-4 PROMOTES BONE MARROW (BM)-CD11B+GR-1+ CELL 

GROWTH AND FUNCTION 

As IL-4Rα is a key component of both the IL-4 and IL-13 cytokine receptors, we 

evaluated the ability of each cytokine to promote MDSC function. To establish 

suppressive CD11b+Gr-1+ cells for in vitro evaluation, BM cells from WT or Il4ra-/- mice 

were isolated and treated with G-CSF (.1µg/ml) and GM-CSF (250U/ml) on days 0,3 

and 9, with 80 ng/ml IL-4 or IL-13 on days 3 and 9, and BM cells were analyzed on day 

10. On day 10 greater than 75% of the cells expressed CD11b and Gr1 (Not shown). 

Culture supernatant from BM-CD11b+Gr-1+ cells treated with IL-13 displayed enhanced 

arginase activity (Figure 15A) and arginase expression (Figure 15B) compared with 

BM cells not treated with IL-13. Additionally, WT-CD11b+Gr-1+ cells displayed elevated 

Tgfb expression levels compared with Il4ra-/- BM-CD11b+Gr-1+ cells. However this was 

not dependent on IL-13, as IL-13 treatment did not increase Tgfb expression in WT-BM-

CD11b+Gr-1+ cells (Figure 15B).  

We next determined whether the suppressive function of BM-CD11b+Gr-1+ cells 

was specifically dependent on IL-13, but not IL-4. Unlike with IL-13, treatment of BM-

CD11b+Gr-1+ cells IL-4 did not promote the suppressive function of CD11b+Gr-1+ cells 

(Figure 15C) as determined by arginase expression. Our data that IL-13 but not IL-4 is 

important for MDSC function are consistent with our data that IL-13 but not IL-4 is 

detectable in SB tumors. 
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Figure 15: Effects of IL-13 on MDSC generation and phenotype. BM cells derived from WT-Balb/c or Il4ra-/- 

mice were cultured in complete DMEM media with G-CSF and GM-CSF on days 0, 3 and 9 and rIL-13 or rIL-4 on 

days 3 and 9. (A), On day 10 of MDSC culture the QuantiChromTM arginase activity assay was carried out on 40 µl 

of supernatant (B), Total RNA was extracted from cultured cells and expressions of Arg1 and Tgfb1 were analyzed. 

(C), Balb/c BM cells cultured with G-CSF and GM-CSF (no tx) or with the addition of mrIL-4 (+IL-4) or mrIL-13 

(+IL-13) Arg1 expression by RT-PCR.   

   

A                                       B  

 

 

 

 

C 



 

 

 89 

9.7 IL4RΑ-/- BM-DERIVED CD11B+GR-1+ CELLS HAVE REDUCED ABILITY TO 

SUPPRESS T-CELLS BOTH IN VIVO AND IN VITRO. 

One of the hallmark characteristics of MDSCs is their ability to inhibit T-cells. To 

determine if Il4ra-/- BM-derived CD11b+Gr-1+ cells have reduced capacity to inhibit T-

cells compared with WT cells, we challenged WT mice with SB gliomas and 

administered 1x106 BM derived MDSCs via tail vein injection. Mice with small SB 

tumors were used, when endogenous MDSCs levels were undetectable. Seventy two 

hours after the MDSC injection, brains were harvested and MDSCs were evaluated 

(Figure 16A). While both WT and Il4ra-/- BM-MDSCs migrated to the brain, more Il4ra-/- 

BM-MDSCs migrated to the brain than WT BM-MDSCs. This may be attributed to the 

elevated levels of VLA-4 expression on Il4ra-/- cells, which is important for immune cell-

trafficking into the brain (Sasaki, Pardee et al. 2009).  We then evaluated both CD4+ 

and CD8+ T-cells in BIL samples (Figure 16B). We observed that WT BM-MDSCs 

displayed a greater capacity to inhibit CD4+ and CD8+ T-cells than the Il4ra-/- BM-MDSC 

in the brain. We next examined the effect of the adoptive BM-MDSCs transfer on 

splenic T-cells (Figure 16C). Unlike the brain, at 72 hours after injection, spleens 

display comparable numbers of WT and Il4ra-/- CD11b+Gr-1+ cells. Consistent with what 

we observed in the brain, mice receiving WT BM-CD11b+Gr-1+ cells had fewer T-cells in 

the spleen than mice treated with Il4ra-/- MDSCs (Figure 16D). These data further 

support the importance of IL-4Rα for the function of MDSCs, and their ability to 

suppress T-cell proliferation. 
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To directly assess the capacity of WT or Il4ra-/- BM derived MDSCs to inhibit T-

cell proliferation we co-cultured varying ratios of MDSCs with 5x105 CFSE labeled naïve 

WT CD8+ T-cells in the presence of anti-CD3/anti-CD28 dynabeadsTM and 30U/ml of 

hIL-2. After a 5 day co-culture T-cell proliferation was determined by examining the 

reduction of CFSE intensity levels by flow cytometry (Figure 16E). Consistent with our 

in vivo data WT MDSCs suppressed T-cells at a lower MDSC: T-cell ratio than Il4ra-/- 

MDSCs. Furthermore, an arginase inhibitors nor-noha and L-arginine supplementation 

inhibited the T-cell suppressor activity of WT MDSCs (Figure 16F). Thus, IL-4Rα is 

important for the direct T-cell suppressive activity of MDSCs. 



 

 

 91 

 

 



 

 

 92 

 

F 

 

Figure 16: Function of Il4ra-/- MDSCs. MDSCs were induced from BM cells derived from WT-Balb/c or Il4ra-/- 

mice. BM cells were administered via tail vein injection to Balb/c mice with small SB gliomas (day 35, BLI of 5 x 

107). (A), At 72 hours after MDSC treatment, brains were harvested and (A), MDSCs percentages and (B), T-cells 

were analyzed by flow cytometry. Spleens from these animals were also analyzed for (C), MDSCs and (D), T-cells 

by flow cytometry. E, 1 x105 CFSE (1µM) labeled CD8+ T-cells were stimulated with anti-CD3/CD28 microbeads 

and 30 U/ml and hIL-2  in a 96 well plates with varying ratios of MDSCs for 5 days. After the 5 day culture CFSE 

levels were analyzed on gated T-cells. All results are representative of at least 3 independent experiments. (F), BM-

MDSCs were co-cultured with CFSE labeled CD8+ T-cells at a 1:4 ratio in the presence of 2.5 mM Nor Noha or 

5mM L-argininase activity and CFSE was levels were assessed after a 5 day co-culture. 
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9.8 GM-CSF UP-REGULATES IL-4RΑ ON BM CELLS AND IS OVEREXPRESSED 

IN GLIOMAS.  

As IL-4Rα expression on CD11b+Gr-1+ cells is increased by SB gliomas in the brain 

(Figures 10B and 14A) we next sought to determine the factors in the brain that lead to 

the up-regulation of IL-4Rα. BM cells were cultured with either G-CSF, GM-CSF, IL-13 

or tumor condition media (TCM) from SB tumor cell culture for 4 days and IL-4Rα 

expression was then measured by flow cytometry (Figure 17A). While, G-CSF, GM-

CSF and TCM treatment all up-regulated IL-4Rα expression, GM-CSF treatment had 

the most pronounced effect. We thus assessed GM-CSF expression in mouse SB-

induced (Figure 17B) and human (Figure 17C) glioma tissues. Compared with normal 

brain and PBMCs, SB and human glioma tissues displayed increased GM-CSF 

expression.  
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Figure 17: GM-CSF promotes IL4Rα expression on MDSCs and is up-regulated in tumor settings.  BM cells 

depleted of RBCs and cultured in either 80ng/ml of G-CSF, GM-CSF, rmIL-13, or tumor culture media for 4 days. 

(A), IL-4Rα expression was determined by flow cytometry. Data is representative of 2 independent experiments 

with similar results. (B), Total RNA was isolated from either brain of non-tumor bearing mice (Normal brain), or the 

contralateral (contra) or tumor-bearing (tumor) hemisphere of WT and Il4ra-/- mice bearing SB glioma, mGM-CSF 

was then evaluated by RT-PCR. C, hGM-CSF expression was evaluated from total RNA isolated from normal 

human brain or glioma samples.  

9.9 HUMAN GLIOMA INFILTRATING CD14+HLA-DR- MONOCYTES EXPRESS IL-

4RΑ ASSOCIATED WITH SUPPRESSOR FUNCTION.  

As murine monocytic CD11b+Ly6Chigh cells have enhanced expression of immune 

suppressor molecules (Figures 12B) and as it has been reported that human monocytic 

CD14+HLA-DR- cells have suppressive function (Poschke, Mougiakakos et al. 2010; 

Vuk-Pavlovic, Bulur et al. 2010; Lin, Gustafson et al. 2011), we next evaluated IL-4Rα 

expression on human CD14+HLA-DR- cells from fresh glioma samples (n=7) and glioma 

patient derived PBMCs (n=5) by flow cytometry (Figure 18A). Using identical forward 

and side scatter gating on CD14+HLA-DR- monocytes in both the tumor infiltrating 

MFI of IL-4Rα on CD11b+ BM-Cells 
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lymphocyte (TIL) samples and PBMCs we observed that IL-4Rα is detected on 20-30% 

of CD14+HLA-DR- in the brain while in the periphery IL-4Rα is barely detectable on 

corresponding populations. We further examined IL-4Rα expression on frozen tumor-

infiltrating cells (n=13) and glioma patient derived PBMCs (n=10) (Figure 18b). 

Consistently, all glioma infiltrating CD14+HLA-DR- cells, but not peripheral CD14+HLA-

DR- cells had detectable IL-4Rα expression.  

We next sought to address whether IL-4Rα expression on CD14+HLA-DR- 

monocytes was associated with immune suppressor function. Using FACS we isolated 

CD14+HLA-DR-IL-4Rα+ and CD14+HLA-DR-IL-4Rα- negative cell populations, extracted 

total RNA and analyzed ARG1, TGFB, COX-2, indoleamine 2,3-dioxygenase (IDO), 

IL10 and VLA4 (CD49d) (Figure 18C). We found that the CD14+HLA-DR-IL-4Rα+ cells 

had higher expression of TGFB than their IL-4Rα- counterparts. Further, consistent with 

our murine data VLA-4 expression was significantly higher in the IL-4Rα- cells. Possibly 

due to limited amounts of human tissue, expression of other suppressor molecules was 

below our limit of detection in both IL-4Rα positive and negative CD14+HLA-DR- 

monocytes. We therefore examined the IL-4Rα expressing cells in a leukopheresis 

sample obtained from a glioma patient (Figure 19A). Although there was a much 

smaller percentage of IL-4Rα+ cells compared with in TILs, CD14+HLA-DR-IL4rα+ cells 

had higher levels of ARG1 and COX2 expression than their IL-4R- counterpart. 

However, IL-10 and IDO was not detectable in any of the samples. Thus, IL-4Rα on 

CD14+HLA-DR- cells in the tumor microenvironment seems important for the 

immunosuppressive activity of human patient MDSCs.  
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Figure 18: IL-4Rα expression on human glioma infiltrating monocyte.  BILs were sorted from fresh glioma 

tissue by percol density separation or glioma patient derived PBMCs were collected by ficol method. (A),   IL-4Rα 

was analyzed on CD14+HLA-DR- cells. (B), Percentage of CD14+HLA-DR- cells expressing IL-4Rα in the brain 

and PBMCs from 12 patient samples. C, Total RNA was extracted from sorted CD14+HLA-DR- cells that were 

either IL-4Rα+ or IL-4Rα- and analyzed with RT-PCR for VLA-4 and TGFB. 
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Figure 19: IL-4Rα is associated with increased ARG1 and COX2 expression on human glioma patient MDSCs 

RNA was isolated from FACs sorted CD14+HLA-DR- cells separated into either IL-4Rα+ or IL-4Rα- fractions from 

a glioma patient leukopheresis sample and ARG1 and COX2 were evaluated. * indicated p< .05 by student’s t test. 
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10.0  AIM 2 CONCLUSION (IL-4RΑ ON MDSCS) 

An ideal immunotherapy for gliomas would improve both anti-tumor immune cell- 

functions and inhibition of the immune suppressor cells. Our data demonstrate for the 

first time in glioma patients and the de novo murine glioma model, that IL-4Rα is up-

regulated on MDSCs specifically in the tumor but not in the periphery. In vitro data 

indicate that GM-CSF and to a lesser degree G-CSF are the primary inducers of IL-4Rα. 

Consistently, both murine and patient glioma tissues had high levels of gmcsf 

expression. Further, our BM chimera experiments demonstrate the up-regulation of IL-

4Ra on MDSCs in the tumor conditions is specific to the brain tumor and not the brain 

alone. Our finding that the tumor-free brain expresses low GM-CSF compared to the 

tumor further supports the idea that GM-CSF in the tumor microenvironment up-

regulates IL-4Ra expression on MDSCs.  

Il4ra-/- gliomas are infiltrated by significantly fewer MDSCs than gliomas in WT 

mice. We still do not know whether this is due to differential recruitment to the tumor or 

growth. Based on a study examining anti-IL-4Rα aptamer treatment(Roth, De La Fuente 

et al. 2012), blockade of IL-4Rα resulted in increased MDSC apoptosis, suggesting that 

Il4ra-/-  mouse MDSCs may be apoptotic. However, as we were able to culture similar 

amounts of BM-MDSCs from WT and Il4ra-/- mice, it seems plausible that (albeit with 
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different effector capabilities) the IL-4Rα status does not impact the generation of 

MDSCs. Our BM chimera experiments (Figure 20) further revealed that the increased 

amount of MDSCs in WT mice is intrinsic to hematopoietic cells as total body irradiated 

mice receiving Il4ra-/- BM had fewer brain infiltrating MDSCs than mice receiving WT 

BM. More work is thus necessary to determine the cause of reduced MDSCs in Il4ra-/- 

mice compared with WT mice.  

IL-4Rα is a component of both the IL-4 and IL-13 receptors. However, based on 

our BM-MDSC data indicating that IL-13 but not IL-4 can regulate arginase expression 

and activity, IL-13 appears to have a primary role in the suppressive activity of MDSCs. 

Further, while SB gliomas express detectable levels of IL-13, we could not detect IL-4 

by RT-PCR. The finding that IL-13 but not IL-4 promotes MDSC activity (Arg1 

expression) is especially relevant for clinical applications of MDSC as blocking IL-4 may 

not be suitable to target MDSCs in glioma patients.   

Our data indicates an important role for arginase as the primary mediator of WT-

MDSC suppressive activity compared with Il4ra-/- MDSCs. This is supported by the 

following findings: 1) WT tumor-infiltrating MDSCs express significantly higher levels of 

Arg1 compared Il4ra-/- MDSCs; 2) WT BM-MDSCs suppress T-cell robustly compared 

with  Il4ra-/-  MDSCs and 3) The suppressive activity of WT MDSC is reversed by the 

arginase inhibitor, nor noha or L-arginine supplementation. Our findings are consistent 

with previous reports on IL-4Rα signaling for Arg1 expression (Terabe, Matsui et al. 

2003; Highfill, Rodriguez et al. 2010).  Interestingly Arg1 expression is higher in Ly6C+ 

monocytic MDSCs but much less in Ly6G+ granulocytic MDSCs.  While we also found 

higher levels of Tgfb in WT over Il4ra-/- glioma tissues, MDSCs do not appear to be the 
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source of Tgfb as we could not detect any differential expression between MDSCs 

sorted from WT or Il4ra-/- mice. Nevertheless elevated Tgfb expression in WT tumors 

may be an indirect mechanism of MDSC such as MDSC promoted CD4+CD25+ Treg 

cells that may also infiltrate in gliomas (Nakamura, Kitani et al. 2001; Ostrand-

Rosenberg 2010).    

Herein, we have demonstrated the impact and importance of MDSCs and IL-4Rα 

expression on glioma immunity and tumor progression. Our finding that Il4ra-/- mice 

have prolonged SFS compared with WT mice in the absence of T-cells suggests that 

cells other than T-cells are also important for the better survival of Il4ra-/- mice 

challenged with SB gliomas (possibly MDSCs). Thus it is important to note that in the 

absence of T-cells MDSCs may exert suppressive function on other cells such as NK 

cells or possibly direct promotion of tumor cell growth. Further studies are being 

conducted to determine the in vivo ability of Il4ra-/- MDSCs compared with WT MDSCs 

to suppress WT T-cells. Interesting depletion of CD4 and CD8 T-cells influenced 

survival of Il4ra-/- mice to a greater extent than WT mice. This may be attributed to the 

specific nature of SB gliomas: when tumors start to develop and their specific growth 

rates. These findings suggest that inhibited MDSC function in Il4ra-/- mice is a major 

contributor to tumor suppression, strongly supported by the better overall survival of 

mice depleted by MDSCs using anti-Gr1 mAb.  
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We propose based on our findings in Aim 2, a mechanism in which GM-CSF in 

the glioma microenvironment promotes IL-4Rα expression on MDSCs, leading to IL-13 

mediated production of arginase. Arginase activity can then suppress anti-tumor 

immune cells, including T-cells (and possibly other cells) and promote the development 

of glioma growth (Figure 20). 

 

Figure 20: Proposed mechanism of IL-4Rα mediated inhibition of anti-tumor immunity.  
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11.0  AIM 3 BACKGROUND (SNP IN IFNA8) 

Among a variety of cytokines and their signaling pathways, the type I IFNs, IFN-α and 

IFN-β, appear to play a key role in immunosurveillance against tumors. Although they 

have been long known to induce tumor cell apoptosis and angiogenesis inhibition 

(Hervas-Stubbs, Perez-Gracia et al. 2011), hematopoietic cells in the host (rather than 

tumor cells) are the crucial targets of the antitumor activity of endogenous type I IFNs 

(Dunn, Koebel et al. 2006). More recent studies with melanoma have demonstrated that 

host type I IFNs are critical for the innate immune recognition of a growing melanoma 

through signaling on CD8α+ DCs. (Diamond, Kinder et al. 2011; Fuertes, Kacha et al. 

2011)  

Previous studies have shown a significant impact of SNPs in innate immune 

pathways, such as ones in Toll-Like Receptor (TLR) 3, (Dhiman, Ovsyannikova et al. 

2008; Yang, Stratton et al. 2008) TLR4 (Apetoh, Ghiringhelli et al. 2007) as well as IL-

4Rα, which is associated with differential risk and prognosis of GBM. (Schwartzbaum, 

Ahlbom et al. 2007; Scheurer, Amirian et al. 2008) Recently, we reported a previously 

undefined protective role of the type I IFN pathway in the surveillance against de novo 

mouse gliomas and that SNPs in IFNAR1 and IFNA8 are associated with significantly 

altered overall survival of patients with WHO grade 2 to 3 gliomas (Figure 21). (Fujita, 
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Scheurer et al. 2010) Specifically, the SNP rs12553612 is located at 335 base pairs (bp) 

upstream of the IFNA8 initiation codon, which is in the IFNA8 promoter region. As a 

SNP in a promoter region may affect the promoter activity and therefore the gene 

expression levels, (Shastry 2009) we hypothesized that the SNP in the IFNA8 promoter 

(rs12553612) affects the interaction of transcription factors with the DNA region 

involving the SNP, thereby affecting the activity of the IFNA8 promoter.  

 

Figure 21: Association of SNPs in IFN-related genes and the survival of patients with WHO grade 2 to 3 

gliomas. Overall survival was evaluated among 304 glioma patients with grade 2 to 3 gliomas by genotype for SNPs 

in IFN-related genes. (A), patients with AA genotype (red line) for IFNAR1 rs1041868 exhibited a significantly 

shorter survival than those with the AG/GG genotypes (black line). (B), patients with AC genotype (red line) 

for IFNA8 rs12553612 exhibited a significantly shorter survival than those with the AA genotype (black line). 
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12.0  AIM 3 MATERIALS AND METHODS (SNP IN IFNA8) 

12.1 REAGENTS 

RPMI 1640, FBS, L-glutamine, sodium pyruvate, 2-mercaptoethanol, nonessential 

amino acids, and penicillin/streptomycin and all reagents for DNA transfection were 

purchased from Invitrogen, including Lipofectamine 2000 (11668-02), with the exception 

of luciferase reporter genes and dual-luciferase reporter assay system, which were from 

Promega (E1910). Plasmids containing human cDNA clones were purchased from 

Origene. Oligonucleotides for the IFNA8 electrophoretic mobility shift assays (EMSA) 

were obtained from Integrated DNA technologies; EMSA were done using the Thermo 

LightShift Chemiluminescent EMSA Kit (20148). Oct-1 (clone C-21, sc-232) and Elk-1 

(cloneI-20, sc-355) antibodies were purchased from Santa Cruz Biotechnology. 
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12.2 CELL CULTURE 

The THP-1 human monocyte cell line was maintained in  RPMI 1640 supplemented with 

10% heat-inactivated FBS, 50 units/mL penicillin, 50μg/mL streptomycin, 1mM Sodium 

Pyruvate, 55μM 2-Mercaptoethanol, and MEM non-essential amino acids (Life 

Technologies Invitrogen) in a humidified incubator in 5% CO2 at 37°C. 

12.3  DNA TRANSFECTION  

Mixture of plasmid-DNA (pDNA) was prepared as 0.08-0.2 μg (total pDNA value)/25 

μl/well. Usually, 0.02 μg/well pGL4.73 (hRluc/SV40) vector (Rluc) as internal control and 

0.06-0.18 μg/well pGL4.20 (luc2/Puro) vector (Fluc) containing the A or C genotype of 

IFNA8 promoter gene were combined with diluted Lipofectamine 2000 (0.5 μl/well), and 

incubated for 20 min at room temperature. After the incubation, the complexes were 

added to each well containing 1 x 105 THP-1 cells and incubated at 37 °C in a CO2 

incubator for 24 hours. During the incubation, 100-150 μl/well complete medium was 

added 18-20 hours after the transfection. When using stimulant such as poly-ICLC 

(Oncovir, Inc) and LPS, the stimulant was added 2 hours before stopping the 

incubation.  



 

 

 106 

12.4 DUAL-LUCIFERASE ASSAY 

Cultured cells with complexes for DNA transfection were centrifuged at three times at 

1,500 rpm for 2-3 min. 80 μl/well passive lysis buffer (PLB) was added into the well 

containing the pellet and incubated for 15 min at room temperature. Aliquots of PLB 

lysate (20 μl) were transferred into luminometer tube containing 70 μl of LARII and 

inserted into luminometer machine to measure Fluc activity. After addition of 100 μl of 

Stop&Glo Reagent, Rluc activity was measured immediately. Relative Luciferase 

activity (A- [or C-] Fluc / A- [or C-] Rluc) / (untreated C-Fluc / untreated C-Rluc) was 

measured using OD data from triplicate cell-lysates.    

12.5 ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA) 

The non-radioactive LightShift Chemiluminescent EMSA Kit (Thermo, 20148) was used 

to detect DNA-protein interactions. The 5′biotin end-labeled DNA oligonucleotides each 

containing one SNP in the IFNA8 promoter, were used as probes for the EMSA. The 

probe DNAs were  40-bp double stranded DNA made by annealing (95 °C for 5 

minutes) single stranded oligonucleotides for the A-SNP (5’-Biotin-

TAGGAATGTAGTACATTCAAATATGTGCATAATATATCTG and 5’-Biotin CAGATATA 

TTATGCACATATTTGAATGTACTACATTCCTA) and the C-SNP (5’-Biotin-TAG 

GAATGTAGTACATTCACATATGTGCATAATATATCTG and 5’-Biotin-

CAGATATATTATGCACATATGTGAATGTACTACATTCCTA). Specificity was 
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determined by a competition assay with the addition of 200 molar excess of unlabeled 

double stranded IFNA8 promoter oligonucleotide. 

Nuclear extracts (10 μg) were isolated from the THP-1 human monocyte cell line 

using the Thermo Subcellular Protein Fractionation Kit (Thermo, 7884) and protein 

concentration was determined by the Bradford assay. Aliquots of nuclear extracts 

(10ug) were incubated with 20 femtomole (fM) AT or GC IFNA8 probe in 1x binding 

buffer, 500 mM KCl, 0.1% NP40, 2.5% glycerol, 50 ng/μl poly dI-dC and 5mM MgCl2 for 

20 minutes and were then electrophoresed through a 6% DNA retardation gel at 70V for 

~45 minutes. For the supershift assay, nuclear extracts were incubated with antibodies 

for Elk-1 or Oct-1 for 2 hours on ice prior to incubation with probes. The gels were 

electrophoretically transferred at 380mA for 1 hour on ice to a positively charged nylon 

membrane and immediately cross-linked for 15 minutes with a UV transilluminator 

equipped with a 312 nm bulb. Streptavidin-horseradish peroxidase conjugate and the 

LightShift Chemiluminescent Substrate (Thermo, 89880) were used to detect the biotin 

end-labeled DNA. The nylon membranes were exposed to x-ray film for 0.5–2 minutes 

for detection of the signal. 

12.6 STATISTICAL ANALYSES 

The statistical significance (P value) of differences between groups was calculated by 

unpaired two-tailed Student’s t test. Differences were considered as significant when p < 

0.05. All statistical analyses were carried out on Graphpad Prism software. 
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13.0  AIM 3 RESULTS (SNP IN IFNA8) 

13.1 THE A-GENOTYPE LEADS TO SUPERIOR PROMOTER ACTIVITY 

COMPARED WITH THE C-GENOTYPE 

Glioma patients with the AA-genotype in the rs12553612 SNP in the IFNA8 promoter 

exhibit prolonged overall survival compared with patients with the AC-genotype (Figure 

21). (Fujita, Scheurer et al. 2010) Additionally, as type I IFNs promote immune cell 

functions, we examined whether IFNA8 promoter activities in the A-genotype were 

superior to those in the C-genotype. To understand the underlying molecular basis, we 

created IFNA8 promoter luciferase constructs by cloning the promoter region of IFNA8 

(-1528~-27 upstream the IFNA8 precursor) with either A or C nucleotide at position -335 

into the pGL4.20 luciferase vector at the XhoI and HindIII sites in the multiple cloning 

site . Human monocyte derived THP-1 cells were co-transfected with these firefly 

luciferase reporter plasmids with the A- or C- genotype (Fluc) and Renilla luciferase 

plasmid for internal control (Rluc). Relative luciferase activities (Fluc/Rluc) were 

obtained at 24 hours after the co-transfection (Figure 22A). We found that the IFNA8 A-

genotype reporter plasmid demonstrated significantly higher activity than the C- 

genotype.  The immunoadjuvant poly-ICLC has been shown to enhance the efficacy of 

glioma vaccines, as we previously demonstrated in glioma-bearing mice (Zhu, Fallert-
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Junecko et al. 2010; Maes and Van Gool 2011) and humans. (Okada, Kalinski et al. 

2011) As poly-ICLC and lipopolysaccharide (LPS) are potent inducers of type I IFNs, we 

further examined whether they could enhance IFNA8 promoter activity of the A and C 

genotype. Following 2 hour treatment with 10 µg/ml poly-ICLC or LPS, THP-1 cells still 

exhibited increased activity of the A-genotype IFNA8 promoter over the C-genotype in 

the presence of LPS (Figure 22B) or poly-ICLC (Figure 22C). 

 

Figure 22: IFNA8 promoter activity with the A-genotype at -335 is superior to that with the C-genotype. (A), 

1 x 105 THP-1 cells were co-transfected with 0.02 µg of pGL4 vector encoding Rluc as internal control and 0.18 µg 

of pGL4 vector encoding Fluc downstream of IFNA8 promoter with A- or C-genotype (A-Fluc and C-Fluc). 

Twenty-four hours after the co-transfection, luc activity was measured from triplicate cell-lysates and relative 

luciferase was calculated (Fluc/Rluc).  (Band C), Twenty-four hours after the co-transfection, the cells were 

stimulated with either (B) 10µg/ml of LPS or (C) 10 or 50 µg/ml of poly-ICLC. Two hours after the stimulation, 

relative luciferase activity was measured. Results are from one of three experiments with similar results. The P value 

was calculated by an unpaired two-tailed Student’s t test. Error bars indicate standard deviation among triplicate 

samples. 
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13.2 THE A-GENOTYPE IFN-A8 PROMOTER SPECIFICALLY BINDS MORE 

NUCLEAR PROTEINS THAN THE C-GENOTYPE.    

We hypothesized that the observed differential activities of the promoter constructs 

reflecting the two SNPs were mediated by altered binding of transcription factors at the 

site of SNPs.  We therefore extracted nuclear proteins from THP-1 cells and incubated 

them with biotin-labeled 40-mers derived from the IFNA8 promoter (nucleotide -354 to -

314) with either A- or C- genotype.  By using EMSA to detect protein bound DNA, we 

found that the probe with A-genotype SNP binds to either more protein and/or with a 

higher affinity than the C-genotype SNP (Figure 23A) as seen in both the shifted blot 

and densitometry plot. To demonstrate that the observed binding is sequence-specific, 

a competition assay was conducted using 200 fold more non-biotin labeled (but 

otherwise identical) 40-mers added to the sample. Indeed, the protein-DNA interaction 

was specific as the non-biotin labeled competitive inhibitors blocked the binding of 

protein both with the A- and C- genotype (Figure 23B). 
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Figure 23: The DNA probe with the A-genotype in the IFNA8 promoter demonstrates higher binding to THP-

1 nuclear lysate than one with the C-genotype by EMSA. (A), An EMSA was performed with biotin labeled 

DNA 40mers (20 fmol) with either the A-genotype or C-genotype SNP using THP-1-derived nuclear lysate (10 µg) 

(protein lysate). Lane 1, A-genotype DNA alone; Lane 2, A-genotype DNA incubated with protein lysate; Lane 3, 

C-genotype DNA alone; Lane 4, C-genotype DNA incubated with protein lysate. Quantification of the bands in 

Lanes 2 and 4 was done using ImageJ (National Institutes of Health) software. (B), A competition assay with or 

without 200 fold excess non-labeled A- or C-genotype DNA over the biotin labeled SNP DNA (control) to compete 

specifically with DNA binding site or EBNA DNA (control). Quantification of the bands was done using ImageJ 

(National Institutes of Health) software. Results are from one of three experiments with similar results. 

13.3 TRANSCRIPTION FACTOR OCT-1 BINDS AND ENHANCES THE 

PROMOTER ACTIVITY OF THE IFNA8 A-GENOTYPE  

On the basis of predicted binding sites to the promoter region, we next performed a 

supershift assay to determine which proteins bind in greater amounts to the A-genotype. 
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We selected Oct-1 and Elk-1 as our in silico analysis with TFsearch (Heinemeyer, 

Wingender et al. 1998) predicted that Oct-1 and Elk-1 may bind to this region. Further, 

TFsearch predicted that Oct-1 would bind to the A- but not C- genotype.  Surprisingly, 

although Elk-1 is expressed in THP-1 cells (not shown) we could not detect any 

supershift in either the A- or C-genotype when THP-1 nuclear protein extracts were pre-

incubated with Elk-1 specific antibody (Figure 24A). However, when the nuclear 

extracts were incubated with Oct-1 antibody we observed a supershift in the A- but not 

C- genotype, suggesting the binding of Oct-1 to the IFNA8 promoter, as predicted in 

silico. These results suggest that Oct-1 may be the transcription factor involved in the 

activation of IFNA8 promoter, and failure of Oct-1 to bind to the C-genotype results in 

lower IFNA8 activity.  

We further assessed whether overexpression of Elk-1 or Oct-1 could lead to 

enhanced activity of the IFNA8 promoter. We therefore performed a promoter luciferase 

assay using the IFNA8 promoter A- genotype. Consistently, overexpression of Oct-1 but 

not Elk-1 lead to a statistically significant increase in luciferase activity of the IFNA8 

promoter (Figure 24b), further supporting the role of Oct-1 in the differential IFNA8 

promoter activities between the A- and C- genotype.    
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Figure 24: The A-genotype demonstrates superior binding to Oct-1 compared with the C-genotype. (A), 

Supershift assay was performed by pre-incubation of THP-1 cell nuclear lysate with either anti-Elk-1 or Oct-1 mAb 

prior to DNA binding assay. Lanes 1-4, A-genotype DNA probe; lanes 5-8,C-genotype DNA probe, lanes 1 and 5, 

DNA probes alone; lanes 2 and 6, DNA probes incubated with THP-1 lysate alone; lanes 3 and 7, DNA probes with 

THP-1 lysate preincubated with anti-Elk-1 mAb; lanes 4 and 8,DNA probes with THP-1 lysate preincubated with 

anti-Oct-1 mAb. The supershifted bands are marked with arrows. (B), THP-1 cells were transfected with the A-

genotype Fluc-reporter plasmid and the internal control Rluc plasmid as well as an expression plasmid encoding 

either Elk-1, Oct-1 or IRF-7 as a positive control. Relative luciferase was calculated as Fluc/Rluc. Results are from 

one of two experiments with similar results. * Indicates that the values were statistically different (P < .05) from the 

control samples with the empty vector by unpaired two-tailed Student’s t Test. Error bars indicate standard deviation 

among triplicate sample. 
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14.0  AIM 3 CONCLUSION (SNP IN IFNA8) 

We herein described in Aim 3 that the A-genotype in the IFNA8 promoter SNP 

rs125553612 confers a better promoter activity compared with the C-genotype.  As we 

previously reported that WHO grade II-III glioma patients with the AA-genotype have 

better overall survival than patients with the AC-alleles, higher IFN-α8 expression levels 

may indeed contribute to the better survival of patients. Importantly this demonstrates 

the dominant effect of the C-allele (as patients have both the A and C allele) .Through a 

series of experiments, we provide the following molecular mechanism to explain this 

observation. As depicted by Figure 25, the rs12553612 SNP results in a change of Oct-

1 binding site of IFNA8 promoter at position -335, a change at this site from A to C allele 

causes substantial loss of transcription factor Oct-1 binding affinity to the promoter 

resulting in down-regulation of IFNA8 transcription. As we have shown before, type I 

IFN signaling plays a major role in promoting anti-glioma immune surveillance. (Fujita, 

Scheurer et al. 2010) Thus a decreased IFNA8 transcription activity may potentially 

affect the immune surveillance resulting in lower survival. Using overexpression 

experiments, we demonstrated that Oct-1 but not Elk-1 regulates the IFNA8 promoter 

activity in the A- but not C- genotype.  
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Little is known about the roles and regulation of the individual IFNA genes of 

which there are 14 in humans.  To date the primary activators of IFNA promoters that 

have been described are IFN regulatory factor (IRF) family members. (Colonna 2007)  

For example, upon Newcastle disease virus (NDV) infection, infected cells overexpress 

IRF-5 that induces IFNA8. (Barnes, Field et al. 2003) Therefore, IRF-5 may be a key 

transcription factor for IFNA8. However, IRF-5 can act as both an activator and a 

repressor of IFN gene induction dependent on the IRF-interacting partner including IRF-

3 and IRF-7 (Barnes, Field et al. 2003). Further, IFNA8 has been suggested to have the 

most potent anti-tumor activity in chronic myelogenous leukemia (CML)-derived cell 

lines (Yanai, Sanou et al. 2002), suggesting the importance of IFNA8. 

Our data demonstrate that Oct-1 can bind and promote IFNA8 promoter activity. 

Oct-1, also known as POU domain class 2 transcription factor 1 (POU2F1) is known to 

be post transcriptionally regulated at least in part by p34cdc2-related protein kinase 

which is active during mitosis as well as multiple other kinases and phosphatases. 

(Roberts, Segil et al. 1991) Thus activated, proliferating immune cells may have 

enhanced Oct-1 activity which can lead directly to type I IFN production. Other studies 

have demonstrated additional mechanisms by which Oct-1 function is regulated, such 

as hydrogen peroxide which can stimulate the nuclear import of Oct-1 (Wang and Jin 

2010) and the glucocorticoid receptor which can synergize with Oct-1 and promote 

recruitment of the complex (Oct-1 and the glucocorticoid receptor) to glucocorticoid 

response elements on DNA. (Prefontaine, Lemieux et al. 1998) Oct-1 can also be 

activated in response to DNA damage. (Zhao, Jin et al. 2000) These may still be partial 
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mechanisms with which Oct-1 is regulated in glioma tissues and IFNA8 is induced in 

patients with the A- genotype.  Interestingly, Oct-1 can inhibit IRF-7- and IRF-3-

mediated IFNA11 expression in a virus infection model. (Mesplede, Island et al. 2005)  

Further investigations are warranted to evaluate the role of Oct-1 in the entire type-I IFN 

families and anti-tumor immunity. 

Further investigations using samples obtained from human donors with AA-, AC- 

or CC genotype would have strengthened our study. However, unfortunately, analysis of 

patient samples was not feasible as we have previously reported that of about 300 

patients analyzed few patients (n=9) have the AC- genotype and we identified no 

individuals with the CC-genotype. (Fujita, Scheurer et al. 2010) Accordingly, the 

National Center for Biotechnology Information (NCBI) data base for the current SNP 

(rs12553612) indicates that among a total 947 individuals analyzed AA, AC and CC 

genotypes were found in 719, 122 and 14 individuals, respectively, with a dominant 

prevalence of AC and CC genotypes in Asian populations 

(http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12553612#Diversity).  

Taken together, our data suggest that Oct-1 can regulate IFNA8 promoter in the 

A-genotype but not the C-genotype allele. We predict based on our data that patients 

with the AA- genotype should have higher expression of IFNA8 than patients with the 

AC- or CC- genotype. 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=12553612#Diversity
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Figure 25: Schematic, demonstrating the Oct-1 binding ability to the IFNA8 promoter region 

containing the rs12553612 SNP. 
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15.0  OVERALL DISCUSSION 

Overall herein we have demonstrated relevant roles of the type-1/IFN pathway and the 

type-2/IL-4 and 13 pathways in glioma development.  Our finding on the IL-4R signaling 

regulation of miR-17-92 cluster is highly relevant to cancer immunotherapy and 

addresses some of the major barriers to effective immunotherapy: T-cell persistence 

and effector function. Further, miR-17-92 may be used as a biomarker in cancer 

patients, as patients with less effective IL-4R signaling presumably will have increased 

miR-17-92 and improved anti-tumor immunity. We have a patent pending on the use of 

miR-17-92 in T-cell adoptive transfer (application # 20100322909) and believe this will 

have potential as use in cancer immunotherapy.  

 The up-regulation of IL-4Rα on human glioma-infiltrating MDSCs and its 

association with suppressive molecules demonstrate the feasibility to target these cells 

in glioma patients. Further, in mice we demonstrated the importance of IL-4Rα on 

MDSCs using Il4ra-/- mice, which had few glioma infiltrating MDSCs and reduced ability 

to inhibit T-cells, through a mechanism at least partially mediated by arginase. As 

discussed in the introduction, there are multiple mechanisms to deplete MDSCs and 

each should be evaluated for both efficacy and off-target effects.  
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We believe blocking IL-4R (by antibody, aptamer or other mechanism) signaling 

may be useful to both improve T-cells and suppress MDSCs. However, based on our 

data solely blocking the suppression of miR-17-92 is not likely to be as effective as 

overexpressing miR-17-92 which allows for ectopic expression. On MDSCs blockade of 

IL-4Rα signaling may be promising to reduce MDSC production of arginase however 

this may be harder to accomplish as antibodies have difficulties crossing the BBB while 

a small molecule inhibitor of arginase may be more effective. Our studies demonstrate 

the importance of understanding the biological mechanisms of action mediated by 

specific genes for the development of effective therapeutics.  

While we detected IL-13 in SB glioma tissue this was not the case for IL-4, which 

was undetectable by RT-PCR. In Aim 1 we proposed tumor IL-4-mediated down 

regulation of miR-17-92 cluster as the primary mechanism. While in Aim 2 we did not 

detect IL-4, the alternate model used in Aim 1 may have expressed IL-4. Aim 1 utilized 

C57Bl/6-background mice and B16 tumors while Aim 2 utilized BALB/c-background 

mice with SB gliomas. Alternatively, as IL-13 signaling also is mediated by STAT6, IL-13 

expression may have contributed to the miR-17-92 down-regulation observed in WT but 

not Stat6-/- tumor bearing mice.    

One benefit of SNP analysis is that it provides specific genes which may be 

evaluated. Based on our findings on the importance of type I IFNs in glioma 

development (Fujita, Scheurer et al. 2010), our collaborators examined SNPs in a 

variety of IFN-related genes. This led to the finding that SNPs in IFNAR1 and IFNA8 are 

associated with glioma prognosis. Thus we were able to focus on genes with clinical 

significance of the many type I IFN genes. We thus analyzed the specific impact of 
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IFNA8 and found that the C-genotype of rs12553612 in the promoter region of IFNA8 

leads to decreased IFNA8 promoter activity through inhibited binding of Oct-1 compared 

to the A-genotype. As patients with the C-genotype also have a worse outcome, this 

SNP may be used as a biomarker and patients with the C-genotype may be specifically 

suitable for type I IFN therapy. 

The data described herein support the role for further SNP guided studies to 

understand the importance of specific genes in anti-glioma immunity. Future studies 

using this method will likely lead to identification of risk factors, novel preventative and 

therapeutic strategies based on firm biological mechanism. 
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16.0  FUTURE DIRECTIONS  

16.1 EVALUATE THE MOLECULAR MECHANISM FOR IL-4RΑ SNPS.  

In aims 1 and 2, we have demonstrated the tumor promoting effects of IL-4R signaling 

on T-cells and MDSCs in both humans and mice. Our interest in IL-4R signaling stems 

from type-2 immune biology and the epidemiologic studies demonstrating that SNPs 

rs1805015 and rs1805016 are associated with glioma prognosis. We have 

demonstrated that IL-4Rα signaling may both suppress miR-17-92 cluster in T-cells and 

promote MDSC immune suppressor function. It remains important to evaluate the 

impact of each SNP in IL-4Rα signaling.  

SNP rs1805015 affects the cytoplasmic domain of IL-4Rα with the 

reference/alternative allele T/C resulting in S503/P503. This region has been postulated 

to be required for IRS1 (Insulin receptor substrate 1) activation(Kruse, Japha et al. 

1999). SNP rs1805016 affects position 752, with the reference/alternative allele T/G 

resulting in S752/P752. Aside from conferring susceptibility to asthma, atopy and 

prognosis of GBM patients no functional consequence is currently known for this 

variant(Ober, Leavitt et al. 2000). In IL-4Rα, both 752 and 753 are serine (S) and have 

very high potential to be phosphorylated (NetPhos 2.0). Additionally, the nearby T756 

has been reported to be phosphorylated in high-throughput proteomic analysis(Wu, 
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Wang et al. 2010). Further, the serine or proline amino acides may account for 

structural variations which impacts signaling.  To evaluate the effect of each SNP on 

intracellular signaling we will use 2 different models: 1) transfection and 2) patient 

sample analysis. 

16.1.1 Transfection Approach to Evaluate IL-4Rα SNPs. 

We will use two cell lines, THP-1 and HEK293, to study IL-4Rα signaling. Unlike THP-1 

cells which express IL-4Rα, HEK293 cells do not express STAT6 or IL-4Rα and are not 

sensitive to IL-4/IL-13 stimulation. However, exogenous expression of STAT6 has been 

successfully used in these cells for IL-4 signaling studies (Ohmori and Hamilton 2000). 

As discussed below, we will take advantage of the IL-4Rα-null feature of HEK293 cells 

to investigate STAT6 binding and phosphorylation status in presence of different IL4Rα 

variants.  

We will establish THP-1 cells in which endogenous IL-4Rα expression is silenced 

using commercially available shRNA. This will allow us to express recombinant IL-4Rα 

devoid of 3’UTR in the same cells with shRNA. We will express different variants of IL-

4Rα which we have already created and demonstrated to express in HEK293 cells 

(Figure 26), and assay for STAT6 phosphorylation in the presence of IL-4 and IL-13 by 

Western blot. We will also measure signaling output in presence of these constructs by 

assaying transcription of GATA3 and miR-17-92 cluster expression, target genes of 

STAT6, by RT-PCR. Besides GATA3 and miR-17-92 cluster, in response to IL-4 or IL-

13, STAT6 is also involved in the transcriptional induction of a number of genes, such 
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as Arg1 and MHC II, in myeloid cells (Elo, Jarvenpaa et al. 2010; Goenka and Kaplan 

2011). These findings will indicate the critical role for SNPs in the IL-4Rα-pathway for 

myeloid cell production of arginase and mir-17-92 cluster expression in T-cells.  

One major benefit of this system over the use of human primary samples with 

known SNPs is the lack of confounding variables, as we are using cell lines. However 

as cell lines are immortalized they may have disrupted signaling molecules which may 

influence observations. 

 

Figure 26: Expression of recombinant IL4RA SNP variants in HEK293 cells. HEK293 cells were transfected 

with plasmids containing a GFP-tagged IL4RA gene with either the reference allele or alternate alleles S503P 

(rs1805015) or S752A (rs1805106), using the Lipofectamine 2000 protocol. 48 hours after transfection cells were 

surface stained for IL-4Rα and GFP and analyze by flow cytometry.  
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16.1.2 Describe the Function of IL4RA Polymorphisms in Healthy Donor and 

Glioma Patient PBMCs  

We will identify and compare the intracellular signaling capabilities of healthy donor 

PBMCs and/or glioma patient PBMCs either the dominant or alternative alleles in 

rs1805015 and rs1805016 following stimulation with either IL-4 or IL-13.  Using patient 

samples we examined each donors genotype for the 2 SNPs by RT-PCR. We then 

plotted the results (Figure 27) and identified which samples were homozygous for the 

dominant allele (Blue box), homozygous for the alternative allele (yellow box) or 

heterozygous (green box). Our system allowed for tight grouping of samples. Based on 

these data we plan to obtain additional PBMC from patients in each group, stimulate the 

cells with IL-4 or IL-13 and then evaluate STAT6 phosphorylation, GATA3 and other 

molecules in a similar manner discussed previously with the transfection method 

(16.1.1) 
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Figure 27: Single Nucleotide Polymorphism identification in human samples. Genomic DNA was isolated from 

donor PBMCs using the Qiagen DNeasy kit. Primer/probe kits for each SNP were obtained from Applied 

Biosciences and were used according to the manufacturer’s protocol. FAM and VIC endpoint readings were plotted 

and each genotype group received a box. Blue-Homozygous for dominant allele, yellow-Homozygous for alternate 

allele and green, Heterozygous. Samples in red did not have detectable levels of either allele due to do to failed 

PCR.  



 

 

 126 

16.2 EVALUATE TUMOR GROWTH IN MIR-17-92 TG/TG MICE 

Our data from AIM 1 demonstrates the ability of miR-17-92 overexpression in T-cells to 

resist AICD, with increased IFN-γ and IL-2 production. Further, we have demonstrated 

that tumor conditions suppress miR-17-92 expression. Therefor we would like to 

examine glioma growth in both miR-17-92 TG/TG mice and in WT mice receiving 

adoptive transfer of miR-17-92 TG//TG T-cells. We may also generate mIR-17-92 

TG/TG mice that express the pmel gene making all CD8+ T-cells specific for GP100 and 

use these cells for adoptive transfer (for these experiments we would use murine 

gliomas that express GP100). We will monitor mice for SFS and immunological 

response, such as intratumoral T-cell numbers and viability IFN-γ production. We 

expect that following glioma challenge miR-17-92 expression will remain high in T-cells, 

however based on our data we will evaluate if IL-4 down regulates miR-17-92 in the 

transgenic mice. We will also carefully monitor these mice for any signs of 

autoimmunity, however we believe this is unlikely based on our previous pathological 

analysis of miR-17-92 TG/TG mice. These studies will further support the rational for a 

clinical trial evaluating adoptive transfer of miR-17-92 overexpressing T-cells for glioma 

patients.   
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16.3 CORRELATION OF PATIENT DATA WITH FINDINGS 

Based on our findings that miR-17-92, arginase and IL-4Rα play critical roles in glioma 

immunity it would be important to understand which factors play the most significant role 

in glioma patients. To accomplish this we would like to evaluate expression of these 

genes/molecules by RT-PCR and where available flow cytometry. Then using patient 

records try to correlate each with glioma prognosis. We have an IRB protocol that 

allows us to obtain de-identified patient samples and then get patient information 

through an intermediate broker.  We expect to find that expression of some of these 

genes may correlate with patient outcome.  



 

 

 128 

BIBLIOGRAPHY 

Almand, B., J. I. Clark, et al. (2001). "Increased production of immature myeloid cells in 
cancer patients: a mechanism of immunosuppression in cancer." The Journal of 
Immunology 166(1): 678-689. 

Andaloussi, A. E., Y. Han, et al. (2008). "Progression of intracranial glioma disrupts 
thymic homeostasis and induces T-cell apoptosis in vivo." Cancer Immunol 
Immunother 57(12): 1807-1816. 

Apetoh, L., F. Ghiringhelli, et al. (2007). "Toll-like receptor 4-dependent contribution of 
the immune system to anticancer chemotherapy and radiotherapy." Nat Med 
13(9): 1050-1059. 

Ashby, L. S. and W. R. Shapiro (2004). "Low-grade glioma: supratentorial astrocytoma, 
oligodendroglioma, and oligoastrocytoma in adults." Curr Neurol Neurosci Rep 
4(3): 211-217. 

Badie, B. and J. Schartner (2001). "Role of microglia in glioma biology." Microsc Res 
Tech 54(2): 106-113. 

Baggio, R., F. A. Emig, et al. (1999). "Biochemical and functional profile of a newly 
developed potent and isozyme-selective arginase inhibitor." J Pharmacol Exp 
Ther 290(3): 1409-1416. 

Banchereau, J., F. Briere, et al. (2000). "Immunobiology of dendritic cells." Annu Rev 
Immunol 18: 767-811. 

Banchereau, J. and A. K. Palucka (2005). "Dendritic cells as therapeutic vaccines 
against cancer." Nat Rev Immunol 5(4): 296-306. 

Barba, D., S. C. Saris, et al. (1989). "Intratumoral LAK cell and interleukin-2 therapy of 
human gliomas." J Neurosurg 70(2): 175-182. 

Barnes, B. J., A. E. Field, et al. (2003). "Virus-induced heterodimer formation between 
IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome in vivo and 
transcriptional activity of IFNA genes." J Biol Chem 278(19): 16630-16641. 

Batra, S. K., S. Castelino-Prabhu, et al. (1995). "Epidermal growth factor ligand-
independent, unregulated, cell-transforming potential of a naturally occurring 
human mutant EGFRvIII gene." Cell Growth Differ 6(10): 1251-1259. 

Belda-Iniesta, C., C. Carpeno Jde, et al. (2006). "Long term responses with cetuximab 
therapy in glioblastoma multiforme." Cancer Biol Ther 5(8): 912-914. 

Bentwich, I., A. Avniel, et al. (2005). "Identification of hundreds of conserved and 
nonconserved human microRNAs." Nat Genet 37(7): 766-770. 



 

 

 129 

Berkowitz, D. E., R. White, et al. (2003). "Arginase reciprocally regulates nitric oxide 
synthase activity and contributes to endothelial dysfunction in aging blood 
vessels." Circulation 108(16): 2000-2006. 

Bernsen, H. J., P. F. Rijken, et al. (1999). "Suramin treatment of human glioma 
xenografts; effects on tumor vasculature and oxygenation status." J Neurooncol 
44(2): 129-136. 

Bettinger, I., S. Thanos, et al. (2002). "Microglia promote glioma migration." Acta 
Neuropathol 103(4): 351-355. 

Bierie, B. and H. L. Moses (2010). "Transforming growth factor beta (TGF-beta) and 
inflammation in cancer." Cytokine Growth Factor Rev 21(1): 49-59. 

Bigner, D. D., O. M. Pitts, et al. (1981). "Induction of lethal experimental allergic 
encephalomyelitis in nonhuman primates and guinea pigs with human 
glioblastoma multiforme tissue." J Neurosurg 55(1): 32-42. 

Boelte, K. C., L. E. Gordy, et al. (2011). "Rgs2 mediates pro-angiogenic function of 
myeloid derived suppressor cells in the tumor microenvironment via upregulation 
of MCP-1." PLoS One 6(4): e18534. 

Brand, K. and U. Hermfisse (1997). "Aerobic glycolysis by proliferating cells: a 
protective strategy against reactive oxygen species." FASEB J. 11(5): 388-395. 

Brenner, D., P. H. Krammer, et al. (2008). "Concepts of activated T cell death." Critical 
Reviews in Oncology/Hematology 66(1): 52-64. 

Butler, T. P., F. H. Grantham, et al. (1975). "Bulk transfer of fluid in the interstitial 
compartment of mammary tumors." Cancer Res 35(11 Pt 1): 3084-3088. 

Cabarrocas, J., J. Bauer, et al. (2003). "Effective and selective immune surveillance of 
the brain by MHC class I-restricted cytotoxic T lymphocytes." Eur J Immunol 
33(5): 1174-1182. 

Cao, M., Y. Xu, et al. (2011). "Kinase inhibitor Sorafenib modulates immunosuppressive 
cell populations in a murine liver cancer model." Lab Invest 91(4): 598-608. 

Carrington, J. C. and V. Ambros (2003). "Role of microRNAs in plant and animal 
development." Science 301(5631): 336-338. 

Chang, C. I., J. C. Liao, et al. (2001). "Macrophage arginase promotes tumor cell growth 
and suppresses nitric oxide-mediated tumor cytotoxicity." Cancer Res 61(3): 
1100-1106. 

Colonna, M. (2007). "TLR pathways and IFN-regulatory factors: to each its own." Eur J 
Immunol 37(2): 306-309. 

Condamine, T. and D. I. Gabrilovich (2011). "Molecular mechanisms regulating myeloid-
derived suppressor cell differentiation and function." Trends in Immunology 32(1): 
19-25. 

Cramer, T., Y. Yamanishi, et al. (2003). "HIF-1± Is Essential for Myeloid Cell-Mediated 
Inflammation."  112(5): 645-657. 

De Vleeschouwer, S., S. Fieuws, et al. (2008). "Postoperative adjuvant dendritic cell-
based immunotherapy in patients with relapsed glioblastoma multiforme." Clin 
Cancer Res 14(10): 3098-3104. 

Debinski, W., N. I. Obiri, et al. (1995). "Human glioma cells overexpress receptors for 
interleukin 13 and are extremely sensitive to a novel chimeric protein composed 
of interleukin 13 and pseudomonas exotoxin." Clin Cancer Res 1(11): 1253-1258. 



 

 

 130 

Deininger, M. H., S. Pater, et al. (2001). "Macrophage/microglial cell subpopulations in 
glioblastoma multiforme relapses are differentially altered by 
radiochemotherapy." J Neurooncol 55(3): 141-147. 

Denton, C. P., P. A. Merkel, et al. (2007). "Recombinant human anti-transforming 
growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, 
randomized, placebo-controlled phase I/II trial of CAT-192." Arthritis Rheum 
56(1): 323-333. 

DeVita, V. T., S. Hellman, et al. (1995). Biologic therapy of cancer. Philadelphia, 
Lippincott. 

Dews, M., A. Homayouni, et al. (2006). "Augmentation of tumor angiogenesis by a Myc-
activated microRNA cluster." Nat Genet 38(9): 1060-1065. 

Dhandapani, K. M., V. B. Mahesh, et al. (2007). "Curcumin suppresses growth and 
chemoresistance of human glioblastoma cells via AP-1 and NFkappaB 
transcription factors." J Neurochem 102(2): 522-538. 

Dhiman, N., I. G. Ovsyannikova, et al. (2008). "Associations between SNPs in toll-like 
receptors and related intracellular signaling molecules and immune responses to 
measles vaccine: preliminary results." Vaccine 26(14): 1731-1736. 

Diamond, M. S., M. Kinder, et al. (2011). "Type I interferon is selectively required by 
dendritic cells for immune rejection of tumors." The Journal of Experimental 
Medicine 208(10): 1989-2003. 

Dunn, G. P., C. M. Koebel, et al. (2006). "Interferons, immunity and cancer 
immunoediting." Nat Rev Immunol 6(11): 836-848. 

Elenkov, I. J., E. Webster, et al. (1998). "Histamine Potently Suppresses Human IL-12 
and Stimulates IL-10 Production via H2 Receptors." The Journal of Immunology 
161(5): 2586-2593. 

Elmen, J., M. Lindow, et al. (2008). "LNA-mediated microRNA silencing in non-human 
primates." Nature 452(7189): 896-899. 

Elo, L. L., H. Jarvenpaa, et al. (2010). "Genome-wide profiling of interleukin-4 and 
STAT6 transcription factor regulation of human Th2 cell programming." Immunity 
32(6): 852-862. 

Eltzschig, H. K., L. F. Thompson, et al. (2004). "Endogenous adenosine produced 
during hypoxia attenuates neutrophil accumulation: coordination by extracellular 
nucleotide metabolism." Blood 104(13): 3986-3992. 

Ercan-Sencicek, A. G., A. A. Stillman, et al. (2010). "L-Histidine Decarboxylase and 
Tourette's Syndrome." New England Journal of Medicine 362(20): 1901-1908. 

Fecci, P. E., D. A. Mitchell, et al. (2006). "Increased regulatory T-cell fraction amidst a 
diminished CD4 compartment explains cellular immune defects in patients with 
malignant glioma." Cancer Res 66(6): 3294-3302. 

Fidler, M. J., A. Argiris, et al. (2008). "The potential predictive value of cyclooxygenase-
2 expression and increased risk of gastrointestinal hemorrhage in advanced non-
small cell lung cancer patients treated with erlotinib and celecoxib." Clin.Cancer 
Res. 14(7): 2088-2094. 

Filipazzi, P., R. Valenti, et al. (2007). "Identification of a new subset of myeloid 
suppressor cells in peripheral blood of melanoma patients with modulation by a 



 

 

 131 

granulocyte-macrophage colony-stimulation factor-based antitumor vaccine." J 
Clin.Oncol. 25(18): 2546-2553. 

Finke, J. H., B. Rini, et al. (2008). "Sunitinib reverses type-1 immune suppression and 
decreases T-regulatory cells in renal cell carcinoma patients." Clin Cancer Res 
14(20): 6674-6682. 

Ford, A. L., A. L. Goodsall, et al. (1995). "Normal adult ramified microglia separated 
from other central nervous system macrophages by flow cytometric sorting. 
Phenotypic differences defined and direct ex vivo antigen presentation to myelin 
basic protein-reactive CD4+ T cells compared." J Immunol 154(9): 4309-4321. 

Fuertes, M. B., A. K. Kacha, et al. (2011). "Host type I IFN signals are required for 
antitumor CD8+ T cell responses through CD8α+ dendritic cells." The Journal of 
Experimental Medicine 208(10): 2005-2016. 

Fujita, M., G. Kohanbash, et al. (2011). "COX-2 blockade suppresses gliomagenesis by 
inhibiting myeloid-derived suppressor cells." Cancer Res 71(7): 2664-2674. 

Fujita, M., M. E. Scheurer, et al. (2010). "Role of type 1 IFNs in antiglioma 
immunosurveillance--using mouse studies to guide examination of novel 
prognostic markers in humans." Clin Cancer Res 16(13): 3409-3419. 

Fujita, M., X. Zhu, et al. (2009). "Effective immunotherapy against murine gliomas using 
type 1 polarizing dendritic cells--significant roles of CXCL10." Cancer Res 69(4): 
1587-1595. 

Fukai, J., K. Nishio, et al. (2008). "Antitumor activity of cetuximab against malignant 
glioma cells overexpressing EGFR deletion mutant variant III." Cancer Sci 
99(10): 2062-2069. 

Gabrilovich, D. I. and S. Nagaraj (2009). "Myeloid-derived suppressor cells as 
regulators of the immune system." Nat Rev Immunol 9(3): 162-174. 

Gabrilovich, D. I., S. Ostrand-Rosenberg, et al. (2012). "Coordinated regulation of 
myeloid cells by tumours." Nat Rev Immunol 12(4): 253-268. 

Gebhardt, C., J. Nemeth, et al. (2006). "S100A8 and S100A9 in inflammation and 
cancer." Biochem Pharmacol 72(11): 1622-1631. 

Ghazi, A., A. Ashoori, et al. (2012). "Generation of polyclonal CMV-specific T cells for 
the adoptive immunotherapy of glioblastoma." J Immunother 35(2): 159-168. 

Giglio, P. and V. Levin (2004). "Cyclooxygenase-2 inhibitors in glioma therapy." Am J 
Ther 11(2): 141-143. 

Giometto, B., F. Bozza, et al. (1996). "Immune infiltrates and cytokines in gliomas." Acta 
Neurochir (Wien) 138(1): 50-56. 

Goenka, S. and M. H. Kaplan (2011). "Transcriptional regulation by STAT6." Immunol 
Res 50(1): 87-96. 

Graeber, M. B., B. W. Scheithauer, et al. (2002). "Microglia in brain tumors." Glia 40(2): 
252-259. 

Grauer, O. M., S. Nierkens, et al. (2007). "CD4+FoxP3+ regulatory T cells gradually 
accumulate in gliomas during tumor growth and efficiently suppress antiglioma 
immune responses in vivo." Int J Cancer 121(1): 95-105. 

Grossman, S. A., S. Phuphanich, et al. (2001). "Toxicity, efficacy, and pharmacology of 
suramin in adults with recurrent high-grade gliomas." J Clin Oncol 19(13): 3260-
3266. 



 

 

 132 

Guo, J., W. Lu, et al. (2009). "Enhanced interferon-gamma gene expression in T Cells 
and reduced ovalbumin-dependent lung eosinophilia in hypoxia-inducible factor-
1-alpha-deficient mice." Int Arch Allergy Immunol 149(2): 98-102. 

Halder, S. K., R. D. Beauchamp, et al. (2005). "A specific inhibitor of TGF-beta receptor 
kinase, SB-431542, as a potent antitumor agent for human cancers." Neoplasia 
7(5): 509-521. 

Hammond, S. M. (2006). "RNAi, microRNAs, and human disease." Cancer Chemother 
Pharmacol 58 Suppl 1: s63-68. 

Hanbali, A., I. Wollner, et al. (2007). "Fatal hypersensitivity reaction to gemtuzumab 
ozogamicin associated with platelet transfusion." Am J Health Syst Pharm 
64(13): 1401-1402. 

Hau, P., L. Kunz-Schughart, et al. (2007). "Low-dose chemotherapy in combination with 
COX-2 inhibitors and PPAR-gamma agonists in recurrent high-grade gliomas - a 
phase II study." Oncology 73(1-2): 21-25. 

Hayashita, Y., H. Osada, et al. (2005). "A Polycistronic MicroRNA Cluster, miR-17-92, Is 
Overexpressed in Human Lung Cancers and Enhances Cell Proliferation." 
Cancer Res 65(21): 9628-9632. 

Hayes, R. L., M. Koslow, et al. (1995). "Improved long term survival after intracavitary 
interleukin-2 and lymphokine-activated killer cells for adults with recurrent 
malignant glioma." Cancer 76(5): 840-852. 

He, L., J. M. Thomson, et al. (2005). "A microRNA polycistron as a potential human 
oncogene." Nature 435(7043): 828-833. 

Heimberger, A. B., M. Abou-Ghazal, et al. (2008). "Incidence and prognostic impact of 
FoxP3+ regulatory T cells in human gliomas." Clin Cancer Res 14(16): 5166-
5172. 

Heinemeyer, T., E. Wingender, et al. (1998). "Databases on transcriptional regulation: 
TRANSFAC, TRRD and COMPEL." Nucleic Acids Res 26(1): 362-367. 

Hernandez-Caselles, T., M. Martinez-Esparza, et al. (2006). "A study of CD33 (SIGLEC-
3) antigen expression and function on activated human T and NK cells: two 
isoforms of CD33 are generated by alternative splicing." J Leukoc Biol 79(1): 46-
58. 

Hervas-Stubbs, S., J. L. Perez-Gracia, et al. (2011). "Direct effects of type I interferons 
on cells of the immune system." Clin Cancer Res 17(9): 2619-2627. 

Hestdal, K., F. W. Ruscetti, et al. (1991). "Characterization and regulation of RB6-8C5 
antigen expression on murine bone marrow cells." Journal of Immunology 147(1): 
22-28. 

Highfill, S. L., P. C. Rodriguez, et al. (2010). "Bone marrow myeloid-derived suppressor 
cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-
dependent mechanism that is up-regulated by interleukin-13." Blood 116(25): 
5738-5747. 

Higuchi, S., A. Tanimoto, et al. (2001). "Effects of histamine and interleukin-4 
synthesized in arterial intima on phagocytosis by monocytes/macrophages in 
relation to atherosclerosis." FEBS Letters 505(2): 217-222. 



 

 

 133 

Hipp, M. M., N. Hilf, et al. (2008). "Sorafenib, but not sunitinib, affects function of 
dendritic cells and induction of primary immune responses." Blood 111(12): 
5610-5620. 

Hjelmeland, M. D., A. B. Hjelmeland, et al. (2004). "SB-431542, a small molecule 
transforming growth factor-beta-receptor antagonist, inhibits human glioma cell 
line proliferation and motility." Mol Cancer Ther 3(6): 737-745. 

Hoechst, B., L. A. Ormandy, et al. (2008). "A new population of myeloid-derived 
suppressor cells in hepatocellular carcinoma patients induces 
CD4(+)CD25(+)Foxp3(+) T cells." Gastroenterology 135(1): 234-243. 

Hoechst, B., T. Voigtlaender, et al. (2009). "Myeloid derived suppressor cells inhibit 
natural killer cells in patients with hepatocellular carcinoma via the NKp30 
receptor." Hepatology 50(3): 799-807. 

Holladay, F. P., T. Heitz, et al. (1992). "Successful treatment of a malignant rat glioma 
with cytotoxic T lymphocytes." Neurosurgery 31(3): 528-533. 

Holladay, F. P., T. Heitz, et al. (1992). "Antitumor activity against established 
intracerebral gliomas exhibited by cytotoxic T lymphocytes, but not by 
lymphokine-activated killer cells." J Neurosurg 77(5): 757-762. 

Huang, B. and et al. (2006). "Gr-1+CD115+ immature myeloid suppressor cells mediate 
the development of tumor-induced T regulatory cells and T-cell anergy in tumor-
bearing host." Cancer Res. 66(1123): 1131. 

Hussain, S. F., D. Yang, et al. (2006). "The role of human glioma-infiltrating 
microglia/macrophages in mediating antitumor immune responses." Neuro Oncol 
8(3): 261-279. 

Inomata, M., H. Tagawa, et al. (2009). "MicroRNA-17-92 down-regulates expression of 
distinct targets in different B-cell lymphoma subtypes." Blood 113(2): 396-402. 

Ishikawa, E., K. Tsuboi, et al. (2007). "Clinical trial of autologous formalin-fixed tumor 
vaccine for glioblastoma multiforme patients." Cancer Sci 98(8): 1226-1233. 

Izumoto, S., A. Tsuboi, et al. (2008). "Phase II clinical trial of Wilms tumor 1 peptide 
vaccination for patients with recurrent glioblastoma multiforme." J Neurosurg 
108(5): 963-971. 

Jain, R. K. and L. T. Baxter (1988). "Mechanisms of heterogeneous distribution of 
monoclonal antibodies and other macromolecules in tumors: significance of 
elevated interstitial pressure." Cancer Res 48(24 Pt 1): 7022-7032. 

Jiang, T., Z. Han, et al. (2009). "Resistance to activation-induced cell death and 
elevated FLIP(L) expression of CD4+ T cells in a polyI:C-induced primary biliary 
cirrhosis mouse model." Clin Exp Med. 

Joshi, B. H., P. Leland, et al. (2001). "In situ expression of interleukin-4 (IL-4) receptors 
in human brain tumors and cytotoxicity of a recombinant IL-4 cytotoxin in primary 
glioblastoma cell cultures." Cancer Res 61(22): 8058-8061. 

Jutel, M., T. Watanabe, et al. (2001). "Histamine regulates T-cell and antibody 
responses by differential expression of H1 and H2 receptors." Nature 413(6854): 
420-425. 

Kees, T., J. Lohr, et al. (2012). "Microglia isolated from patients with glioma gain 
antitumor activities on poly (I:C) stimulation." Neuro Oncol 14(1): 64-78. 



 

 

 134 

Kennedy, R. and E. Celis (2008). "Multiple roles for CD4+ T cells in anti-tumor immune 
responses." Immunological Reviews 222(1): 129-144. 

Kioi, M., S. Seetharam, et al. (2008). "Targeting IL-13Ralpha2-positive cancer with a 
novel recombinant immunotoxin composed of a single-chain antibody and 
mutated Pseudomonas exotoxin." Mol Cancer Ther 7(6): 1579-1587. 

Klink, M., M. Kielbik, et al. (2012). "JAK3, STAT3 and CD3-zeta Signaling Proteins 
Status in Regard to the Lymphocytes Function in Patients with Ovarian Cancer." 
Immunol Invest 41(4): 382-398. 

Kloen, P., C. L. Jennings, et al. (1994). "Suramin inhibits growth and transforming 
growth factor-beta 1 (TGF-beta 1) binding in osteosarcoma cell lines." Eur J 
Cancer 30A(5): 678-682. 

Ko, J. S., P. Rayman, et al. (2010). "Direct and differential suppression of myeloid-
derived suppressor cell subsets by sunitinib is compartmentally constrained." 
Cancer Res 70(9): 3526-3536. 

Ko, J. S., A. H. Zea, et al. (2009). "Sunitinib mediates reversal of myeloid-derived 
suppressor cell accumulation in renal cell carcinoma patients." Clin Cancer Res 
15(6): 2148-2157. 

Kohanbash, G., E. Ishikawa, et al. (2012). "Differential activity of interferon-α8 promoter 
is regulated by Oct-1 and a SNP that dictates prognosis of glioma." 
OncoImmunology In press. 

Kohanbash, G. and H. Okada (2012). "MicroRNAs and STAT interplay." Semin Cancer 
Biol 22(1): 70-75. 

Kojima, H., H. Gu, et al. (2002). "Abnormal B lymphocyte development and 
autoimmunity in hypoxia-inducible factor 1Î±-deficient chimeric mice." 
Proceedings of the National Academy of Sciences of the United States of 
America 99(4): 2170-2174. 

Kropf, P., D. Baud, et al. (2007). "Arginase activity mediates reversible T cell 
hyporesponsiveness in human pregnancy." Eur J Immunol 37(4): 935-945. 

Kruse, S., T. Japha, et al. (1999). "The polymorphisms S503P and Q576R in the 
interleukin-4 receptor alpha gene are associated with atopy and influence the 
signal transduction." Immunology 96(3): 365-371. 

Kunwar, S., S. M. Chang, et al. (2006). "Safety of intraparenchymal convection-
enhanced delivery of cintredekin besudotox in early-phase studies." Neurosurg 
Focus 20(4): E15. 

Lam, T. L., G. K. Wong, et al. (2011). "Recombinant human arginase inhibits the in vitro 
and in vivo proliferation of human melanoma by inducing cell cycle arrest and 
apoptosis." Pigment Cell Melanoma Res 24(2): 366-376. 

Laterra, J. J., S. A. Grossman, et al. (2004). "Suramin and radiotherapy in newly 
diagnosed glioblastoma: phase 2 NABTT CNS Consortium study." Neuro Oncol 
6(1): 15-20. 

Lawrie, C. H. (2007). "MicroRNA expression in lymphoma." Expert Opin Biol Ther 7(9): 
1363-1374. 

Li, H., Y. Han, et al. (2009). "Cancer-expanded myeloid-derived suppressor cells induce 
anergy of NK cells through membrane-bound TGF-beta 1." J. Immunol. 182(1): 
240-249. 



 

 

 135 

Liau, L. M., R. M. Prins, et al. (2005). "Dendritic cell vaccination in glioblastoma patients 
induces systemic and intracranial T-cell responses modulated by the local central 
nervous system tumor microenvironment." Clin Cancer Res 11(15): 5515-5525. 

Lin, Y., M. P. Gustafson, et al. (2011). "Immunosuppressive CD14+HLA-DR(low)/- 
monocytes in B-cell non-Hodgkin lymphoma." Blood 117(3): 872-881. 

Liu, C. Y., Y. M. Wang, et al. (2010). "Population alterations of l-arginase- and inducible 
nitric oxide synthase-expressed CD11b+/CD14-/CD15+/CD33 + myeloid-derived 
suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-
small cell lung cancer." Journal of Cancer Research and Clinical Oncology 
136(1): 35-45. 

Liu, G., J. S. Yu, et al. (2004). "AIM-2: a novel tumor antigen is expressed and 
presented by human glioma cells." J Immunother 27(3): 220-226. 

Livak, K. J. and T. D. Schmittgen (2001). "Analysis of relative gene expression data 
using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method." Methods 
25(4): 402-408. 

Lukashev, D., B. Klebanov, et al. (2006). "Cutting Edge: Hypoxia-Inducible Factor 
1{alpha} and Its Activation-Inducible Short Isoform I.1 Negatively Regulate 
Functions of CD4+ and CD8+ T Lymphocytes." J Immunol 177(8): 4962-4965. 

Luyckx, A., E. Schouppe, et al. (2012). "G-CSF stem cell mobilization in human donors 
induces polymorphonuclear and mononuclear myeloid-derived suppressor cells." 
Clin Immunol 143(1): 83-87. 

Maes, W. and S. W. Van Gool (2011). "Experimental immunotherapy for malignant 
glioma: lessons from two decades of research in the GL261 model." Cancer 
Immunol Immunother 60(2): 153-160. 

Mahaley, M. S., Jr., D. D. Bigner, et al. (1983). "Immunobiology of primary intracranial 
tumors. Part 7: Active immunization of patients with anaplastic human glioma 
cells: a pilot study." J Neurosurg 59(2): 201-207. 

Mandruzzato, S., S. Solito, et al. (2009). "IL4Ralpha+ myeloid-derived suppressor cell 
expansion in cancer patients." J.Immunol. 182(10): 6562-6568. 

Mantovani, A., S. Sozzani, et al. (2002). "Macrophage polarization: tumor-associated 
macrophages as a paradigm for polarized M2 mononuclear phagocytes." Trends 
Immunol 23(11): 549-555. 

Markovic, D. S., R. Glass, et al. (2005). "Microglia stimulate the invasiveness of glioma 
cells by increasing the activity of metalloprotease-2." J Neuropathol Exp Neurol 
64(9): 754-762. 

Matsubara, H., T. Takeuchi, et al. (2007). "Apoptosis induction by antisense 
oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing 
miR-17-92." Oncogene 26(41): 6099-6105. 

Mesplede, T., M. L. Island, et al. (2005). "The POU transcription factor Oct-1 represses 
virus-induced interferon A gene expression." Mol Cell Biol 25(19): 8717-8731. 

Morgan, R. A., M. E. Dudley, et al. (2006). "Cancer Regression in Patients After 
Transfer of Genetically Engineered Lymphocytes." Science. 

Morris, S. M., Jr. (2009). "Recent advances in arginine metabolism: roles and regulation 
of the arginases." Br J Pharmacol 157(6): 922-930. 



 

 

 136 

Movahedi, K., M. Guilliams, et al. (2008). "Identification of discrete tumor-induced 
myeloid-derived suppressor cell subpopulations with distinct T cell suppressive 
activity." Blood 111(8): 4233-4244. 

Mulholland, P. J., C. Thirlwell, et al. (2005). "Emerging targeted treatments for malignant 
glioma." Expert Opin Emerg Drugs 10(4): 845-854. 

Murat, A., E. Migliavacca, et al. (2009). "Modulation of angiogenic and inflammatory 
response in glioblastoma by hypoxia." PLoS One 4(6): e5947. 

Mut, M., J. H. Sherman, et al. (2008). "Cintredekin besudotox in treatment of malignant 
glioma." Expert Opin Biol Ther 8(6): 805-812. 

Muthuswamy, R., J. Urban, et al. (2008). "Ability of mature dendritic cells to interact with 
regulatory T cells is imprinted during maturation." Cancer Res 68(14): 5972-
5978. 

Nakamura, K., A. Kitani, et al. (2001). "Cell contact-dependent immunosuppression by 
CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming 
growth factor beta." J Exp Med 194(5): 629-644. 

Neumann, A. K., J. Yang, et al. (2005). "Hypoxia inducible factor 1Î± regulates T cell 
receptor signal transduction." Proceedings of the National Academy of Sciences 
of the United States of America 102(47): 17071-17076. 

Nishie, A., K. Masuda, et al. (2001). "High expression of the Cap43 gene in infiltrating 
macrophages of human renal cell carcinomas." Clin Cancer Res 7(7): 2145-
2151. 

Nishie, A., M. Ono, et al. (1999). "Macrophage infiltration and heme oxygenase-1 
expression correlate with angiogenesis in human gliomas." Clin Cancer Res 5(5): 
1107-1113. 

O'Donnell, K. A., E. A. Wentzel, et al. (2005). "c-Myc-regulated microRNAs modulate 
E2F1 expression." Nature 435(7043): 839-843. 

Ober, C., S. A. Leavitt, et al. (2000). "Variation in the interleukin 4-receptor alpha gene 
confers susceptibility to asthma and atopy in ethnically diverse populations." Am 
J Hum Genet 66(2): 517-526. 

Ochoa, A. C., A. H. Zea, et al. (2007). "Arginase, prostaglandins, and myeloid-derived 
suppressor cells in renal cell carcinoma." Clin Cancer Res 13(2 Pt 2): 721s-726s. 

Ogaki, H. (2009). Epidemiology of Brain Tumors, Humana Press. 
Ohmori, Y. and T. A. Hamilton (2000). "Interleukin-4/STAT6 represses STAT1 and NF-

kappa B-dependent transcription through distinct mechanisms." J Biol Chem 
275(48): 38095-38103. 

Ohtsu, H., S. Tanaka, et al. (2001). "Mice lacking histidine decarboxylase exhibit 
abnormal mast cells." FEBS Letters 502(1–2): 53-56. 

Ohtsu, H. and T. Watanabe (2003). "New functions of histamine found in histidine 
decarboxylase gene knockout mice." Biochemical and Biophysical Research 
Communications 305(3): 443-447. 

Okada, H. (2009). "Brain tumor immunotherapy with type-1 polarizing strategies." Ann N 
Y Acad Sci 1174: 18-23. 

Okada, H., P. Kalinski, et al. (2011). "Induction of CD8+ T-cell responses against novel 
glioma-associated antigen peptides and clinical activity by vaccinations with 
{alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid 



 

 

 137 

stabilized by lysine and carboxymethylcellulose in patients with recurrent 
malignant glioma." J Clin Oncol 29(3): 330-336. 

Okada, H., G. Kohanbash, et al. (2009). "Immunotherapeutic approaches for glioma." 
Crit Rev Immunol 29(1): 1-42. 

Okada, H., F. S. Lieberman, et al. (2007). "Autologous glioma cell vaccine admixed with 
interleukin-4 gene transfected fibroblasts in the treatment of patients with 
malignant gliomas." J Transl Med 5: 67. 

Ostrand-Rosenberg, S. (2010). "Myeloid-derived suppressor cells: more mechanisms 
for inhibiting antitumor immunity." Cancer Immunol Immunother 59(10): 1593-
1600. 

Ostrand-Rosenberg, S. and P. Sinha (2009). "Myeloid-derived suppressor cells: linking 
inflammation and cancer." J Immunol 182(8): 4499-4506. 

Pak, A. S., G. Ip, et al. (1995). "Treating tumor-bearing mice with low-dose gamma-
interferon plus tumor necrosis factor alpha to diminish immune suppressive 
granulocyte-macrophage progenitor cells increases responsiveness to interleukin 
2 immunotherapy." Cancer Res 55(4): 885-890. 

Pan, P. Y., G. Ma, et al. (2010). "Immune stimulatory receptor CD40 is required for T-
cell suppression and T regulatory cell activation mediated by myeloid-derived 
suppressor cells in cancer." Cancer Research 70(1): 99-108. 

Parney, I. F., J. S. Waldron, et al. (2009). "Flow cytometry and in vitro analysis of 
human glioma-associated macrophages. Laboratory investigation." J Neurosurg 
110(3): 572-582. 

Perry, M. C., M. Demeule, et al. (2010). "Curcumin inhibits tumor growth and 
angiogenesis in glioblastoma xenografts." Mol Nutr Food Res 54(8): 1192-1201. 

Platten, M., A. Kretz, et al. (2003). "Monocyte chemoattractant protein-1 increases 
microglial infiltration and aggressiveness of gliomas." Ann Neurol 54(3): 388-392. 

Poschke, I., D. Mougiakakos, et al. (2010). "Immature immunosuppressive CD14+HLA-
DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, 
and DC-sign." Cancer Research 70(11): 4335-4345. 

Poschke, I., D. Mougiakakos, et al. (2010). "Immature immunosuppressive CD14+HLA-
DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, 
and DC-sign." Cancer Res 70(11): 4335-4345. 

Prefontaine, G. G., M. E. Lemieux, et al. (1998). "Recruitment of octamer transcription 
factors to DNA by glucocorticoid receptor." Mol Cell Biol 18(6): 3416-3430. 

Prins, R. M. and L. M. Liau (2004). "Cellular immunity and immunotherapy of brain 
tumors." Front Biosci 9: 3124-3136. 

Prizment, A. E., A. R. Folsom, et al. (2007). "History of Allergy and Reduced Incidence 
of Colorectal Cancer, Iowa Women's Health Study." Cancer Epidemiology 
Biomarkers & Prevention 16(11): 2357-2362. 

Pule, M. A., B. Savoldo, et al. (2008). "Virus-specific T cells engineered to coexpress 
tumor-specific receptors: persistence and antitumor activity in individuals with 
neuroblastoma." Nat Med 14(11): 1264-1270. 

Puri, R. K., D. S. Hoon, et al. (1996). "Preclinical development of a recombinant toxin 
containing circularly permuted interleukin 4 and truncated Pseudomonas 
exotoxin for therapy of malignant astrocytoma." Cancer Res 56(24): 5631-5637. 



 

 

 138 

Ramos, T. C., J. Figueredo, et al. (2006). "Treatment of high-grade glioma patients with 
the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: 
report from a phase I/II trial." Cancer Biol Ther 5(4): 375-379. 

Rand, R. W., R. J. Kreitman, et al. (2000). "Intratumoral administration of recombinant 
circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-
grade glioma." Clin Cancer Res 6(6): 2157-2165. 

Raychaudhuri, B., P. Rayman, et al. (2011). "Myeloid-derived suppressor cell 
accumulation and function in patients with newly diagnosed glioblastoma." 
Neuro-Oncology 13(6): 591-599. 

Reardon, D. A., J. A. Quinn, et al. (2005). "Phase II trial of irinotecan plus celecoxib in 
adults with recurrent malignant glioma." Cancer 103(2): 329-338. 

Reardon, D. A., J. J. Vredenburgh, et al. (2011). "Phase I study of sunitinib and 
irinotecan for patients with recurrent malignant glioma." J Neurooncol 105(3): 
621-627. 

Rinaldi, A., G. Poretti, et al. (2007). "Concomitant MYC and microRNA cluster miR-17-
92 (C13orf25) amplification in human mantle cell lymphoma." Leuk Lymphoma 
48(2): 410-412. 

Rivera, F., M. E. Vega-Villegas, et al. (2008). "Current situation of Panitumumab, 
Matuzumab, Nimotuzumab and Zalutumumab." Acta Oncol 47(1): 9-19. 

Roberts, S. B., N. Segil, et al. (1991). "Differential phosphorylation of the transcription 
factor Oct1 during the cell cycle." Science 253(5023): 1022-1026. 

Rodero, M., Y. Marie, et al. (2008). "Polymorphism in the microglial cell-mobilizing 
CX3CR1 gene is associated with survival in patients with glioblastoma." J Clin 
Oncol 26(36): 5957-5964. 

Rodrigues, J. C., G. C. Gonzalez, et al. (2010). "Normal human monocytes exposed to 
glioma cells acquire myeloid-derived suppressor cell-like properties." Neuro 
Oncol 12(4): 351-365. 

Rodriguez, P. C., C. P. Hernandez, et al. (2005). "Arginase I in myeloid suppressor cells 
is induced by COX-2 in lung carcinoma." Journal of Experimental Medicine 
202(7): 931-939. 

Rodriguez, P. C., D. G. Quiceno, et al. (2007). "L-arginine availability regulates T-
lymphocyte cell-cycle progression." Blood 109(4): 1568-1573. 

Rodriguez, P. C., A. H. Zea, et al. (2003). "L-arginine consumption by macrophages 
modulates the expression of CD3 zeta chain in T lymphocytes." J Immunol 
171(3): 1232-1239. 

Rosenberg, S. A. (2000). Principles and practice of the biologic therapy of cancer. 
Philadelphia, Lippincott Williams & Wilkins. 

Rosenberg, S. A., B. S. Packard, et al. (1988). "Use of tumor-infiltrating lymphocytes 
and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A 
preliminary report." N Engl J Med 319(25): 1676-1680. 

Roth, F., A. C. De La Fuente, et al. (2012). "Aptamer-Mediated Blockade of IL4Ralpha 
Triggers Apoptosis of MDSCs and Limits Tumor Progression." Cancer Res 72(6): 
1373-1383. 



 

 

 139 

Roussel, E., M. C. Gingras, et al. (1996). "Predominance of a type 2 intratumoural 
immune response in fresh tumour-infiltrating lymphocytes from human gliomas." 
Clin Exp Immunol 105(2): 344-352. 

Santhanam, L., D. W. Christianson, et al. (2008). "Arginase and vascular aging." J Appl 
Physiol 105(5): 1632-1642. 

Sasaguri, Y., K.-Y. Wang, et al. (2005). "Role of Histamine Produced by Bone Marrow–
Derived Vascular Cells in Pathogenesis of Atherosclerosis." Circulation Research 
96(9): 974-981. 

Sasaki, K., A. D. Pardee, et al. (2009). "IL-4 suppresses very late antigen-4 expression 
which is required for therapeutic Th1 T-cell trafficking into tumors." J Immunother 
32(8): 793-802. 

Sasaki, K., X. Zhao, et al. (2008). "Stat6 signaling suppresses VLA-4 expression by 
CD8+ T cells and limits their ability to infiltrate tumor lesions in vivo." J Immunol 
181(1): 104-108. 

Schartner, J. M., A. R. Hagar, et al. (2005). "Impaired capacity for upregulation of MHC 
class II in tumor-associated microglia." Glia 51(4): 279-285. 

Scheurer, M. E., E. Amirian, et al. (2008). "Polymorphisms in the interleukin-4 receptor 
gene are associated with better survival in patients with glioblastoma." Clin 
Cancer Res 14(20): 6640-6646. 

Scheurer, M. E., E. S. Amirian, et al. (2010). "Effects of antihistamine and anti-
inflammatory medication use on risk of specific glioma histologies." Int J Cancer. 

Scheurer, M. E., R. El-Zein, et al. (2008). "Long-term anti-inflammatory and 
antihistamine medication use and adult glioma risk." Cancer 
Epidemiol.Biomarkers Prev. 17(5): 1277-1281. 

Schmielau, J. and O. J. Finn (2001). "Activated granulocytes and granulocyte-derived 
hydrogen peroxide are the underlying mechanism of suppression of t-cell 
function in advanced cancer patients." Cancer Res. 61(12): 4756-4760. 

Schneider, T., R. Gerhards, et al. (2001). "Preliminary results of active specific 
immunization with modified tumor cell vaccine in glioblastoma multiforme." J 
Neurooncol 53(1): 39-46. 

Schwartzbaum, J. A., A. Ahlbom, et al. (2007). "An international case-control study of 
interleukin-4Ralpha, interleukin-13, and cyclooxygenase-2 polymorphisms and 
glioblastoma risk." Cancer Epidemiol Biomarkers Prev 16(11): 2448-2454. 

Semenza, G. L. (1998). "Hypoxia-inducible factor 1: master regulator of O2 
homeostasis." Current Opinion in Genetics & Development 8(5): 588-594. 

Serafini, P., K. Meckel, et al. (2006). "Phosphodiesterase-5 inhibition augments 
endogenous antitumor immunity by reducing myeloid-derived suppressor cell 
function." J Exp Med 203(12): 2691-2702. 

Serafini, P., S. Mgebroff, et al. (2008). "Myeloid-derived suppressor cells promote cross-
tolerance in B-cell lymphoma by expanding regulatory T cells." Cancer Research 
68(13): 5439-5449. 

Shastry, B. S. (2009). "SNPs: impact on gene function and phenotype." Methods Mol 
Biol 578: 3-22. 

Shete, S., F. J. Hosking, et al. (2009). "Genome-wide association study identifies five 
susceptibility loci for glioma." Nat Genet 41(8): 899-904. 



 

 

 140 

Shinojima, N., K. Tada, et al. (2003). "Prognostic value of epidermal growth factor 
receptor in patients with glioblastoma multiforme." Cancer Res 63(20): 6962-
6970. 

Sica, A. and V. Bronte (2007). "Altered macrophage differentiation and immune 
dysfunction in tumor development." J Clin Invest 117(5): 1155-1166. 

Sievers, E. L., R. A. Larson, et al. (2001). "Efficacy and safety of gemtuzumab 
ozogamicin in patients with CD33-positive acute myeloid leukemia in first 
relapse." J Clin Oncol 19(13): 3244-3254. 

Sinha, P., V. K. Clements, et al. (2007). "Prostaglandin E2 promotes tumor progression 
by inducing myeloid-derived suppressor cells." Cancer Res 67(9): 4507-4513. 

Sippel, T. R., J. White, et al. (2011). "Neutrophil degranulation and immunosuppression 
in patients with GBM: restoration of cellular immune function by targeting 
arginase I." Clin Cancer Res 17(22): 6992-7002. 

Sitkovsky, M. and D. Lukashev (2005). "Regulation of immune cells by local-tissue 
oxygen tension: HIF1 alpha and adenosine receptors." Nat.Rev.Immunol. 5(9): 
712-721. 

Sivak-Sears, N. R., J. A. Schwartzbaum, et al. (2004). "Case-control study of use of 
nonsteroidal antiinflammatory drugs and glioblastoma multiforme." Am.J 
Epidemiol. 159(12): 1131-1139. 

Solomon, S. D., J. Wittes, et al. (2008). "Cardiovascular risk of celecoxib in 6 
randomized placebo-controlled trials: the cross trial safety analysis." Circulation 
117(16): 2104-2113. 

Sparvero, L. J., D. Asafu-Adjei, et al. (2009). "RAGE (Receptor for Advanced Glycation 
Endproducts), RAGE ligands, and their role in cancer and inflammation." J Transl 
Med 7: 17. 

Srivastava, M. K., J. J. Bosch, et al. (2008). "Lung cancer patients' CD4+ T cells are 
activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-
derived suppressor cells." Cancer Immunology, Immunotherapy 57(10): 1493-
1504. 

Srivastava, M. K., P. Sinha, et al. (2010). "Myeloid-derived suppressor cells inhibit T-cell 
activation by depleting cystine and cysteine." Cancer Research 70(1): 68-77. 

Steiner, H. H., M. M. Bonsanto, et al. (2004). "Antitumor vaccination of patients with 
glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical 
benefit." J Clin Oncol 22(21): 4272-4281. 

Stupp, R., P. Y. Dietrich, et al. (2002). "Promising survival for patients with newly 
diagnosed glioblastoma multiforme treated with concomitant radiation plus 
temozolomide followed by adjuvant temozolomide." J Clin Oncol 20(5): 1375-
1382. 

Sun, J., Y. Zhang, et al. (2010). "Hypoxia induces T-cell apoptosis by inhibiting 
chemokine C receptor 7 expression: the role of adenosine receptor A(2)." Cell 
Mol Immunol 7(1): 77-82. 

Sylvestre, Y., V. De Guire, et al. (2007). "An E2F/miR-20a Autoregulatory Feedback 
Loop." J. Biol. Chem. 282(4): 2135-2143. 



 

 

 141 

Tadmor, T., D. Attias, et al. (2011). "Myeloid-derived suppressor cells--their role in 
haemato-oncological malignancies and other cancers and possible implications 
for therapy." Br J Haematol 153(5): 557-567. 

Taguchi, A., K. Yanagisawa, et al. (2008). "Identification of hypoxia-inducible factor-1 
alpha as a novel target for miR-17-92 microRNA cluster." Cancer Res 68(14): 
5540-5545. 

Terabe, M., S. Matsui, et al. (2003). "Transforming growth factor-beta production and 
myeloid cells are an effector mechanism through which CD1d-restricted T cells 
block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation 
prevents tumor recurrence." J Exp Med 198(11): 1741-1752. 

Thiel, M., C. C. Caldwell, et al. (2007). "Targeted deletion of HIF-1alpha gene in T cells 
prevents their inhibition in hypoxic inflamed tissues and improves septic mice 
survival." PLoS One 2(9): e853. 

Tu, S. P., H. Jin, et al. (2012). "Curcumin induces the differentiation of myeloid-derived 
suppressor cells and inhibits their interaction with cancer cells and related tumor 
growth." Cancer Prev Res (Phila) 5(2): 205-215. 

Ueda, R., G. Kohanbash, et al. (2009). "Dicer-regulated microRNAs 222 and 339 
promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation 
of ICAM-1." Proc Natl Acad Sci U S A 106(26): 10746-10751. 

Uhl, M., S. Aulwurm, et al. (2004). "SD-208, a novel transforming growth factor beta 
receptor I kinase inhibitor, inhibits growth and invasiveness and enhances 
immunogenicity of murine and human glioma cells in vitro and in vivo." Cancer 
Res 64(21): 7954-7961. 

Uhm, J. R., J. D. Kettering, et al. (1993). "Modulation of transforming growth factor-beta 
1 effects by cytokines." Immunol Invest 22(5): 375-388. 

Umemura, N., M. Saio, et al. (2008). "Tumor-infiltrating myeloid-derived suppressor 
cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-
type characteristics." J Leukoc Biol 83(5): 1136-1144. 

Vajdic, C. M., M. O. Falster, et al. (2009). "Atopic Disease and Risk of Non–Hodgkin 
Lymphoma: An InterLymph Pooled Analysis." Cancer Research 69(16): 6482-
6489. 

van der Pouw Kraan, T. C., A. Snijders, et al. (1998). "Histamine inhibits the production 
of interleukin-12 through interaction with H2 receptors." The Journal of Clinical 
Investigation 102(10): 1866-1873. 

Vanderlugt, C. L. and S. D. Miller (2002). "Epitope spreading in immune-mediated 
diseases: implications for immunotherapy." Nat Rev Immunol 2(2): 85-95. 

Varga, G., J. Ehrchen, et al. (2008). "Glucocorticoids induce an activated, anti-
inflammatory monocyte subset in mice that resembles myeloid-derived 
suppressor cells." J Leukoc.Biol. 84(3): 644-650. 

Ventura, A., A. G. Young, et al. (2008). "Targeted deletion reveals essential and 
overlapping functions of the miR-17 through 92 family of miRNA clusters." Cell 
132(5): 875-886. 

Volinia, S., G. A. Calin, et al. (2006). "A microRNA expression signature of human solid 
tumors defines cancer gene targets." Proc Natl Acad Sci U S A 103(7): 2257-
2261. 



 

 

 142 

Vuk-Pavlovic, S., P. A. Bulur, et al. (2010). "Immunosuppressive CD14+HLA-DRlow/- 
monocytes in prostate cancer." Prostate 70(4): 443-455. 

Waight, J. D., Q. Hu, et al. (2011). "Tumor-derived G-CSF facilitates neoplastic growth 
through a granulocytic myeloid-derived suppressor cell-dependent mechanism." 
PLoS One 6(11): e27690. 

Wang, P. and T. Jin (2010). "Hydrogen peroxide stimulates nuclear import of the POU 
homeodomain protein Oct-1 and its repressive effect on the expression of Cdx-
2." BMC Cell Biol 11: 56. 

Watters, J. J., J. M. Schartner, et al. (2005). "Microglia function in brain tumors." J 
Neurosci Res 81(3): 447-455. 

Weber, F., A. Asher, et al. (2003). "Safety, tolerability, and tumor response of IL4-
Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma." J 
Neurooncol 64(1-2): 125-137. 

Wen, P. Y. and S. Kesari (2004). "Malignant gliomas." Curr Neurol Neurosci Rep 4(3): 
218-227. 

Wheeler, C. J., K. L. Black, et al. (2008). "Vaccination elicits correlated immune and 
clinical responses in glioblastoma multiforme patients." Cancer Res 68(14): 
5955-5964. 

Wiesner, S. M., S. A. Decker, et al. (2009). "De novo induction of genetically engineered 
brain tumors in mice using plasmid DNA." Cancer Res 69(2): 431-439. 

Wikstrand, C. J. and D. D. Bigner (1980). "Immunobiologic aspects of the brain and 
human gliomas. A review." Am J Pathol 98(2): 517-568. 

Williams, L. E., R. B. Duda, et al. (1988). "Tumor uptake as a function of tumor mass: a 
mathematic model." J Nucl Med 29(1): 103-109. 

Wu, F., P. Wang, et al. (2010). "Studies of phosphoproteomic changes induced by 
nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of 
tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling 
pathway in ALK-positive anaplastic large cell lymphoma." Mol Cell Proteomics 
9(7): 1616-1632. 

Wu, L., H. Du, et al. (2011). "Signal transducer and activator of transcription 3 (Stat3C) 
promotes myeloid-derived suppressor cell expansion and immune suppression 
during lung tumorigenesis." Am J Pathol 179(4): 2131-2141. 

Xiao, C. and K. Rajewsky (2009). "MicroRNA control in the immune system: basic 
principles." Cell 136(1): 26-36. 

Xiao, C., L. Srinivasan, et al. (2008). "Lymphoproliferative disease and autoimmunity in 
mice with increased miR-17-92 expression in lymphocytes." Nat Immunol 9(4): 
405-414. 

Yajima, N., R. Yamanaka, et al. (2005). "Immunologic evaluation of personalized 
peptide vaccination for patients with advanced malignant glioma." Clin Cancer 
Res 11(16): 5900-5911. 

Yamanaka, R., J. Homma, et al. (2005). "Clinical evaluation of dendritic cell vaccination 
for patients with recurrent glioma: results of a clinical phase I/II trial." Clin Cancer 
Res 11(11): 4160-4167. 



 

 

 143 

Yanai, Y., O. Sanou, et al. (2002). "The anti-tumor activities of interferon (IFN)-alpha in 
chronic myelogenous leukaemia (CML)-derived cell lines depends on the IFN-
alpha subtypes." Cancer Lett 185(2): 173-179. 

Yang, L., J. Huang, et al. (2008). "Abrogation of TGFβ Signaling in Mammary 
Carcinomas Recruits Gr-1+CD11b+ Myeloid Cells that Promote Metastasis." 
Cancer Cell 13(1): 23-35. 

Yang, X. D., W. Ai, et al. (2011). "Histamine deficiency promotes inflammation-
associated carcinogenesis through reduced myeloid maturation and 
accumulation of CD11b+Ly6G+ immature myeloid cells." Nat Med 17(1): 87-95. 

Yang, X. D., J. Y. Ma, et al. (2002). "Transport and utilization of arginine and arginine-
containing peptides by rat alveolar macrophages." Pharm Res 19(6): 825-831. 

Yang, Z., C. Stratton, et al. (2008). "Toll-like receptor 3 and geographic atrophy in age-
related macular degeneration." N Engl J Med 359(14): 1456-1463. 

Ying, S. Y. and S. L. Lin (2009). "Intron-mediated RNA interference and microRNA 
biogenesis." Methods Mol Biol 487: 387-413. 

Yoshimura, T., E. A. Robinson, et al. (1989). "Purification and amino acid analysis of 
two human glioma-derived monocyte chemoattractants." J Exp Med 169(4): 
1449-1459. 

Youn, J.-I. and D. I. Gabrilovich (2010). "The biology of myeloid-derived suppressor 
cells: The blessing and the curse of morphological and functional heterogeneity." 
European Journal of Immunology 40(11): 2969-2975. 

Youn, J. I., S. Nagaraj, et al. (2008). "Subsets of myeloid-derived suppressor cells in 
tumor-bearing mice." Journal of Immunology 181(8): 5791-5802. 

Yu, J. S., C. J. Wheeler, et al. (2001). "Vaccination of malignant glioma patients with 
peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell 
infiltration." Cancer Res 61(3): 842-847. 

Zea, A. H., P. C. Rodriguez, et al. (2005). "Arginase-producing myeloid suppressor cells 
in renal cell carcinoma patients: a mechanism of tumor evasion." Cancer Res. 
65(8): 3044-3048. 

Zhang, J. G., J. Eguchi, et al. (2007). "Antigenic profiling of glioma cells to generate 
allogeneic vaccines or dendritic cell-based therapeutics." Clin Cancer Res 13(2 
Pt 1): 566-575. 

Zhao, F., B. Hoechst, et al. (2012). "S100A9 a new marker for monocytic human 
myeloid-derived suppressor cells." Immunology 136(2): 176-183. 

Zhao, H., S. Jin, et al. (2000). "Activation of the transcription factor Oct-1 in response to 
DNA damage." Cancer Res 60(22): 6276-6280. 

Zhu, X., B. A. Fallert-Junecko, et al. (2010). "Poly-ICLC promotes the infiltration of 
effector T cells into intracranial gliomas via induction of CXCL10 in IFN-alpha and 
IFN-gamma dependent manners." Cancer Immunol Immunother 59(9): 1401-
1409. 

Zhu, X., M. Fujita, et al. (2011). "Systemic delivery of neutralizing antibody targeting 
CCL2 for glioma therapy." J Neurooncol 104(1): 83-92. 

Zhu, X., F. Nishimura, et al. (2007). "Toll like receptor-3 ligand poly-ICLC promotes the 
efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in 
murine CNS tumor models." J Transl Med 5: 10. 



 

 

 144 

Zoglmeier, C., H. Bauer, et al. (2011). "CpG blocks immunosuppression by myeloid-
derived suppressor cells in tumor-bearing mice." Clin Cancer Res 17(7): 1765-
1775. 

Zwadlo-Klarwasser, G., M. Vogts, et al. (1998). "Generation and subcellular distribution 
of histamine in human blood monocytes and monocyte subsets." Inflammation 
Research 47(11): 434-439. 

 

 


	TITLE PAGE 
	COMMITTEE MEMBER PAGE

	ABSTRACT

	
TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEGEMENTS
	ABBREVIATIONS
	1.0  INTRODUCTION
	1.1 GLIOBLASTOMA MULTIFORME
	1.1.1 Classification 
	1.1.2 Epidemiology 
	Figure 1: Kaplan-Meier survival curves beyond 12 months by genotype for IL4R SNPs among high-grade gliomas


	1.1.3 Treatment 
	1.1.3.1 Passive Immunotherapy
	(a) Antibodies
	(b)  Coupled Targeted Toxins
	(c)  Adoptive T-cell Therapy

	1.1.4 Active Immunotherapy (Tumor Vaccines)
	(a) T-Cell Epitopes Derived From Glioma-Associated Antigens 
	(i) Peptide-based vaccines targeting glioma-associated antigens
	(ii) Whole glioma cell vaccines  
	(iii)  Dendritic cell (DC) vaccines

	1.1.5 Immunity
	1.1.5.1 Regulatory T-Cells (Treg) 
	1.1.5.2 Macrophages/Microglia


	1.2 MYELOID DERIVED SUPPRESSOR CELLS (MDSCS) 
	1.2.1 MDSCs in Glioma
	1.2.2 Translational Approaches Targeting MDSCs in Gliomas
	1.2.2.1 Direct MDSC Depletion
	1.2.2.2 Promotion of MDSC Maturation 

	1.2.3 Translational Approaches Blocking MDSC-Associated Suppressor Molecules
	1.2.3.1 Arginase inhibitors or arginine supplementation and gliomas
	1.2.3.2 COX-2 inhibitors 
	1.2.3.3 Antihistamines
	1.2.3.4 TGF-β regulation
	1.2.3.5 MDSC attracting chemokines

	1.2.4 Summary 
	Figure 2: Strategies to Block MDSC Development and Function in Gliomas
	Table 1: Summary of Mechanisms to Block MDSC-Mediated Suppression

	1.3 MICRORNA
	1.3.1 MicroRNA Biology 
	1.3.2 MiRNA Processing and Function 
	1.3.3 Previous Findings from my Master’s Degree 


	2.0  THESIS AIMS
	2.1 SPECIFIC AIMS

	3.0  AIM 1 BACKGROUND (MIR-17-92 CLUSTER IN T-CELLS)
	Figure 3: RT-PCR analysis of all miRs in the miR-17-92 cluster

	Figure 4: Down-regulation of miR-17-5p and miR-92 by IL-4 and STAT6
	Figure 5: WST-1 Assay of Th1 and Th2 cultured cells

	Figure 6: Model of miR-17-92 signaling pathway in T-cells


	4.0  AIM 1 MATERIALS AND METHODS (MIR-17-92 CLUSTER IN T-CELLS)
	4.1 REAGENTS
	4.3 SUBCUTANEOUS TUMOR MODEL
	4.4 T-CELLS FROM HEALTHY DONORS AND PATIENTS WITH GBM
	4.5 QUANTITATIVE RT-PCR
	4.6 ASSAYS USING JURKAT LYMPHOMA CELLS TRANSDUCED WITH MIR-17-92
	4.7 STATISTICAL METHODS  

	5.0  AIM 1 RESULTS (MIR-17-92 CLUSTER IN T-CELLS)
	5.1 SUPPRESSION OF MIR-17-92 MAY OCCUR IN CANCER-BEARING HOSTS 
	Figure 7: Tumor bearing conditions down-regulate miR-17-5p expression in T-cells


	5.2 T-CELLS DERIVED FROM MIR-17-92 TRANSGENIC ANIMALS DISPLAY AN ENHANCED TYPE-1 PHENOTYPE
	Figure 8: T-cells from miR-17-92 transgenic mice demonstrate enhanced Th1 phenotype


	5.3 ECTOPIC EXPRESSION OF MIR-17-92 PROMOTES IL-2 PRODUCTION AND RESISTANCE AGAINST ACTIVATION-INDUCED CELL DEATH (AICD) IN JURKAT CELLS
	Figure 9: Ectopic expression of miR-17-92 cluster members in the human Jurkat T-cell line confers increased IL-2 production and resistance to AICD



	6.0  AIM 1 CONCLUSION (MIR-17-92 CLUSTER IN T-CELLS)
	7.0  AIM 2 BACKGROUND (IL-4RΑ ON MDSCS) 
	8.0  AIM 2 MATERIALS AND METHODS (IL-4RΑ ON MDSCS)
	8.1 ANIMALS
	8.2 FLOW CYTOMETRY
	8.3 BONE MARROW (BM)-MDSC GENERATION
	8.4 ARGINASE ACTIVITY ASSAY
	8.5 MDSC T-CELL INHIBITION ASSAY
	8.6 ANTIBODY-MEDIATED IMMUNE CELL DEPLETION ASSAY
	8.7 REAL-TIME PCR
	8.8 INTRACEREBROVENTRICULAR DNA INJECTION FOR SLEEPING BEAUTY-SPONTANEOUS GLIOMA INDUCTION
	8.9 BONE MARROW CHIMERA

	9.0  AIM 2 RESULTS (IL-4RΑ ON MDSCS)
	9.1 IL4RΑ-/- MICE EXHIBIT DELAYED GROWTH OF SB DE NOVO GLIOMAS COMPARED WITH WT MICE. 
	Figure 10: IL4Rα in glioma development


	9.2 IL4RΑ-/- MICE EXHIBIT DELAYED GROWTH OF SB DE NOVO GLIOMAS COMPARED WITH WT MICE IN THE ABSENCE OF CD4+ AND CD8+ T-CELLS.
	Figure 11: Effects of IL-4Rα on glioma development in the absence of T-cells


	9.3 IL4RΑ-/- TUMOR TISSUE AND TUMOR-DERIVED MDSCS HAVE REDUCED EXPRESSION OF INHIBITORY MOLECULES COMPARED TO WT TUMOR TISSUE. 
	Figure 12: Effect of IL-4Rα on tumor infiltrating MDSCs and the tumor microenvironment


	9.4 MDSC DEPLETION PROLONGS SURVIVAL OF MICE CHALLENGED WITH SB GLIOMAS.   
	Figure 13: Depletion of MDSCs in SB tumor bearing animals


	9.5 BONE MARROW CHIMERIC MICE REVEAL THAT IL4RΑ ON HEMATEPOETIC CELLS IS CRITICAL FOR MDSC ACCUMALATION IN THE BRAIN
	Figure 14: A critical role of IL-4Rα on BM cells in the immunological environment of glioma


	9.6 IL-13 BUT NOT IL-4 PROMOTES BONE MARROW (BM)-CD11B+GR-1+ CELL GROWTH AND FUNCTION
	Figure 15: Effects of IL-13 on MDSC generation and phenotype


	9.7 IL4RΑ-/- BM-DERIVED CD11B+GR-1+ CELLS HAVE REDUCED ABILITY TO SUPPRESS T-CELLS BOTH IN VIVO AND IN VITRO.
	Figure 16: Function of Il4ra-/- MDSCs. MDSCs were induced from BM cells derived from WT-Balb/c or Il4ra-/- mice


	9.8 GM-CSF UP-REGULATES IL-4RΑ ON BM CELLS AND IS OVEREXPRESSED IN GLIOMAS. 
	Figure 17: GM-CSF promotes IL4Rα expression on MDSCs and is up-regulated in tumor settings


	9.9 HUMAN GLIOMA INFILTRATING CD14+HLA-DR- MONOCYTES EXPRESS IL-4RΑ ASSOCIATED WITH SUPPRESSOR FUNCTION. 
	Figure 18: IL-4Rα expression on human glioma infiltrating monocyte
	Figure 19: IL-4Rα is associated with increased ARG1 and COX2 expression on human glioma patient MDSCs



	10.0  AIM 2 CONCLUSION (IL-4RΑ ON MDSCS)
	Figure 20: Proposed mechanism of IL-4Rα mediated inhibition of anti-tumor immunity. 

	11.0  AIM 3 BACKGROUND (SNP IN IFNA8)
	Figure 21: Association of SNPs in IFN-related genes and the survival of patients with WHO grade 2 to 3 gliomas


	12.0  AIM 3 MATERIALS AND METHODS (SNP IN IFNA8)
	12.1 REAGENTS
	12.2 CELL CULTURE
	12.3  DNA TRANSFECTION 
	12.4 DUAL-LUCIFERASE ASSAY
	12.5 ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA)
	12.6 STATISTICAL ANALYSES

	13.0  AIM 3 RESULTS (SNP IN IFNA8)
	13.1 THE A-GENOTYPE LEADS TO SUPERIOR PROMOTER ACTIVITY COMPARED WITH THE C-GENOTYPE
	Figure 22: IFNA8 promoter activity with the A-genotype at -335 is superior to that with the C-genotype


	13.2 THE A-GENOTYPE IFN-A8 PROMOTER SPECIFICALLY BINDS MORE NUCLEAR PROTEINS THAN THE C-GENOTYPE.   
	Figure 23: The DNA probe with the A-genotype in the IFNA8 promoter demonstrates higher binding to THP-1 nuclear lysate than one with the C-genotype by EMSA


	13.3 TRANSCRIPTION FACTOR OCT-1 BINDS AND ENHANCES THE PROMOTER ACTIVITY OF THE IFNA8 A-GENOTYPE 
	Figure 24: The A-genotype demonstrates superior binding to Oct-1 compared with the C-genotype



	14.0  AIM 3 CONCLUSION (SNP IN IFNA8)
	Figure 25: Schematic, demonstrating the Oct-1 binding ability to the IFNA8 promoter region containing the rs12553612 SNP


	15.0  OVERALL DISCUSSION
	16.0  FUTURE DIRECTIONS 
	16.1 EVALUATE THE MOLECULAR MECHANISM FOR IL-4RΑ SNPS. 
	16.1.1 Transfection Approach to Evaluate IL-4Rα SNPs.
	Figure 26: Expression of recombinant IL4RA SNP variants in HEK293 cells

	16.1.2 Describe the Function of IL4RA Polymorphisms in Healthy Donor and Glioma Patient PBMCs 
	Figure 27: Single Nucleotide Polymorphism identification in human samples


	16.2 EVALUATE TUMOR GROWTH IN MIR-17-92 TG/TG MICE
	16.3 CORRELATION OF PATIENT DATA WITH FINDINGS

	BIBLIOGRAPHY



