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Luminescent lanthanide complexes have great potential for practical applications such as 

fluoroimmunoassay, polymer-based optical signal amplifiers, active materials in lasers and bio-

imaging. Interest in the lanthanide cations as luminescent probes stems from their unique 

photophysical properties such as sharp emission bands, photostability and long luminescence 

lifetimes. In order to generate a sufficient number of photons allowing sensitive detection, 

lanthanide cations must be sensitized with suitable antennae that possess the appropriate 

electronic structure and that can sufficiently protect the cation from high energy vibrations to 

prevent the non-radiative deactivation of the lanthanide luminescence. In this thesis, it has been 

demonstrated that a series of salophen derivatives can be used as an efficient sensitizer for near-

infrared emitting lanthanide cations, and derivatives of naphthalimide-attached polyamidoamine 

(PAMAM) dendrimers can be used as suitable ligands for visible and near infrared emitting 

lanthanide cations. These systems fulfill the requirements for lanthanide luminescence by 

forming stable coordination with lanthanide cations, protecting lanthanide cations from non-

radiative deactivation and having suitable energy levels for efficient energy transfer to specific 

lanthanide cations. By introducing functional groups on the surface of dendrimer complex, the 

physical and photophysical properties of the complex can be controlled. It has been demonstrated 

that the versatility of dendrimer-lanthanide complexes as backbones for a broad variety of 

applications. 
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1.0  INTRODUCTION TO LUMINESCENT LANTHANIDE COMPLEXES 

1.1 LANTHANIDE LUMINESCENCE 

Lanthanides (Ln) are the elements located in the first row of the f-block of the periodic table, 

ranging from cerium (Z = 58) to lutetium (Z = 71). The lanthanides are usually present as cations 

with (+3) charge. Though f orbitals are higher in energy than 5s and 5p orbitals, they are 

spatially shielded by the outer 5s and 5p orbitals. This special electronic configuration gives 

them unique photophysical properties.1 The f→f transitions are Laporte or parity forbidden, 

which leads to low molar absorption coefficients (in the order of 10 cm-1mol-1) and long 

luminescence lifetimes up to several ms. Unlike the d block elements, the 4f orbitals of the 

lanthanides are almost not involved in bonding since they are shielded by the 5s and 5p orbitals. 

Thus the emission bands resulting from lanthanide cations appear as relatively sharp atom-like 

bands located at fixed wavelengths. The energy levels of the Ln3+ ions are shown in Figure 1.1. 

Luminescent lanthanides can have emission bands ranging from UV to NIR regions, 

controlled by the nature of lanthanide cations. As shown in Figure 1.2, Nd3+, Er3+, Ho3+, Tm3+ 

and Yb3+ have NIR emission, while Tb3+ and Dy3+ have visible emission. The emission bands 

from Sm3+ and Eu3+ are located in both of visible and NIR regions. Since interactions between 

lanthanide cations and ligands are predominately electrostatic,2, 3 the emission of lanthanide 

complexes appear as atom-like, sharp emission bands,4, 5 and the wavelength position of these 
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bands do not vary significantly with change of ligands or experimental condition such as 

temperature, pressure, pH or biological environment. The bandwidths are significantly narrower 

than those of organic fluorophores6 and luminescent semiconductor nanocrystals (quantum 

dots)7-10 and carbon nanotubes.11, 12 As these emission bands do not overlap significantly, it is 

possible to monitor the emission of several different lanthanide cations during the same 

experiment for multiplex detection. 

Since the energy is absorbed by a chromophore (or “antenna”, see below) and the 

emission originates from the lanthanide cations, there is a large energy gap between the 

absorption and emission bands of lanthanide complexes, minimizing luminescence re-absorption 

and corresponding quantification artifacts. Due to their electronic properties, luminescence 

signals of the lanthanide cations can be spectrally discriminated from other signals, allowing 

enhanced detection sensitivity in complex mixtures such as biological media. 

Most lanthanide compounds are photostable.13 Trivalent electron-deficient lanthanide 

cations stabilize the excited states of bound organic sensitizers, preventing irreversible 

photoreactions when the complex is irradiated. Therefore, protection from light is not required, 

yielding a long shelf life and easy manipulation in ambient laboratory conditions. Most 

importantly, this photostability allows for long exposure times and repeated experiments. 

The luminescence lifetimes of lanthanide cations are in the range of micro- to 

milliseconds,14, 15 which is much longer than the pico- to nanosecond lifetimes that are typical for 

fluorescent organic molecules and proteins. The long luminescence lifetimes allow simple and 

accurate discrimination of the lanthanide complex signal from autofluorescence (background 

fluorescence) through time-resolved measurements, providing enhanced detection sensitivity.16-18 
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Figure 1.1. Energy levels of the trivalent lanthanide cations19 
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Figure 1.1. (continued) Energy levels of the trivalent lanthanide cations 
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Figure 1.2. Normalized emission spectra of luminescent lanthanide complexes in solution, illustrating the sharp 

emission bands and minimal overlap of lanthanide luminescence.4, 5 

Since f→f transitions are forbidden by the Laporte rule, free lanthanide cations have low 

extinction coefficients and can therefore not be excited directly with a good efficiency.2, 3 As a 

result, the number of emitted photons will be small which will result in low detection sensitivity. 

A strategy to overcome this limitation that has been initially disclosed by Weissman in 194220 

consist to locate a sensitizer at a controlled distance to the lanthanide cation. This sensitizer must 

fulfill the double function of absorbing as many photons as possible and to convert the resulting 

energy to the lanthanide metal ion. This combination of processes is known under the name of 

“antenna effect” 21 (Figure 1.3).  

 

Figure 1.3. Schematic diagram of photosensitization of lanthanide ion by organic ligand. 
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A Jablonski diagram is commonly used to illustrate the energy transfer path between an 

organic ligand and the lanthanide ion (Figure 1.4). A transition from the ground singlet state, S0 

to the excited singlet state, S1 is followed by intersystem crossing (ISC) which results in 

population of the antenna’s triplet state, T1. From the triplet excited antenna, the energy migrates 

to the lanthanide ion. There are number of competing pathways from the excited singlet and 

triplet states, such as fluorescence (S1→S0), phosphorescence (T1→S0) and non-radiative 

deactivation. 

 

Figure 1.4. Jablonski diagram for sensitized Ln3+ emission (kflu, rate of fluorescence; kISC, intersystem crossing rate; 

kphos, phosphorescence rate; kq, triplet quenching rate; knr, non-adiative decay rate; kET, energy transfer rate; and 

kLn,rad, radiative decay rate.). 

Three possible mechanisms have been proposed for the energy transfer process from the 

donating electronic states of the sensitizer to the accepting energy levels of the metal center. The 

Förster mechanism is a dipole-dipole type of interaction between the donor and acceptor. This 

mechanism requires spectral overlap between absorption of the acceptor and emission of the 

donor. This mechanism takes place through space, the efficiency is dependent on r-6, where r is 

the distance between the donor and acceptor.22 The Dexter mechanism is a concerted electron-



 7 

 

exchange mechanism. It requires electron exchange between the donor and acceptor, therefore 

orbital overlap between the donor and acceptor is necessary. The efficiency is proportional to e–r, 

where r is the distance between the donor and acceptor.23 Electron transfer mechanism is a 

process which dependent upon orbital overlap and the oxidation and reduction potentials of the 

donor and metal ion respectively. It is limited to NIR emitting Yb3+ that has sufficiently low 

potential to be reduced (E0(YbIII/YbII) = –1.05 V).19, 24-29 Through this mechanism, even non-

fluorescent electron rich chromophores can still sensitize Yb3+ emission.27 

The excited state of the lanthanide ion can be deactivated by the overtones of high 

frequency vibrations of C-H, N-H and O-H.15 The efficiency of this quenching process is 

dependent on the energy gap between the ground state and the excited state of the lanthanide ion. 

This effect is much more pronounced in NIR-emitting lanthanide ions, because of their smaller 

energy gap (Figure 1.5). 

 

Figure 1.5. Radiative transition energies of Yb3+, Nd3+ and Er3+ and the vibrational energies of common bonds 

found in organic systems. 
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Considering factors that affect the lanthanide luminescence, ligands must fulfill the 

following requirements: (1) The ligands have to form a stable complex with lanthanide ions, 

which typically have a high coordination number of 8 to 10 in solution. (2) The energy levels of 

the singlet state and the triplet state must match the accepting energy level of the lanthanide ions 

to achieve a good energy transfer. (3) The ligand has to provide good protection for lanthanide 

ions from non-radiative deactivation through solvent molecule vibrations. In addition, a ligand 

that is easily modified can allow the control of chemical or photophysical properties of the 

luminescent lanthanide complex. 

1.2 NEAR-INFRARED LUMINESCENT LANTHANIDE COMPLEXES AND THEIR 

APPLICATION 

In electromagnetic radiation, near-infrared (NIR) region ranges approximately from 650 nm to 

1500 nm. There are constantly growing interests for NIR luminescence in the last decade 

because of their potentials for bioanalytical applications and biological imaging as well as for 

technological applications. The use of NIR luminescence is a promising approach for biological 

imaging and bioanalytical applications for three main reasons: (1) NIR photons have less 

interference with biological materials as they are mostly not absorbed by biological tissues 

(Figure 1.6).30 Therefore, photons can penetrate deeply into tissues allowing non-invasive 

detection of biological molecules or events. (2) Since the autofluorescence arising from 

biological tissue is mainly located in the violet–blue region,31 imaging in the NIR region also 

provides the advantage of improved detection sensitivity due to enhanced signal to noise ratio as 
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the background emission (“autofluorescence”) of biological material in the NIR is almost 

inexistent (Figure 1.7).30 (3) An additional advantage of NIR photons for biological imaging is 

the limited scattering of such photons in comparison to visible photons that result in improved 

image resolution. As the intensity of scattered light is proportional to 1/SP (SP = scattering 

power), the longer wavelength of NIR light has reduced scattering, which results in the higher 

resolution of the obtained image.32 

 

Figure 1.6. Absorption spectra of skin and whole blood. 

 

Figure 1.7. Fluorescence spectra of physical tissue model. 
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Besides the biological imaging, NIR luminescence is useful for NIR organic light-

emitting diode technology,33, 34 telecommunication where the electronic structure of lanthanide 

ions such as Er3+, Nd3+ and Ho3+ can be used as the active material for optical amplification of 

NIR signal,35, 36 and encrypted tags (“barcodes”) to recognize the identity of chemical or 

biological entity or of an object.37 

The field of development of sensitizers for NIR emitting lanthanide cations is currently 

booming. A large number of examples can be found in the literature. Several sensitizers or 

antennae have been described for the sensitization of NIR emitting lanthanide cations.2, 5, 28, 29, 38-

77 Nevertheless, the number of antennae for NIR emitting lanthanides is still limited and 

deserved more investigations as only a few lanthanide compounds match the requirements for 

practical applications in biological media. One of the strongest limitations for applications 

remains the ability to emit a sufficiently large number of photons per unit volume that will allow 

obtaining good detection sensitivity. Typically, the actual complexes formed with NIR emitting 

lanthanide cations have low quantum yields in comparison to visible emitting lanthanide 

compounds limiting the number of emitted photons per discrete molecule. 
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2.0  STRUCTURAL AND NEAR INFRARED LUMINESCENCE PROPERTIES OF 

SALOPHEN-LANTHANIDE COMPLEXES 

Parts of the work presented here have been completed in collaboration with Paul D. Badger 

(Stéphane Petoud Research Group, Department of Chemistry, University of Pittsburgh) and 

Steve J. Geib (Department of Chemistry, University of Pittsburgh). A portion of the results 

presented here have been published in Helvetica Chimica Acta, Vol. 92, No. 11, p 2313, 2009: 

“Synthesis and Solid-State, Solution, and Luminescence Properties of Near-Infrared-Emitting 

Neodymium(3+) Complexes Formed with Ligands Derived from Salophen.”78 

2.1 INTRODUCTION 

There is a continuously growing interest for the properties of near infrared (NIR) luminescent 

lanthanide complexes.2, 5, 28, 29, 38-77 The number of antennae for NIR emitting lanthanides is still 

moderate and it is interesting to test additional systems in order to broaden our understanding of 

the relationship between electronic structure of the antenna and luminescence properties of the 

resulting complexes. 
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In this work, we have investigated a system based on salophen to which different 

substituents can be rapidly attached in order to evaluate their effect on the solution behavior, 

solid state structure and luminescence properties of these complexes. 

Metal complexes formed with Schiff ligands have occupied an important role in 

coordination chemistry for over half a century.79 Salen, ethylenediamine-bridged 

salicylaldehydes and salophen, o-phenylenediamine-bridged salicylaldehydes have been 

extensively employed because of their stability resulting from the conjugated structure, the pre-

organized tetradentate coordination geometry, the simplicity of synthesis and the facile 

modification of their structures. Salophen derivatives can act as good sensitizer-ligands for 

luminescent lanthanide cations, because this family of ligands can fulfill the specific 

requirements for lanthanide luminescence. The planar and rigid ligands have tetradentate 

coordination geometry which can be hypothesized to lead to the formation of ML2 complexes 

with lanthanide ions to fulfill their coordination number requirements. The energy of the triplet 

state of the unsubstituted salophen chromophoric ligand has been reported to be located at 

17,510 cm-1.80 This energy is suitable for a rapid and irreversible intramolecular energy transfer 

to NIR-emitting lanthanide ions such as Nd3+ that has one main accepting level located at 11,300 

cm-1. Another advantage of the salophen moiety is the easy and versatile modification of its 

structure. A large number of derived ligands possessing different substituents can be rapidly 

synthesized in few steps. A family of ligands possessing a variety of substituents is important for 

the systematic study and control of the photophysical properties of lanthanide complexes. 
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2.2 EXPERIMENTAL 

2.2.1 Reagents 

All reagents were used as received, unless otherwise stated. 5-Bromosalicylic acid, 4-methyl-1,2-

phenylenediamine and paraformaldehyde were purchased from Acros Organics. 5-

Bromosalicylaldehyde, 4,5-dimethyl-1,2-phenylenediamine, hexamethylenetetramine, 

magnesium sulfate and sodium bromate were purchased from Aldrich. 3,5-

Dibromosalicylaldehyde and trifluoroacetic acid were purchased from Alfa Aesar. 2,4-

Dihydroxybenzaldehyde was purchased from Avocado Research Chemiclas Ltd. 1,2-

Phenylenediamine was purchased from Eastman. CH2Cl2, CH3CN, ethyl acetate, MeOH, THF 

and Na2CO3 were purchased from EMD Chemicals Inc. Et3N was purchased from Fisher 

Scientific. Benzyltrimethylammonium chloride was purchased from Fluka. Acetic acid, DMSO, 

Et2O, HCl, hexanes, NaOH and MgSO4 were purchased from Mallinckordt Baker, Inc. 

Salicylaldehyde was purchased from Matheson. Absolute EtOH was purchased from Pharmco 

Products, Inc. 2-Bromophenol was purchased from TCI. Nd(OTf)3·6H2O and Yb(OTf)3·6H2O 

were purchased from Strem Chemicals. All deuterated NMR solvents were purchased from 

Cambridge Isotope Labs and used as received. 

2.2.2 Instrumental Information 

Melting points were measured on a Fisher-Johns melting point apparatus and were uncorrected. 

Infrared spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR. Polystyrene film was 
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used as the external standard (1601 cm-1 peak). Elemental analyses were performed by Atlantic 

Microlab, Inc. 1H-NMR spectra were recorded on a Bruker DPX-300 at 300 MHz. EI-MS and 

ESI-MS were measured on a Micromass Autospec and Agilent HP 1100 series LC-MSD 

respectively. Absorption spectra were recorded on a PerkinElmer Lamda 9 spectrophotometer. 

Metal cation luminescence emission and excitation spectra were measured using a modified 

Jobin Yvon-Spex Fluorolog-322 spectrofluorometer equipped for both room temperature (RT) 

and 77 K measurements. Luminescence and excitation spectra were corrected for the 

instrumental function. Metal cation luminescence quantum yield were measured using the 4F3/2 

→ 4I11/2 transition of a K[Nd(tropolone)4] previously reported (Φ = 2.110–3 in DMSO) as 

reference.5 The use of a Nd3+ complex allows for a simple method of cross calibrating the visible 

detector with the NIR detector of the Fluorolog-322. The quantum yields were calculated using 

the following equation: 
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where subscript r stands for the reference and x for the sample; A is the absorbance at the 

excitation wavelength, I is the intensity of the excitation light at the same wavelength, η is the 

refractive index (η = 1.479 in DMSO), and D is the measured integrated luminescence intensity. 

The luminescence lifetime measurements were performed by excitation of solutions in 1 

cm quartz cells using a nitrogen laser (Oriel model 79110, wavelength 337.1 nm, pulse width at 

half-height 15 ns, 5-30 Hz repetition rate). Emission from the sample was collected at a right 

angle to the excitation beam by a 3" plano-convex lens. Emission wavelengths were selected by 

means of quartz filters. The signal was monitored by a cooled photomultiplier (Hamamatsu 

R316) coupled to a 500 MHz bandpass digital oscilloscope (Tektronix TDS 754D). The signals 
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(15,000 points each trace) from at least 500 flashes were collected and averaged. Background 

signals were similarly collected and subtracted from sample signals. Lifetimes are averages of at 

least three independent determinations. Data were fitted with exponential decay curves by 

OriginPro (V7 SP4) data analysis and linefitting software. Ligand-centered triplet state lifetimes 

were performed by excitation of solid samples in a quartz tube at 77 K using the nitrogen laser 

described previously. Emission from the samples was collected at a right angle to the excitation 

beam, and the emission wavelengths were selected by means of a Spex FL1005 double 

monochromator. The signal was monitored by a Hamamatsu R928 photomultiplier coupled to a 

500 MHz bandpass digital oscilloscope (Tektronics TDS 620B). The signals (15,000 points each 

trace) from at least 500 flashes were collected and averaged. Background signals were similarly 

collected and subtracted from sample signals. 

Crystals suitable for X-ray crystallographic study were coated with Fluorolube®then 

mounted on a glass fiber and coated with epoxy cement. X-ray data were collected on a Bruker 

Apex diffractometer using graphite monochromatized Mo Kα radiation (λ = 0.71073 Å). Data 

collection was controlled using the Bruker SMART program, and the data processing was done 

with the SHELXTL program package,81 and the graphics were done by using Ortep-3,82 Mercury 

1.2.183 and Ortex.84 All hydrogen atoms were calculated and placed in idealized positions (dC-H
 
= 

0.96 Å). The diffraction studies were carried out by Dr. Steven Geib, Department of Chemistry, 

University of Pittsburgh. 
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2.2.3 Synthesis of Ligands and Complexes 

N,N’-disalicylidene-4-methyl-1,2-phenylenediamine (2) was synthesized as follows: 1.01 g (8.26 

mmol) of 4-methyl-1,2-phenylenediamine were added to a solution of 2.02 g (16.5 mmol) of 

salicylaldehyde in 20 mL EtOH. The mixture was heated and sonicated for 20 min. A yellow 

precipitate formed. The mixture was filtered, washed with hexanes and dried under vacuum (1.53 

g, 56%). mp: 117–120 oC. IR (selected absorbances only, KBr, cm–1): 1617(C=N), 1278(Ph-O). 

1H-NMR (300 MHz, CD3CN, ): 13.18 (s, 1H, –OH), 13.10 (s, 1H, –OH), 8.77 (s, 1H, –N=C–

H), 8.75 (s, 1H, –N=C–H), 7.52–7.49 (m, 2H, Ar H), 7.38 (m, 2H, Ar H), 7.27 (m, 1H, Ar H), 

7.22–7.20 (m, 2H, Ar H), 7.00–6.94 (m, 4H, Ar H), 2.40 (s, 3H, –CH3). 

N,N’-disalicylidene-4,5-dimethyl-1,2-phenylenediamine (3) was synthesized as follows: 

1.14 g (8.40 mmol) of 4,5-dimethyl-1,2-phenylenediamine were added to a solution of 2.05 g 

(16.8 mmol) of salicylaldehyde in 20 mL EtOH. The mixture was heated and sonicated for 15 

min. A yellow precipitate formed. The mixture was filtered, washed with hexanes and dried 

under vacuum (2.54 g, 88%). mp: 144–146 oC. IR (selected absorbances only, KBr, cm–1): 

1617(C=N), 1278(Ph-O). 1H-NMR (300 MHz, CD3CN, ): 13.22 (s, 2H, –OH), 8.76 (s, 2H, –

N=C–H), 7.50 (dd, J = 1.6 Hz, 7.6 Hz, 2H, Ar H), 7.47–7.36 (m, 2H, Ar H), 7.19 (s, 2H, Ar H), 

6.99–6.92 (m, 4H, Ar H), 2.32 (s, 6H, –CH3). 

N,N’-bis(5-bromosalicylidene)-1,2-phenylenediamine (4) was synthesized as follows: 

0.554 g (5.12 mmol) of 1,2-phenylenediamine were added to a solution of 2.06 g (10.3 mmol) of 

5-bromosalicylaldehyde in 30 mL EtOH. The mixture was heated and sonicated for 20 min. A 

yellow precipitate formed. The mixture was filtered, washed with hexanes and dried under 

vacuum (0.813 g, 33%). mp: 206–212 oC. IR (selected absorbances only, KBr, cm–1): 
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1611(C=N), 1276(Ph-O). 1H-NMR (300 MHz, CD3CN, ): 8.91 (s, 2H, –N=C–H), 7.88 (d, J = 

2.5 Hz, 2H, Ar H), 7.54 (dd, J = 2.6 Hz, J = 8.9 Hz, 2H, Ar H), 7.45–7.43 (m, 4H, Ar H), 6.93 

(d, J = 8.8 Hz, 2H, Ar H). 

N,N’-bis(5-bromosalicylidene)-4-methyl-1,2-phenylenediamine (5) was synthesized as 

follows: 0.906 g (7.42 mmol) of 4-methyl-1,2-phenylenediamine were added to a solution of 

3.00 g (14.9 mmol) of 5-bromosalicylaldehyde in 30 mL EtOH. The mixture was heated and 

sonicated for 30 min. A yellow precipitate formed. The mixture was filtered, washed with a 

small amount of EtOH and dried under vacuum (1.01 g, 38%). EI-MS: m/z [M+] 488 (calcd. 

487.96 for C21H16Br2N2O2). 
1H-NMR (300 MHz, DMSO-d6, ): 8.91 (s, 1H, –N=C–H), 8.90 (s, 

1H, –N=C–H), 7.89–7.86 (m, 2H, Ar H), 7.56–7.50 (m, 2H, Ar H), 7.38 (m, 1H, Ar H), 7.27–

7.23 (m, 2H, Ar H), 6.95–6.91 (m, 2H, Ar), 2.38 (s, 3H, –CH3). 

N,N’-bis(5-bromosalicylidene)-4,5-dimethyl-1,2-phenylenediamine (6) was synthesized 

as follows: 0.160 g (1.18 mmol) of 4,5-dimethyl-1,2-phenylenediamine were dissolved in 4 mL 

of EtOH and added to a solution of 0.486 g (2.42 mmol) of 5-bromosalicylaldehyde in 7 mL 

EtOH. The mixture was refluxed overnight. An orange-yellow precipitate formed. The mixture 

was filtered, washed with EtOH and Et2O and dried under vacuum (0.506 g, 85%). mp: 241–245 

oC. IR (KBr, cm–1): 1616(C=N), 1277(Ph-O). 1H-NMR (300 MHz, DMSO-d6, ): 8.90 (s, 2H, –

N=C–H), 7.86 (d, J = 2.5 Hz, 2H, Ar H), 7.52 (dd, J = 2.5 Hz, J = 8.8 Hz, 2H, Ar H), 7.28 (s, 

2H, Ar H), 6.92 (d, J = 8.8 Hz, 2H, Ar H), 2.29 (s, 6H, –CH3). 

3-Bromosalicylaldehyde was synthesized by a reported method85 with slight modification 

as follows: 1.60 mL (2.39 g; 13.8 mmol) of 2-bromophenol were added to a solution of 2.38 g 

(25.0 mmol) of MgCl2, 2.61 g (86.8 mmol) of paraformaldehyde and 5.00 mL (3.63 g; 35.9 

mmol) of Et3N in 50 mL CH3CN. The reaction mixture was refluxed for 2.5 days and then 
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allowed to cool. The solution was diluted with 80 mL of 1 M HCl and extracted with Et2O 

(350mL). The organic layer was washed with 50 mL of brine, dried over MgSO4, filtered and 

concentrated under reduced pressure. The crude product was purified by column chromatography 

over silica gel eluting 20% EtOAc in hexanes to give 3-bromosalicylaldehyde (0.961 g, 35%) EI-

MS: m/z [M+] 200 (calcd. 199.95 for C7H5BrO2). 
1H-NMR (300 MHz, CDCl3, ): 11.62 (s, 1H, –

OH), 9.88 (s, 1H, –C(=O)–H), 7.79 (dd, J = 1.5 Hz, J = 7.8 Hz, 1H, Ar H), 7.55 (dd, J = 1.4 Hz, 

J = 7.7 Hz, 1H, Ar H), 6.96 (t, J = 7.7 Hz, 1H, Ar H). 

N,N’-bis(3-bromosalicylidene)-1,2-phenylenediamine (7) was synthesized as follows: 

0.0535 g (0.495 mmol) of 1,2-phenylenediamine were added to a solution of 0.209 g (1.04 

mmol) of 3-bromosalicylaldehyde in 5 mL EtOH. The mixture was then refluxed for 11 h. An 

orange precipitate formed. The mixture was filtered, washed with Et2O and dried under vacuum 

(0.137 g, 58%). EI-MS: m/z [M+] 474 (calcd. 473.94 for C20H14Br2N2O2). 
1H-NMR (300 MHz, 

CD3CN, ): 8.76 (s, 2H, –N=C–H), 7.68 (dd, J = 1.5 Hz, J = 7.9 Hz, 2H, Ar H), 7.55 (dd, J = 1.5 

Hz, J = 7.9 Hz, 2H, Ar H), 7.46–7.35 (m, 2H, Ar H), 6.92 (t, J = 7.8 Hz, 2H, Ar H). 

N,N’-bis(3-bromosalicylidene)-4-methyl-1,2-phenylenediamine (8) was synthesized as 

follows: 0.0604 g (0.494 mmol) of 4-methyl-1,2-phenylenediamine were added to a solution of 

0.205 g (1.02 mmol) of 3-bromosalicylaldehyde in 5 mL EtOH. The mixture refluxed for 11 h. 

An orange precipitate formed. The mixture was filtered, washed with Et2O and dried under 

vacuum (0.0947 g, 39%). EI-MS: m/z [MH+] 489 (calcd. 487.96 for C21H16Br2N2O2). 
1H-NMR 

(300 MHz, CD3CN, ): 8.75 (s, 1H, –N=C–H), 8.74 (s, 1H, –N=C–H),7.68–7.65 (m, 2H, Ar H), 

7.55–7.52 (m 2H, Ar H), 7.31–7.23 (m, 2H, Ar H), 6.92 (t, J = 7.8 Hz, 1H, Ar H), 6.91 (t, J = 7.8 

Hz, 1H, Ar H), 2.41 (s, 3H, –CH3). 
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N,N’-bis(3-bromosalicylidene)-4,5-dimethyl-1,2-phenylenediamine (9) was synthesized 

as follows: 0.0654 g (0.480 mmol) of 4,5-dimethyl-1,2-phenylenediamine were added to a 

solution of 0.197 g (0.981 mmol) of 3,5-dibromosalicylaldehyde in 5 mL EtOH. The mixture 

refluxed for 12 h. An orange precipitate formed. The mixture was filtered, washed with Et2O and 

dried under vacuum (0.124 g, 51%). EI-MS: m/z [M+] 499.974113 (calcd. 499.973500 for 

C22H18Br2N2O2). 
1H-NMR (300 MHz, CD3CN, ): 8.75 (s, 2H, –N=C–H), 7.67 (dd, J = 1.6, J = 

7.9, 2H, Ar H), 7.53 (dd, J = 1.5, J = 7.7, 2H, Ar H), 7.21 (s, 1H, Ar H), 6.91 (t, J = 7.8, 2H, Ar 

H), 2.33 (s, 6H, –CH3). 

N,N’-bis(3,5-dibromosalicylidene)-1,2-phenylenediamine (10) was synthesized as 

follows: 0.300 g (2.78 mmol) of 1,2-phenylenediamine were added to a solution of 1.56 g (5.57 

mmol) of 3,5-dibromosalicylaldehyde in 20 mL EtOH. The mixture was refluxed for 2 h. An 

orange precipitate formed. The mixture was filtered, washed with Et2O and dried under vacuum 

(1.66 g, 94%). mp: 213–216 oC. IR (KBr, cm–1): 1612(C=N), 1270(Ph-O). ESI-MS: m/z [MH+] 

632.8 (calcd. 631.76 for C20H12Br4N2O2). 
1H-NMR (300 MHz, CDCl3, ): 8.53 (s, 2H, –N=C–

H), 7.77 (d, J = 2.3 Hz, 2H, Ar H), 7.49 (d, J = 2.3 Hz, 2H, Ar H), 7.41 (dd, J = 3.4 Hz, J = 5.9 

Hz,2H, Ar H), 7.23 (dd, J = 3.4 Hz, J = 5.9 Hz,2H, Ar H). 

N,N’-bis(3,5-dibromosalicylidene)-4-methyl-1,2-phenylenediamine (11) was synthesized 

as follows: 0.213 g (1.74 mmol) of 4-methyl-1,2-phenylenediamine were added to a solution of 

0.985 g (3.52 mmol) of 3,5-dibromosalicylaldehyde in 15 mL EtOH. The mixture was heated 

and sonicated for 30 min. An orange precipitate formed. The mixture was filtered, washed with 

hexanes and dried under vacuum (0.944 g, 84%). EI-MS: m/z [M+] 646 (calcd. 635.96 for 

C21H14Br4N2O2). 
1H-NMR (300 MHz, DMSO-d6, ): 8.97 (s, 2H, –N=C–H), 7.93–7.92 (m, 4H, 

Ar H), 7.47–7.44 (m, 1H, Ar H) 7.36 (s, 1H, Ar H), 7.31 (m, 1H, Ar H), 2.40 (s, 3H, –CH3). 
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N,N’-bis(3,5-bromosalicylidene)-4,5-dimethyl-1,2-phenylenediamine (12) was 

synthesized as follows: 0.242 g (1.78 mmol) of 4,5-dimethyl-1,2-phenylenediamine were added 

to a solution of 1.02 g (3.66 mmol) of 3,5-dibromosalicylaldehyde in 15 mL EtOH. The mixture 

was heated and sonicated for 30 min. An orange precipitate formed. The mixture was filtered, 

washed with hexanes and dried under vacuum (1.02 g, 87%). EI-MS: m/z [M+] 660 (calcd. 

659.79 for C22H16Br4N2O2). 
1H-NMR (300 MHz, DMSO-d6, ): 8.97 (s, 2H, –N=C–H), 7.93–

7.91 (m, 4H, Ar H), 7.36 (s, 2H, Ar H), 2.31 (s, 6H, –CH3). 

Na[Nd(N,N’-disalicylidene-4,5-dimethyl-1,2-phenylenediamine)2] was synthesized as 

follows: 0.115 g (0.333 mmol) of 4,5-dimethylsalophen (3) were dissolved in 7 mL of CH3CN. 

0.117 g (0.167 mmol) of Nd(OTf)·6H2O were dissolved in 5 mL of CH3CN and slowly added to 

the solution of ligand. 4.6 mL of 0.1078 M NaOH in MeOH solution (0.496 mmol) was then 

slowly added to the stirring solution. The reaction mixture was refluxed for 2 h. The yellow 

precipitate was centrifuged, washed with Et2O and dried under vacuum (0.103 g, 72%). IR 

(selected absorbances only, KBr, cm–1): 1618(C=N), 1544(C=C); 1385(Ph-O). 

Na[Nd(N,N’-bis(5-bromosalicylidene)-4,5-dimethyl-1,2-phenylenediamine)2] was 

synthesized as follows: 0.0699 g (0.139 mmol) of 5,5’-dibromo-4,5-dimethylsalophen (6) were 

dissolved in 15 mL of THF. 0.0487 g (0.0696 mmol) of Nd(OTf)·6H2O were dissolved in 7.5 mL 

of CH3CN and slowly added to the solution of ligand. 1.9 mL of 0.1078 M NaOH in MeOH 

solution (0.209 mmol) was then slowly added to the stirring solution. The reaction mixture was 

refluxed for 6 h. The solvents were removed under reduced pressure. The residue was triturated 

with Et2O, centrifuged and dried under vacuum (0.064 g, 78%). IR (selected absorbances only, 

KBr, cm–1): 1616(C=N), 1522(C=C); 1373(Ph-O). 
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Na[Nd(N,N’-bis(3-bromosalicylidene)-4,5-dimethyl-1,2-phenylenediamine)2] was 

synthesized as follows: 0.0504 g (0.100 mmol) of 3,3’-dibromo-4,5-dimethylsalophen (9) were 

dissolved in 20 mL of THF. 0.0351 g (0.0502 mmol) of Nd(OTf)·6H2O were dissolved in 7 mL 

of CH3CN and slowly added to the solution of ligand. 1.5 mL of 0.1078 M NaOH in MeOH 

solution (0.151 mmol) was then slowly added to the stirring solution. The reaction mixture was 

refluxed overnight. The solvents were removed under reduced pressure. The yellow solid was 

centrifuged, washed with Et2O and dried under vacuum (0.038 g, 65%). 

Na[Nd(N,N’-bis(3,5-dibromosalicylidene)-4,5-dimethyl-1,2-phenylenediamine)2] was 

synthesized as follows: 0.0534 g (0.0809 mmol) of tetrabromo-4,5-dimethylsalophen (12) were 

dissolved in 12 mL of a 2:1 (v/v) mixture of THF and CH3CN. 0.0283 g (0.0405 mmol) of 

Nd(OTf)·6H2O was then dissolved in 3 mL of CH3CN and slowly added to the solution of 

ligand. 1.13 mL of 0.1078 M NaOH in MeOH solution (0.121 mmol) were slowly added to the 

stirring solution. The reaction mixture was refluxed overnight. The solvents were removed under 

reduced pressure. The yellow solid was centrifuged, washed with Et2O and dried under vacuum 

(0.0346 g, 58%). 

2.3 RESULTS AND DISCUSSION 

2.3.1 Design and Syntheses of Ligands Derived from Salophen 

In a previous study,86 the bromo-substituted salophen showed superior photophysical properties, 

such as higher quantum yield and longer luminescence lifetimes than other salophen 
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derivatives.86 This can be explained by (1) the heavy atom effect and/or (2) the removal of one 

C–H vibration from the ligand responsible for the quenching. A methyl group on the 

phenylenediamine backbone also enhances the photophysical properties, as this electron 

donating group increase the electron density of the  system. 

The salophen derivatives in Table 2.1 were designed and have been synthesized in order 

to systematically monitor the effects of the substituents. To investigate the electron donating 

effect of methyl groups on backbone, three types of phenylenediamine backbones with different 

numbers of methyl groups were used: phenylenediamine, methylphenylene-diamine and 

dimethylphenylenediamine. For the chelating arms, four types of salicyl-aldehyde were used: 

salicylaldehyde, 5-bromosalicylaldehyde, 3-bromosalicylaldehyde and 3,5-dibromo-

salicylaldehyde. By comparing the chemical, physical and photophysical properties of the 

ligands made with different numbers of bromo groups and their corresponding lanthanide 

complexes, a relationship between the number of heavy atoms and their effects on the 

intramolecular energy transfer has been evaluated. In order to determine if the heavy atom effect 

or the removal of C–H vibration dominates in enhancing photophysical properties in bromo-

substituted salophen, the ligands and their complexes made with 5- and 3-bromosalicylaldehyde 

have been compared. 
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Table 2.1. Structures of the synthesized salophen derivatives. Abbreviation is shown in the parentheses 

Salicyl-
aldehyde 

arms 

Phenylenediamine backbones 

H2N NH2  
Phenylenediamine 

H2N NH2  
Methylphenylenediamine 

H2N NH2  
Dimethylphenylene-diamine 

OH

O

 
Salicyl-

aldehyde 

N N

OH HO
 

N,N’-Disalicylidene-1,2-
phenylenediamine 
(Salophen; Sal; 1) 

 
 

N N

OH HO
 

N,N’-Disalicylidene-4-
methyl-1,2-phenylenediamine 

(Methylsalophen; MSal; 2) 
 

N N

OH HO
 

N,N’-Disalicylidene-4,5-
dimethyl-1,2-phenylenediamine 

(Dimethylsalophen; 
DMSal; 3) 

Br

OH

O

 
 

5-Bromo-
salicyl- 

aldehyde 

N N

OH HOBr Br
 

N,N’-Bis(5-bromo-
salicylidene)-1,2-
phenylenediamine 

(5,5’-Dibromosalophen; 
5BSal; 4) 

 

N N

OH HOBr Br
 

N,N’-Bis(5-
bromosalicylidene)-4-methyl-

1,2-phenylenediamine 
(5,5’-Dibromomethyl 
salophen; 5BMSal; 5) 

 

N N

OH HOBr Br
 

N,N’-Bis(5-bromosalicylidene)-
4,5-dimethyl-1,2-
phenylenediamine 

(5,5’-Dibromodimethyl 
salophen; 5BDMSal; 6) 

OH

O

Br  
 

3-Bromo-
salicyl- 

aldehyde 
(13) 

N N

OH HO

BrBr  
N,N’-Bis(3-

bromosalicylidene)-1,2-
phenylenediamine 

(3,3’-Dibromosalophen; 
3BSal; 7) 

 

N N

OH HO

BrBr  
N,N’-Bis(3-

bromosalicylidene)-4-methyl-
1,2-phenylenediamine 
(3,3’-Dibromomethyl-
salophen; 3BMSal; 8) 

 

N N

OH HO

BrBr  
N,N’-Bis(3-bromosalicylidene)-

4,5-dimethyl-1,2-
phenylenediamine 

(3,3’-Dibromodimethyl-
salophen; 3BDMSal; 9) 

Br

OH

O

Br

 
 

3,5-
Dibromo-
salicyl- 

aldehyde 

N N

OH HO Br

BrBr

Br

 
N,N’-Bis(3,5-

dibromosalicylidene)-1,2-
phenylenediamine 

(Tetrabromosalophen; 
TBSal; 10) 

N N

OH HO Br

BrBr

Br

 
N,N’-Bis(3,5-

dibromosalicylidene)-4-
methyl-1,2-phenylenediamine 
(Tetrabromomethyl-salophen; 

TBMSal; 11) 

N N

OH HO Br

BrBr

Br

 
N,N’-Bis(3,5-

dibromosalicylidene)-4,5-
dimethyl-1,2-phenylenediamine 
(Tetrabromodimethyl-salophen; 

TBDMSal; 12) 
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The salophen ligands can be easily synthesized by condensation of two equivalents of 

salicylaldehyde and one equivalent of phenylenediamine in refluxing ethanol (Figure 2.1(a)). 

This reaction is very fast and, in most cases, quantitative, with heating of the reaction mixture 

being essential. Without heating, the major product obtained was a Schiff base with only one 

amine condensed with the salicylaldehyde (Figure 2.1(b)). The ratio of the products was 

calculated from the integration of 1H NMR peaks. 

N N

OH HO BrBrH2N NH2

OH

O

Br

+

Br

Br Br

H2N N

HO Br

Br

+

80 % : 20%

N N

OH HO

R1 R2

R3R3H2N NH2

OH

O

R3

R1 R2

+

R4

R4 R4

EtOH



R1 = H or CH3

R2 = H or CH3

R3 = H or Br

R4 = H or Br

(a)

(b)

stirred

EtOH

 

Figure 2.1. Depicting condensation of the phenylenediamine and salicylaldehyde 

 

The formation of Schiff bases can be controlled by the temperature and the number of 

equivalents of aldehydes and amines. MacLachlan et al. reported the syntheses of Schiff bases 

with various ratios of aldehyde/amine from same dialdehyde and diamine.87, 88 All the diamines 

and aldehydes were commercially available except 3-bromosalicylaldehyde. 3-

Bromosalicylaldehyde was synthesized from bromophenol using paraformaldehyde in presence 

of magnesium chloride.85 
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2.3.2 Formation of NdL2 Complexes 

The syntheses of the NdL2 complexes were carried out by the reaction of two equivalent of 

salophen ligand and one equivalent of Nd(OTf)3·6H2O. Depending on the solubility of the 

ligand, CH3CN or the mixture of THF and CH3CN were used as solvents. 1.5 equivalents of 

NaOH in MeOH was used as base to ensure complete deprotonation of the ligand. The Nd 

complex can be isolated by solvent evaporation and precipitation. 

2.3.3 Nd-ligand Stoichiometry in Solution  

To confirm the nature of the complexes formed between metal and ligand in solution, which is 

hypothesized to be ML2, spectrophotometric titrations were performed in DMSO. There are two 

possible methods for titrations: dynamic and batch. In a dynamic titration, a ligand solution is 

prepared and increasing amounts of metal solution are added to the ligand solution. The 

absorbance of this mixture is recorded at each aliquot of metal. This method can be used only if 

the reaction between the metal and ligand is rapid. In a batch titration method, on the other hand, 

there is a longer time for the formation of the complex to reach equilibrium. In this method, 

samples with various ratios of metal and ligand are prepared and incubated, and the absorbance 

of each sample is recorded at a later time. 

To ensure the formation of the complexes during the titration process, two methods were 

employed to completely deprotonate the ligands. In the first method, two equivalents of KOH for 

each ligand were added to a suspension of ligand in MeOH. The solution becomes clear 

indicating the deprotonation of the ligand. After evaporation of the solvent, the potassium salt of 
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the ligand was used to generate the solutions for the titration. The other method is mixing 

organic bases into the titration solutions. The deprotonation of the ligand can take place in situ. 

With this method, the instability of the potassium salt of the ligand and the undesirable re-

protonation of the ligand can be avoided. 

2.3.3.1 Nd-ligand stoichiometry in solution  

One equivalent of Nd(OTf)3·6H2O and two equivalent of the potassium salt of dimethylsalophen 

(3) were mixed in DMSO, and the absorbance was recorded. The spectra of the complex 

continue to vary, indicating that the equilibrium of the metal and ligand cannot be reached in a 

short period of time. Therefore, a batch titration was carried out. Total 31 batches of solution 

were prepared in DMSO with the concentration of the ligand maintained at 3.0010–5 M and the 

metal/ligand ratio were varied from 0:1 to 2:1 equivalents. 
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Figure 2.2. Absorption spectra of the batch titration of dimethylsalophen with Nd(OTf)3·6H2O. 
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An isosbestic point is present at 360 nm. As the metal/ligand ratio varied from 0.0 to 0.5, 

the spectra changed significantly. After the metal/ligand ratio reached 0.5, the change was 

diminished. The change of absorbance at 386 nm has a breaking point at the metal/ligand ratio of 

~1:2, indicating the formation of the ML2 complex (Figure 2.3). 
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Figure 2.3. Absorbance at selected wavelength (386 nm) vs. metal/ligand ratio. 

This titration data was analyzed using SPECFIT89 program (Figure 2.4). Experimental 

data fitted best with ML and ML2 model, and stability constants were obtained. The logarithm of 

the stability constants were log1 = 101 and log2 = 171, respectively. n is the overall 

equilibrium constant and Kn is the successive equilibrium constant. 
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Figure 2.4. Results of the spectrophotometric titration of dimethylsalophen with Nd3+ (a) Calculated spectra for the 

three individual colored species; (b) Calculated concentrations of different species versus metal/ligand ratio. 
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2.3.3.2 Nd-tetrabromodimethylsalophen (12) 

One equivalent of Nd(OTf)3·6H2O and two equivalents of the potassium salt of 

tetrabromodimethylsalophen were mixed in DMSO, and the absorbance was recorded over 120 

minutes. The spectra did not change significantly (Figure 2.5), which indicated fast kinetics and 

allowed a dynamic titration to be carried out. 
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Figure 2.5. UV-Vis absorbance of a 1:2 mixture of Nd3+ and tetrabromodimethylsalophen. 

 

A dynamic titration of the potassium salt of tetrabromodimethylsalophen with 

Nd(OTf)3·6H2O were performed in DMSO (Figure 2.6). The change of the absorbance at 398 nm 

and 498 nm indicate a breaking point at metal/ligand ratio of 1:4, which is different from the 

expected position of 1:2. Data analysis with SPECFIT program also gave similar result. The 

titration data were best fitted with ML, ML2 and ML4 model. 
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Figure 2.6. Dynamic titration of tetrabromodimethylsalophen with Nd(OTf)3·6H2O (a) Absorbance spectra; 

(b) Absorbance at selected wavelengths vs. metal/ligand ratio. 

(a) 

(b) 
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Though there was little change of the spectra in the kinetic study (Figure 2.5), it is 

possible that the formed complex is not the most thermodynamically stable species in a dynamic 

titration. The titration of tetrabromodimethylsalophen was repeated in the batch titration method, 

expecting the most stable form of the complex can be present in solution. Total 31 batches of 

solution were prepared in DMSO with the concentration of the ligand maintained at 2.5010–5 M 

and the metal/ligand ratio were varied from 0:1 to 1.5:1 equivalents (Figure 2.7). 
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Figure 2.7. Absorbance spectra of the batch titration of tetrabromodimethylsalophen with Nd(OTf)3·6H2O. 

 

The change of the absorbance at 485 nm has a breaking point at metal/ligand ratio of 2:5 

(Figure 2.8). The titration data were best fitted with ML, ML2, ML3 and ML4 model in the data 

analysis with SPECFIT program. A repeated batch titration with another 36 batches of solution 

gave identical results. 
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Figure 2.8. Absorbance at selected wavelength vs. metal/ligand ratio of the batch titration of tetrabromo-

dimethylsalophen with Nd(OTf)3·6H2O. 

 

The breaking points in the dynamic titration and in the batch titration appeared at 

different positions, 1:4 metal/ligand ratio and 1:2.5 metal/ligand ratios, respectively. However, it 

seems that the ML4 complex is formed in both cases, according to the SPECFIT analysis of the 

experimental data. Since it is sterically challenging to form ML4 complex with four salophen 

ligands, a different binding mode can be involved. A possible explanation of this result is the 

cyclization of the ligand (Figure 2.9). It is well-known that salophen can rearrange to form 2-

substituted benzimidazole, the cyclized structure.90 In some cases, 2-substituted benzimidazole is 

the major product from the reaction between o-phenylenediamine and aldehydes.91 Since 2-

substituted benzimidazole coordinates to the metal with nitrogen on imidazole, the ML4 complex 
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can be formed. As shown in the mechanism (Figure 2.9), the rearrangement from salophen to 

benzimidazole is accelerated in presence of acidic proton. In order to prevent the protonation to 

the salophen, excess organic bases were added to the solution and a batch titration was repeated. 
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Figure 2.9. Proposed mechanism of cyclization of the salophen ligand. 

 

2,4,6-Collidine (2,4,6-trimethylpyridine), whose pKa is 7.45, was chosen as the base. 

Total 22 batches of solution were made using 0.00117 M of 2,4,6-collidine in DMSO solution as 

the solvent. The concentration of the ligand was maintained at 2.5010–5 M and the metal/ligand 

ratio were varied from 0:1 to 1.2:1 equivalents. The result of the titration is shown in Figure 

2.10. No breaking points were apparent (Figure 2.10(b)) and the spectra continue to change 

throughout the whole titration process. 
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Figure 2.10. Batch titration of tetrabromodimethylsalophen with Nd(OTf)3·6H2O, using collidine as a base (a) 

Absorbance spectra; (b) Absorbance at selected wavelengths vs. metal/ligand ratio. 

(a) 

(b) 
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When KOH or K2CO3 was used as a base, the 1H-NMR spectrum of the ligand changed. 

With 2,4,6-collidine, there is no change in the spectrum of the ligand (Figure 2.11), indicating 

2,4,6-collidine is not basic enough to deprotonate the ligand. 

 

Figure 2.11. Partial 1H-NMR spectra of (a) Tetrabromodimethylsalophen + KOH or K2CO3; (b) Tetrabromo-

dimethylsalophen; (c) Tetrabromodimethylsalophen + 2,4,6-collidine; (d) Tetrabromodimethyl-salophen + Et3N. 
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Triethylamine, Et3N, whose pKa is 10.78, is a stronger base than collidine. The 1H-NMR 

spectrum of the ligand with Et3N looks similar to those of the ligand with KOH or K2CO3, which 

is showing that the basicity of Et3N is sufficient to deprotonate the ligand (Figure 2.11(d)). The 

batch titration was repeated with Et3N as a base. Total 22 batches of solution were made using 

DMSO as a solvent. Due to the volatility of Et3N, Et3N solution in DMSO cannot be made. 

Instead, 5 L of Et3N were added to the each batch solutions before the titration. The 

concentration of the ligand maintained at 2.5010–5 M and the metal/ligand ratio were varied 

from 0:1 to 1.2:1 equivalents. 
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Figure 2.12. Absorbance spectra of the batch titration of tetrabromodimethylsalophen with Nd(OTf)3·6H2O using 

Et3N as a base. 
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Figure 2.13. Absorbance at selected wavelength vs. metal/ligand ratio of the batch titration of tetrabromo-

dimethylsalophen with Nd(OTf)3·6H2O using Et3N as a base. 

 

The change of absorbance at selected wavelengths has breaking points at metal/ligand 

ratio of ~1:2, indicating the formation of ML2 complex (Figure 2.13). This titration data was 

analyzed using SPECFIT program (Figure 2.14). The data were well fitted with ML and ML2 

model. The logarithm of the stability constants were log1 = 9.1  0.5 and log2 = 16.2  0.6, 

respectively. 
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Figure 2.14 Results of spectrophotometric titration of dimethylsalophen with Nd3+ (a) Calculated spectra for the 

three individual species; (b) Calculated concentrations of different species versus metal/ligand ratio. 
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2.3.3.3 3,3’-dibromodimethylsalophen (9) 

A batch titration of 3,3’-dibromodimethylsalophen (9) with Nd(OTf)3·6H2O was carried out with 

the same method used for tetrabromodimethylsalophen. Total 22 batches of solution were made 

using DMSO as a solvent. An amount of 5 L of Et3N was added to each batch solutions before 

the titration. The concentration of the ligand was maintained at 2.5010–5 M and the metal/ligand 

ratio were varied from 0:1 to 1.2:1 equivalents. 

The changes of absorbance at selected wavelengths have breaking points at metal/ligand 

ratio of ~1:2, indicating the formation of ML2 complex (Figure 2.16). Experimental data 

obtained from this titration were analyzed using SPECFIT program. The data were well fitted 

with ML and ML2 model. The logarithm of the stability constants were log1 = 6.0  0.6 and 

log2 = 12.9  0.5, respectively. 
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Figure 2.15. Absorbance spectra of the batch titration of 3,3’-dibromodimethylsalophen with Nd(OTf)3·6H2O using 

Et3N as a base. 
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Figure 2.16. Absorbance at selected wavelength vs. metal/ligand ratio of the batch titration of 3,3’-

dibromodimethylsalophen with Nd(OTf)3·6H2O using Et3N as a base. 

 

2.3.3.4 Summary of the stability constant measurements 

The stability constants for three salophen ligands and Nd3+, obtained from the data analysis using 

SPECFIT program, are summarized in table 3.2. For dimethylsalophen (3), KOH was used as a 

base, and Et3N was used as a base for tetrabromodimethylsalophen (12) and 3,3’-

dibromodimethylsalophen (9). The titration of dimethylsalophen (3) with Nd3+ using Et3N as a 

base was also tested, but due to the nature of the ligand and Et3N, no meaningful results could be 

obtained. This will be discussed in Section 2.3.4. 
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When stability constants for 9 and 12 are compared, it is evident that the more bromo 

groups are on the ligand, the higher the stability constant is. The attached bromo groups can 

provide electrons to the salophen molecule, which make the ligand more electron-rich, acting as 

stronger ligand for the Nd3+ metal. Due to the difference in natures of the counter cations, it is 

not possible to compare the stability constant for 3 and those for 9 or 12 directly. The first 

stability constant, K1 is related to the dissociation of the ion pair of counter cation and anion of 

the ligand. However, in the second step of the complexation, ML + L → ML2, the effect of the 

counter cation is less important than for the first step, because the ligand is already bound to 

Nd3+ ion. 

Table 2.2. Stability constants for the Nd3+ complexes of salophen ligands. All values were calculated with SPECFIT 

program using titration data of the ligand with Nd3+. 

Ligand 
Counter 
Cation 

log1 
(logK1) 

log2 
logK2 

(log2-log1)

N N

OH HO
 

3 

K+ 10 16 6 

N N

OH HO

Br Br  
9 

Et3NH+ 6.0 12.9 6.9 

N N

OH HOBr

Br Br

Br

 
12 

Et3NH+ 9.1 16.2 7.1 
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The stability constant for the second step, K2 can be calculated from 2 and 1. The 

values are 6, 6.9 and 7.1 for 3, 9 and 12, respectively. This result leads to the same conclusion 

stated above, that more bromo groups on the ligand leads to stable complexes. 

2.3.4 Crystal structures of the complexes 

2.3.4.1 Crystal structure of Nd-tetrabromodimethylsalophen (12) 

Crystallographic grade sample of Nd-tetrabromodimethylsalophen (12) was prepared by 

following method: to a suspension of a ligand in MeOH, excess Et3N was added. A half 

equivalent of Nd(OTf)3·6H2O was added to the ligand solution. Hexane was slowly diffused to 

the solution. 

The crystal was formed as Et3NH[Nd(TBDMSal)2]. The molecular structure of the 

complex is shown in Figure 2.17, and the selected bond lengths and angles for this complex are 

listed in Table 2.3. Complete data and parameters are available in Appendix A. The molecular 

structure of the obtained crystals can be described as a double-decker sandwich. There is one 

previous example of lanthanide complex with salophen derivative ligand, which adopts such a 

double-decker sandwich conformation.92 This complex is formed by the coordination of one Ce4+ 

as metal cation with two salophen as ligand. It is interesting to note that the lanthanide cation 

coordinated in this complex has a different oxidation state and therefore cannot be considered as 

similar. In addition to the difference in charge, Ce4+ has a significantly different effective ionic 

radius: 0.97Å for Ce4+ versus 1.109 Å for Nd3+ (both calculated according to Shannon for eight 

coordinated cations).93 
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Figure 2.17. Molecular structure of Et3NH[Nd(TBDMSal)2]. 

 

Table 2.3. Selected bond lengths (Å) and angles (°) in Et3NH[Nd(TBDMSal)2] 

Nd-O(1) 2.327(6) O(1)-Nd-O(2) 94.9(2) 

Nd-O(2) 2.353(6) O(2)-Nd-N(2) 68.0(2) 

Nd-O(3) 2.367(6) N(2)-Nd-N(1) 60.6(2) 

Nd-O(4) 2.345(6) N(1)-Nd-O(1) 69.6(2) 

Nd-N(1) 2.629(7) O(3)-Nd-O(4) 91.3(2) 

Nd-N(2) 2.672(8) O(4)-Nd-N(4) 66.8(2) 

Nd-N(3) 2.678(7) N(4)-Nd-N(3) 60.4(2) 

Nd-N(4) 2.689(8) N(3)-Nd-O(3) 68.6(2) 

 

Two salophen ligands coordinate to the metal center in a tetradentate mode. The 

salicylidene arms are bent toward the exterior of the molecule. When a salophen ligand 
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coordinate to Nd3+, one 5-membered ring, Nd-N(1)-C(8)-C(13)-N(2) and two six-membered 

rings, Nd-N(1)-C(7)-C(6)-C(1)-O(1) and Nd-N(2)-C(14)-C(15)-C(20)-O(2) are formed (Figure 

2.18). The salicylidene arms are bent to make these rings as planar as possible. 

 

Figure 2.18. 5- and 6-membered rings formed by coordination of ligand to Nd3+. 

 

Since [Nd(TBDMSal)2]
– complex has net (–1) charge, Et3NH+ acts as a counter cation. In 

the crystal packing structure (Figure 2.19), Et3NH+ is located in the space between two 

[Nd(TBDMSal)2]
–. Et3NH+ is another factor that may cause bending of the salophen ligand. 

Molecules and ions are closely packed together to have minimal energy in a crystal. The bent 

salicylidene arms can provide the space to accommodate the relatively larger Et3NH+ cation in 

the crystal packing structure of Et3NH[Nd(TBDMSal)2]. The effect of the cation on the crystal 

structure will be verified by growth and analysis of the crystal of TBDMSal complex with 

smaller cations, such as Li+. 

When viewed from the orthogonal to the salophen plane, two salophen ligands are 

located in staggered fashion. The coordination environment around Nd3+ cation is close to a 

square antiprism geometry (Figure 2.20). Atoms O(1), O(2), N(2) and N(1) form a nearly planar 

coordination ring, and atoms O(3), O(4), N(4) and N(3) also form a nearly planar coordination 

ring. However, these coordination rings are trapezoids: O–O segments are longer than N–N 
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segments. Because two nitrogens, N(1) and N(2) (or N(3) and N(4)), are on the same phenylene 

ring, there is no flexibility around nitrogens, but relatively flexible oxygens can be widened. The 

Nd-O bonds are shorter than Nd-N bonds. This make the two planes, O(1)-O(2)-N(2)-N(1) and 

O(3)-O(4)-N(4)-N(3), not perfectly parallel. 

 

Figure 2.19. Et3NH+ in crystal packing structure of Et3NH[Nd(TBDMSal)2]. 

 

Figure 2.20. Coordination polyhedron of Nd in Et3NH[Nd(TBDMSal)2]. 
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2.3.4.2 Crystal structure of Nd-dimethylsalophen (3) 

Crystallographic grade sample of Nd-DMSal (3) was obtained by same method applied to that of 

Nd-TBDMSal, mixing one equivalent of Nd3+ and two equivalents of DMSal in MeOH with 

excess Et3N. An M2L3 structure, i.e. Nd2(DMSal)3·MeOH was isolated. An almost identical 

structure was obtained for Eu2(Sal)3·MeOH in our group.86 The molecular structure of the 

complex is shown in Figure 2.21, and the selected bond lengths and angles for this complex are 

listed in Table 2.4. Complete data and parameters are available in Appendix A. 

DMSal2 acts as a bridging ligand connecting two Nd3+ ions. This structure was postulated 

(but not characterized) by Archer et. al. for the similar structure of Ln3+.94 It is interesting that 

three ligands are not located on the same axis. DMSal1 and Nd(1) is out of the line formed by 

[the center of DMSal2] – Nd(2) – [the center of DMSal3]. Two nitrogens of DMSal2 are only 

coordinated to Nd(2) not to Nd(1). Because nitrogen has only one lone pair to coordinate to the 

metal ion, while oxygen has two or three lone pairs, nitrogen can bind only one metal ion. Thus 

Nd(1) cannot be located on the center of DMSal2. It is coordinated to two oxygens of DMSal2 

and two oxygens and two nitrogens of DMSal1. To fill the empty coordination site, solvent 

MeOH is bound to Nd(1). The same coordination patterns, two salophen ligands form an eight-

coordinated metal complex and additional metal ions and salophen ligands are located out of the 

axis forming 7- or 8-coordination with one or two solvent molecules, are observed in triple-

decker or tetra-decker structures of Ln3+ complexes reported.86, 95-97 
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Figure 2.21. Molecular structure of Nd2(DMSal)3·MeOH. 

 

Figure 2.22. Coordination environment around two Nd3+ ions in Nd2(DMSal)3·MeOH. 

   

Figure 2.23. Coordination polyhedron of (a) Nd(2); (b) Nd(1). 

DMSal1  

DMSal2  

DMSal3  

(a) (b) 
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Table 2.4. Selected bond lengths (Å) and angles (°) in Nd2(DMSal)3·MeOH. 

Nd(1)-O(1) 2.271(8) O(1)-Nd(1)-O(2) 97.2(3) 

Nd(1)-O(2) 2.253(8) O(2)-Nd(1)-N(2) 72.1(3) 

Nd(1)-N(1) 2.545(9) N(2)-Nd(1)-N(1) 63.4(3) 

Nd(1)-N(2) 2.552(10) N(1)-Nd(1)-O(1) 71.6(3) 

Nd(1)-O(3) 2.476(8) O(3)-Nd(1)-O(4) 69.7(3) 

Nd(1)-O(4) 2.409(8) O(3)-Nd(1)-O(7) 75.8(3) 

Nd(1)-O(7) 2.459(10) O(7)-Nd(1)-O(4) 75.8(3) 

Nd(2)-O(3) 2.409(8) O(3)-Nd(2)-O(4) 70.8(3) 

Nd(2)-O(4) 2.410(8) O(4)-Nd(2)-N(4) 68.1(3) 

Nd(2)-N(3) 2.598(10) N(4)-Nd(2)-N(3) 60.4(3) 

Nd(2)-N(4) 2.679(10) N(3)-Nd(2)-O(3) 69.4(3) 

Nd(2)-O(5) 2.313(8) O(5)-Nd(2)-O(6) 90.9(3) 

Nd(2)-O(6) 2.365(8) O(6)-Nd(2)-N(6) 71.2(3) 

Nd(2)-N(5) 2.573(11) N(6)-Nd(2)-N(5) 62.3(3) 

Nd(2)-N(6) 2.575(10) N(5)-Nd(2)-O(5) 70.0(4) 

 

The stoichiometry of this complex is 1:2 in solution, but a different stoichiometry is 

observed in solid phase. Because the net charge of ML2 complex is (–1), there must be a counter 

cation to form ML2 structure. There is no counter cation in the structure of Nd2(DMSal)3, while 

Et3NH+ exists as counter cation in the structure of Nd(TBDMSal)2. Without counter cation, 

trivalent Nd3+ and divalent DMSal2–
 forms M2L3 complex. This indicates that Et3N can not act as 

a base in the solution of Nd3+ and DMSal during the crystal growing process. Investigation of the 

acidities of salophen ligands can provide information of whether Et3N is basic enough to 

deprotonate salophen ligands. Since the pKa values of these salophen derivatives are unknown, 
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two types of tests were carried out to compare the relative acidities of the salophen ligands: 1H-

NMR and UV-Vis absorbance. 

1H-NMR spectra of four salophen ligands, DMSal (3), 5BDMSal (6), 3BDMSal (9) and 

TBDMSal (12) were recorded in DMSO-d6 with and without an excess of Et3N. The chemical 

shifts of TBDMSal was changed after addition of Et3N as mentioned in section 2.3.3, but no or 

very small changes were observed in those of DMSal, 5BDMSal and 3BDMSal. This result 

supports that TBDMSal can be ionized by Et3N, but DMSal cannot be ionized. 

UV-Vis absorbances of four salophen were recorded in DMSO, and after excess Et3N 

was added the absorbances were recorded again (Figure 2.24). The absorbances of 3BDMSal and 

TBDMSal showed a significant change after Et3N was added indicating the deprotonation of the 

ligands, while those of DMSal and 5BDMSal do not change after addition of Et3N. From this 

result, it can be concluded that Et3N can deprotonate more acidic 3BDMSal and TBDMSal 

ligands, but it is not sufficiently basic to deprotonate less acidic DMSal and 5BDMSal ligands. 

This trend of the acidities of salophen derivatives is consistent with that of acidities of phenol 

derivatives (Table 2.5). In order to obtain ML2 structure of Nd-DMSal, crystal growth was 

attempted using more basic KOH as base, but it was not possible to isolate any crystals. 

 

Table 2.5. pKa of phenol derivatives98 

Phenol 
derivatives HO

 
HO Br

 
HO

Br

HO

Br

Br

pKa 9.994 9.366 8.452 7.790 
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Figure 2.24. UV-Vis absorbance of salophen ligands without Et3N (solid line) and with excess Et3N (dashed line). 

(a) DMSal, c = 3.7710–5 M in DMSO; (b) 5BDMSal, c = 4.0810–5 M in DMSO; (c) 3BDMSal, c = 3.9210–5 M 

in DMSO; (d) TBDMSal, c = 3.8410–5 M in DMSO. 

 

2.3.4.3 Crystal structure of Yb-3,3’-dibromodimethylsalophen (9) 

There are two major coordination environments around the Ln3+ cation in the ML2 complexes 

with a coordination number of eight: square antiprism (sandwich) and dodecahedron 

(interlock).99 Though there are many reported sandwich structures of the complexes of salophen 

ligands and lanthanides,92 the example of dodecahedral structures is limited. Kubono et. al. 

(a) (b) 

(c) (d) 
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reported a dodecahedral structure of Ce4+ complex with dibromo-salophen ligand.100 The factors 

that determine the orientation of the ligands are the size of metal and the flexibility of the ligand. 

The reported dodecahedral structures of metal complexes of Schiff base ligands have either (1) 

small metal ion such as Zr4+ or Ce4+ or (2) flexible ligand such as salen.92 

Because of the highly conjugated structure, it is hard to modify the flexibility of salophen 

ligand. In order to obtain a dodecahedral structure of Ln3+–salophen complex, the smallest NIR-

emitting lanthanide, Yb3+ was chosen and a crystal of the complex was grown with a series of 

salophen ligands by the same method applied to other Nd complexes. An interlock structure of 

Et3NH[Yb(3BDMSal)2] was successfully isolated (Figure 2.25). Selected bond lengths and 

angles are listed in Table 2.6. As discussed in section 2.3.3.1, the salophen ligands were bent to 

minimize strains of the 5- and 6-membered rings formed around the Yb3+ ion. The counter cation 

Et3NH is located in the widened space between two salophen ligands (Figure 2.25(b)). The 

coordination environment around the Yb3+ cation is a dodecahedral structure with D2d symmetry 

(Figure 2.26). The bond lengths and angles are also very symmetrical. This Yb3+ complex 

confirms that the main structure controlling parameter can be attributed to the size of metal ion. 

 

Figure 2.25. Molecular structure of Et3NH[Yb(3BDMSal)2]. 

(a) (b) 
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Table 2.6. Selected bond lengths (Å) and angles (°) in Et3NH[Yb(3BDMSal)2] 

Yb-O(1) 2.208(5) O(1)-Yb-O(2) 148.5(2) 

Yb-O(2) 2.228(5) O(2)-Yb-N(2) 71.2(2) 

Yb-O(3) 2.216(5) N(2)-Yb-N(1) 66.7(2) 

Yb-O(4) 2.261(6) N(1)-Yb-O(1) 72.9(2) 

Yb-N(1) 2.495(6) O(3)-Yb-O(4) 152.50(19) 

Yb-N(2) 2.480(6) O(4)-Yb-N(4) 71.1(2) 

Yb-N(3) 2.509(6) N(4)-Yb-N(3) 65.0(2) 

Yb-N(4) 2.491(6) N(3)-Yb-O(3) 71.5(2) 

 

 

Figure 2.26. Coordination polyhedron around Yb3+ in Et3NH[Yb(3BDMSal)2]. 
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2.3.5 Photophysical Properties of Nd3+ Complexes in Solution 

2.3.5.1 Absorption, excitation and emission spectra of the complexes 

The absorption, excitation and emission spectra of the Nd3+ complexes formed with DMSal, 

5DMSal, 3DMSal and TBDMSal have been recorded in DMSO solution. For the deprotonation 

of ligands, NaOH was used as a base for the creation of these solutions. 

The absorption, excitation and emission spectra of complexes are depicted in Figure 2.27. 

The apparent maximum of the absorption bands appears around 385 nm. The energy positions of 

the bands present in the excitation spectra recorded under Nd3+ signal match closely the position 

of the bands of the absorption spectra. This result suggests that NIR emitting lanthanide cations 

are sensitized through the electronic levels of the chromophoric ligand and that the ligand is 

providing an antenna effect. On the basis of their epsilon, we can assess the nature of the 

electronic bands resulting in the sensitization of Nd3+ as being −*. The NIR emission spectra 

reveal the presence of three typical sharp bands arising from the electronic states of Nd3+. These 

bands are located at 900 nm, 1060 nm and 1330 nm in NIR region and are attributed to the 4F3/2 

→ 4I9/2, 
4F3/2 → 4I11/2, and 4F3/2 → 4I13/2, f–f transitions respectively. 
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Figure 2.27. Absorption, Excitation and Emission spectra of (a) Na[Nd(DMSal)2], at 4.6410–5 M in DMSO at RT. 

ex = 395 nm, em = 1058 nm; (b) Na[Nd(5BDMSal)2], at 4.6510–5 M in DMSO at RT. ex = 395 nm, em = 1058 

nm; (c) Na[Nd(3BDMSal)2], at 4.5410–5 M in DMSO at RT. ex = 385 nm, em = 1058 nm; (d) 

Na[Nd(TBDMSal)2], at 3.5110–5 M in DMSO at RT. ex = 395 nm, em = 1058 nm. 

 

The four complexes also show similar absorption, excitation and emission spectra, which 

indicate that all these ligands sensitize Nd3+
. However, when the absorption spectra of four 

complexes are compared to one another, red shifts of the maxima of the electronic bands were 

observed, in the following order: Nd(DMSal)2 → Nd(3BDMSal)2 → Nd(5BDMSal)2 → 

(a) (b) 

(c) (d) 
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Nd(TBDMSal)2 (Figure 2.28). The excitation spectra also show the same trend of red shift. 

These results indicate that the more the ligand is substituted by bromide substituents the more 

that electronic state is shifted toward lower energy. 
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Figure 2.28. Comparison of selected ranges of the absorption spectra of the four complexes 

2.3.5.2 Quantum yields and luminescence lifetimes of the complexes 

To evaluate the efficiency of energy transfer from the ligand to lanthanide and the presence of 

quenching processes deactivating Nd3+ excited states, the quantum yields of the Nd3+ complexes 

formed with DMSal, 5DMSal, 3DMSal and TBDMSal were measured in DMSO using 

K[Nd(tropolonate)4] ( = 2.110-3)5 as a reference. The results are listed in Table 2.7. These 

quantum yields are not superior to the typical values obtained for other Nd3+ complexes reported 

in the literature, which are comprised between 210–3 – 310–2 (Figure 2.29; Table 2.8), but are 

still comparable. These relatively low quantum yield values indicate that the energy transfer from 

the ligand to the lanthanide ion is not highly efficient and there is a quenching process present. 
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This drawback can be compensated for by modification of the salophen ligands. The introduction 

of heavier atom such as iodine can enhance the energy transfer process by increasing population 

of the triplet state of the ligand. A highly pre-organized ligand structure is an important 

parameter for protection of the metal ion. 

 

Table 2.7. Quantum yield (Φ) of Nd3+ complexes in DMSO at r.t. 

Complex 
N N

OH HO  
 

Na[Nd(DMSal)2]
(a) 

N N

OH HOBr Br  
 

Na[Nd(5BDMSal)2]
(b)

N N

OH HO

BrBr  

Na[Nd(3BDMSal)2]
(c) 

N N

OH HO Br

BrBr

Br

 

Na[Nd(TBDMSal)2]
(d)

Absolute 
 tot 

1.18  0.04  10-3 1.23  0.08  10-3 1.6  0.1  10-3 2.01  0.07  10-3 

(a) c = 4.95  10-5 M, λex = 385 nm; (b) c = 8.70  10-5 M, λex = 392 nm; (c) c = 4.89  10-5 M, λex = 388 nm; (d) c = 
4.95  10-3 M, λex = 385 nm; 

 

When quantum yields of the complexes are compared, it is evident that the presence of 

bromo groups on the salophen ligands enhances the efficiency of the energy transfer to the Nd3+, 

which can be attributed to an increase in the population of the triplet state due to the heavy atom 

effect.101 Na[Nd(3BDMSal)2] has higher quantum yield than Na[Nd(5BDMSal)2] has, though 

they have same number of bromo groups. Being located at the 3-position, a bromo group can (1) 

remove C–H from that position which may cause a non-radiative deactivation of lanthanide 

luminescence, and (2) have an increased heavy atom effect by the proximity factor. 
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Figure 2.29. Structures and abbreviations of Nd3+ complexes reported in the literature.5, 53, 60, 61, 65 

 

Table 2.8. Quantum yields (Φtot) and luminescence lifetimes () of significant examples of Nd3+ complexes reported 

in the literature. 

Complex tot  (s) solvent 

Nd(HFA-D)3
60 0.013 6.3 DMSO 

Nd(POM-D)3
60 0.032 13.5 DMSO 

Nd(q)3
61 0.004 2 DMSO-d6 

Nd(Clq)3
61 0.010 3 DMSO-d6 

Nd(Brq)3
61 0.010 3 DMSO-d6 
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Nd(Iq)3
61 0.009 3 DMSO-d6 

Ndm-Terp153 — 1.2 DMSO 

Ndm-Terp253 — 1.2 DMSO 

Nd(TPP)(L(OEt))65 0.002 — CH2Cl2 

Nd(TPP)Tp65 0.0024 — CH2Cl2 

K[Nd(Trp)4]
5 0.0021 1.10 DMSO 

 

The luminescence lifetimes of Nd3+ in Na[Nd(DMSal)2], Na[Nd(5BDMSal)2] and 

Na[Nd(TBDMSal)2] were measured in DMSO upon ligand excitation (Table 2.9). The values 

obtained are all close to 1.00 s. These close lifetime values indicate that the Nd3+ are all in 

fairly similar coordination environments in the three different complexes: a similar degree of 

protection of Nd3+ is therefore provided by the organization of the ligand around the lanthanide 

ion. These lifetimes compare well with the luminescence lifetimes previously reported for Nd3+ 

complexes (1.10 – 13.5 s, Table 2.8). ]. From this experiment, we could not obtain quantitative 

data showing that the differences in quantum yields cannot be explained by differences in the 

protection of the NIR-emitting cations. 

 

Table 2.9. Luminescence lifetime () of Nd3+ complexes in DMSO at r.t. The samples were excited at 337 nm with a 

nitrogen laser, and the signals were collected at 1060 nm. 

Complex 
N N

OH HO  
 

Na[Nd(DMSal)2] 

N N

OH HOBr Br  
 

Na[Nd(5BDMSal)2] 

N N

OH HO Br

BrBr

Br

 

Na[Nd(TBDMSal)2] 

 (μs) 1.00  0.01 1.01  0.01 0.998  0.001 
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2.4 CONCLUSIONS 

The coordination chemistry and photophysical properties of the Nd3+ and Yb3+ complexes 

formed with a series of ligands derived from salophen were systematically studied. All these pre-

organized rigid tetradentate ligands form well-defined [ML2]
- complexes in solution. The 

stoichiometry of this complex in solution was identified via spectrophotometric titrations of a 

series of ligands with Nd3+ ion. The stability constants indicate that the stability of the complex 

can be controlled by the appropriate choice of ligand substituents. Three crystal structures were 

isolated and analyzed. The structures of the complexes in the solid phase can be significantly 

different from the structures in solution. The morphology of the crystal structure can be 

controlled by the size of lanthanide metal ion as well as the proper choice of base which itself 

controls the presence or absence of counter cations. The spectroscopy studies of the properties of 

the chromophoric groups of these systems indicate that the different substituents on the ligand do 

not affect significantly the energies of the different electronic levels. It was established that all 

four chromophoric ligand systems are able to sensitize Nd3+, a NIR-emitting cation, through 

intramolecular energy transfer from the electronic states of the ligand to the metal ion. The 

luminescence properties of the complexes can be enhanced by modification of the ligand with 

Br-substituents. 
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3.0  LANTHANIDE-DENDRIMER COMPLEX FOR BIOLOGICAL IMAGING 

Parts of the work presented here have been completed in collaboration with Chad M. Shade, 

Zachary P. Thompson, Kristy A. Gogick, Lijuan Su (Stéphane Petoud Research Group, 

Department of Chemistry, University of Pittsburgh), Sebastian Blanck, Benedikt Huber, Matthias 

Bischof (Visiting Students from Philipps-Universität Marburg, Germany), Manyan Wang 

(Stephen G. Weber Research Group, Department of Chemistry, University of Pittsburgh), Ruth 

A. Modzelewski (Department of Medicine, University of Pittsburgh School of Medicine), Anna 

A. Powolny, Silvia Stan, Eun-Ryeong Hahm (Shivendra V. Singh Research Group, University of 

Pittsburgh Cancer Institute), Marco A. Alcala, David L. Bartlett, Yong J. Lee, Charles K. Brown 

(Department of Surgery, University of Pittsburgh School of Medicine), Megan A. Lang (Center 

for Biologic Imaging, University of Pittsburgh), Shu Ying Kwan (Department of Biological 

Sciences, Carnegie Mellon University), Adam R. Meier, Timothy G. Strein (Department of 

Chemistry, Bucknell University) and Alexandra Foucault (Centre National de la Recherche 

Scientifique, Orléans, France). Portions of the results presented here have been published in 

Nanomedicine: Nanotechnology, Biology, and Medicine, Vol. 7, No. 3, p 249, 2011: 

“Luminescence targeting and imaging using a nanoscale generation 3 dendrimer in an in vivo 

colorectal metastatic rat model”102 and Biomaterials, Vol. 32, No. 35, p 9343, 2011: “Preferential 
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accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer 

lanthanide complexes”.103 

3.1 INTRODUCTION 

Luminescent lanthanide reporters are useful for applications such as drug delivery, medical 

diagnostics and biological imaging due to the unique properties such as long luminescence 

lifetimes, photostability and sharp emission bands. To take advantage of these properties, it is 

crucial to have lanthanide complexes’ strong absorption and emission signals which can be 

detected in biological matrices. A promising strategy to maximize the number of absorbed and 

emitted photos is the development of reporters that possess more than one luminescent metal ion 

combined with large number of sensitizer molecules. Polymetallic lanthanide-dendrimer 

complexes were demonstrated by incorporating eight equivalents of europium cations into 2,3-

naphthalimide attached PAMAM (polyamidoamine) dendrimer.104 

In this work, we have developed polymetallic lanthanide-dendrimer complexes utilizing 

functionalized 1,8-naphthalimide. The energy level of the triplet states of 1,8-naphthalimide is 

18,519 cm-1, which is compatible with the accepting energy levels of several lanthanide cations 

emitting in the visible and near-infrared domains. This sensitizer also have highly populated 

triplet states, a favorable feature for lanthanide sensitizers since it is globally hypothesized that 

energy transfer occurs mainly from the ligand triplet state to the accepting levels of the 

lanthanide cations. Therefore, high populations of the triplet state should favor efficient 

intramolecular ligand to lanthanide energy transfer. 
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The goal of this research is the utilization of lanthanide-dendrimer complexes as scaffolds 

for versatile applications. Functionalized lanthanide-dendrimer complexes can be used for 

detection technique for a large variety of biological problems and applications. By introducing 

functional groups on the surface of dendrimer complex, the physical and photophysical 

properties of the complex can be modified and controlled. Dendrimer complex with functional 

groups at their periphery lead to desirable properties for practical applications: improved 

solubility in water, ability to cross cell membranes for biological imaging and displacement of 

the excitation wavelengths to higher values. A schematic diagram of functionalized lanthanide-

dendrimer complex is depicted in Figure 3.1. 
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Figure 3.1. Schematic model of functionalized lanthanide-dendrimer complex 
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3.2 EXPERIMENTAL 

3.2.1 Syntheses of Lanthanide-Dendrimer Complexes 

3.2.1.1 Synthesis of the generation-3 PAMAM dendrimer with 3-isothiocyanato-1,8-

naphthalimide containing europium ions (Eu-ITC) 

3-Amino-1,8-naphthalimide was synthesized by a reported method.105 3-Isothiocyanato-1,8-

naphthalimide-attached dendrimer was synthesized by adapting a reported method104 with slight 

modification followed by conversion of amino group to isothiocyanto group: 181 mg (0.0262 

mmol) of NH2-terminated G3 PAMAM dendrimer (Dendritech, Inc.) and 250 mg (1.17 mmol) of 

3-amino-1,8-naphthalic anhydride were suspended in 15 mL of DMF (J. T. Baker) and stirred at 

90 °C for 48 hours under a nitrogen atmosphere, monitoring for the disappearance of the 

naphthalic anhydride by TLC. The compound was purified by dialysis using a regenerated 

cellulose membrane (Fisher; nominal MWCO 12,000−14,000) in DMSO for three days. The 

solution in the dialysis membrane was dried in a vacuum oven to yield 3-amino-1,8-

naphthalimide-modified dendrimer as a brown solid (125 mg, 36%). This dendrimer was 

redissolved in 20 mL of DMF (J. T. Baker) and 0.25 g (1.81 mmol) of K2CO3 (J. T. Baker) was 

added to the solution. 0.1 mL (0.15g; 1.30 mmol) of thiophosgene (Aldrich) was slowly added to 

the solution at 0 °C. The mixture was stirred at 0 °C for 2.5 hrs, then at room temperature for 1 

day. The compound was purified by dialysis using a regenerated cellulose membrane (nominal 

MWCO 12,000-14,000; Fisher Scientific) in DMSO for three days. The solution in the dialysis 

membrane was dried in a vacuum oven (40 °C, 50 mbar) to yield 3-isothiocyanato-1,8-

naphthalimide-modified dendrimer as brown solid (34.3 mg, 25%). Anal. Calcd for 
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C718H704N154O124S32·32DMSO: C, 55.25; H, 5.31; N 12.69. Found: C, 55.60; H 5.15; N 12.73. 

The Eu3+ complex of 3-isothiocyanato-1,8-naphthalimide-modified dendrimer was synthesized 

by the following method: 0.51 mg (3.51×10-8 mol) of 3-isothiocyanato-1,8-naphthalimide-

modified dendrimer was dissolved in 6 mL of DMSO (J. T. Baker). 129.7 L of 2.17 mM 

Eu(NO3)3 solution in DMSO (2.81×10-7 mol of Eu3+) was added to the dendrimer solution. The 

mixture was incubated at room temperature for seven days. The resulting solution (conc. = 5.74 

M) was used as obtained. 

3.2.1.2 Synthesis of the generation-3 PAMAM dendrimer with 4-amino-1,8-naphthalimide 

containing europium ions (Eu-G3P4A18N) 

Glycine-conjugated 4-amino-1,8-naphthalimide was synthesized by a reported method.106 

Glycine-conjugated 4-amino-1,8-naphthalimide was attached on the amine-terminated G3 

PAMAM dendrimer by a standard amide coupling condition: 54.1 mg (2.00 × 10-4 mol) of 

glycine-naphthalimide conjugate was added to a solution of 29.4 mg (4.26 × 10-6 mol) of G3 

PAMAM dendrimer (Dendritech Inc.) in 5 mL of DMF (Sigma-Aldrich). 92.1 mg (2.42 × 10-4 

mol) of HATU (Aldrich) and 70 µL (52 mg; 4.0 × 10-4 mol) of DIPEA (Sigma-Aldrich) were 

added. The reaction mixture was stirred at room temperature for two days under nitrogen 

atmosphere while monitoring for the disappearance of G3 PAMAM dendrimer by TLC. The 

compound was purified by dialysis using a regenerated cellulose membrane (nominal MWCO 

12,000-14,000; Fisher Scientific) in DMSO for three days. The solution recovered from the 

dialysis membrane was dried in a vacuum oven (40 °C, 50 mbar) to yield G3P4A18N as brown 

solid (52.5 mg, 82%). 1H-NMR (300 MHz, DMSO-d6): δ 8.54 p.p.m. (br s, 32 H), 8.32 (br s, 32 

H), 8.15 (br s, 32 H), 8.10 (br s, 32 H), 7.90 (br s, 32 H), 7.76 (m, 28 H), 7.56 (br s, 32 H), 7.40 
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(br s, 64 H), 6.78 (br s, 32 H), 4.56 (br s, 64 H), 3.08 (m, 184 H), 2.61 (m, 120 H), 2.39 (m, 60 H 

), 2.16 (m, 120 H); analysis (% calcd, % found for C750H864N186O156·32DMSO·64H2O): C 

(52.47, 51.74), H (6.40,6.29), N (13.98, 13.76). The Eu3+ complex of G3P4A18N (Eu-

G3P4A18N) was synthesized by the following method adapted from the methods developed in 

our group104: 22.67 mg (1.513 × 10-6 mol) of G3P4A18N was dissolved in 10 mL of DMSO. 

647.5 µL of 18.7 mM Eu(NO3)3 solution in DMSO (1.21 × 10-5 mol) was added to the dendrimer 

solution. The mixture was diluted to 25.00 mL, incubated at room temperature for seven days. 

The resulting solution (conc. = 60.5 µM) was used as obtained. 

3.2.1.3 Synthesis of the generation-3 PAMAM dendrimer with naphthalimide and biotin 

 

6-Bromo-1,3-dioxo-1H-benz[de]isoquinoline-2(3H)-acetic acid ethyl ester (13) was synthesized 

as follows: 4-Bromo-1,8-naphthalic anhydride (3.00 g, 10.8 mmol) and glycine ethyl ester 

hydrochloride (1.52 g, 10.9 mmol) were suspended in toluene (120 mL) and triethyl amine (2.2 

g, 22 mmol) was added. The mixture was refluxed for 15 h. The precipitate was filtered off and 

the residual solution was concentrated in vacuo to afford 13 as light yellow solid (3.87 g, 10.7 

mmol, 99%): 1H NMR (CDCl3, 300 MHz, δ): 8.68 (dd, J = 7.2, 0.9 Hz, 1H, Ar H), 8.62 (dd, J = 

8.4, 0.9 Hz, 1H, Ar H), 8.44 (d, J = 7.8 Hz, 1H, Ar H), 8.07 (d, J = 7.8 Hz, 1H, Ar H), 7.87 (dd, J 

= 8.4, 7.2 Hz, 1H, Ar H), 4.93 (s, 2H, -CH2COO-), 4.25 (q, J = 7.2 Hz, 2H,-CH2CH3), 1.30 (t, J 

= 7.2 Hz, 3H, -CH2CH3); 
13C NMR (CDCl3, 75 MHz, δ): 167.99 (1C), 163.35 (1C), 163.32 (1C), 

133.79 (1C), 132.50 (1C), 131.64 (1C), 131.24 (1C), 130.88 (1C), 130.74 (1C), 129.18 (1C), 
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128.21 (1C), 122.65 (1C), 121.79 (1C), 61.79 (1C), 41.54 (1C), 14.27 (1C); HRMS-EI (m/z): 

[M]+ calcd for C16H12NO4Br, 360.9950; found, 360.9926. 
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N-Boc-1,8-diamino-3,6-dioxaoctane (14) was synthesized by a reported method107 with 

slight modification as follows: A solution of (Boc)2O (2.25 g, 10.3 mmol) in CH2Cl2 (50 mL) 

was added dropwise to a solution of 1,8-diamino-3,6-dioxaoctane (10.3 g, 69.7 mmol) in CH2Cl2 

(70 mL) at 0 °C for 3 h. The reaction mixture was stirred at room temperature for 4 h. The 

organic layer was successively washed with sat. NaHCO3 solution (60 mL), water (2 × 60 mL) 

and brine (80 mL), dried over anhydrous MgSO4 and concentrated in vacuo to afford 14 as a 

colorless oil (2.26 g, 9.10 mmol, 88%). 1H NMR (300 MHz, CDCl3, δ): 5.15 (br s, 1H, NH), 3.61 

(s, 4H, -OCH2CH2O-), 3.54 (t, 2H, J = 5.1 Hz, -OCH2-), 3.52 (t, 2H, J = 5.1 Hz, -OCH2-), 3.31 

(m, 2H, -CH2NHBoc), 2.88 (m, 2H, -CH2NH2), 1.73 (br s, 2H, NH2), 1.43 (s, 9H, tert-Bu); 13C 

NMR (CDCl3, 75 MHz, δ): 155.63 (1C), 78.37 (1C), 72.60 (1C), 69.70 (3C), 41.08 (1C), 39.83 

(1C), 27.97 (3C); HRMS-ESI (m/z): [M+Na]+ calcd for C11H24N2O4Na, 271.1634; found, 

271.1617.  
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Compound 15 was synthesized as follows: Imide 13 (1.41 g, 3.89 mmol) and amine 14 

(1.96 g, 7.91 mmol) were dissolved in N-methylpyrrolidone (NMP, 40 mL). N,N-

diisopropylethylamine (DIPEA, 1.04 g, 8.04 mmol) was added and the mixture was stirred for 

one day at 120 °C. Then water (50 mL) was added and extracted with EtOAc (2 × 100 mL). The 

organic layer was washed with brine (2 × 75 mL), dried over anhydrous MgSO4, and 

concentrated in vacuo. The mixture was purified by column chromatography on silica using 

EtOAc as an eluent to afford 15 as brown solid (1.70 g, 3.21 mmol, 82%): 1H NMR (300 MHz, 

CDCl3, ): 8.18 (d, J = 7.2 Hz, 1H, Ar H), 8.10 (d, J = 8.4 Hz, 1H, Ar H), 7.99 (d, J = 8.1 Hz, 

1H, Ar H), 7.28 (t, J = 7.8 Hz, 1H, Ar H), 6.36 (d, J = 8.4 Hz, 1H, Ar H), 6.18 (br s, 1H, NH), 

5.15 (br s, 1H, NH), 4.83 (s, 2H, -CH2COO-), 4.21 (q, J = 7.2 Hz, 2H, -CH2CH3), 3.74 (t, J = 7.2 

Hz, 2H, -OCH2-), 3.60 (m, 4H, -OCH2CH2O-), 3.49 (t, J = 7.2 Hz, 2H, -OCH2-), 3.41 (m, 2H, -

CH2NH-), 3.25 (m, 2H, -CH2NH-), 1.34 (s, 9H, tert-Bu), 1.27 (t, J = 7.2 Hz, 3H, -CH2CH3); 
13C 

NMR (CDCl3, 75 MHz, ): 169.20 (1C), 164.17 (1C), 163.39 (1C), 156.02 (1C), 150.07 (1C), 

134.42 (1C), 131.06 (1C), 129.37 (1C), 127.06 (1C), 124.29 (1C), 121.58 (1C), 119.96 (1C), 

108.67 (1C), 103.85 (1C), 79.21 (1C), 70.27 (1C), 70.22 (1C), 70.07 (1C), 68.62 (1C), 61.50 

(1C), 43.03 (1C), 41.10 (1C), 40.23 (1C), 28.33 (3C), 14.15 (1C); HRMS-EI (m/z): [M]+ calcd 

for C27H35N3O8, 529.2424; found, 529.2432. 
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Compound 16 was synthesized as follows: Boc-protected amine 15 (0.202 g, 0.382 

mmol) was dissolved in 5 mL of CH2Cl2 and 5 mL of trifluoroacetic acid was added. The 

solution was stirred at 0 °C for 30 min and then at r.t. for 30 min. The solvent and trifluoroacetic 

acid were removed under reduced pressure. The residue was dissolved in 5 mL of CH2Cl2 and 

washed with sat. Na2CO3 solution (5 mL) and brine (5 mL), dried over anhydrous MgSO4, and 

concentrated in vacuo to afford 16 as brownish yellow solid (0.139 g, 0.325 mmol, 85%): 1H 

NMR (300 MHz, CDCl3, ): 8.52 (d, J = 7.2 Hz, 1H, Ar H), 8.40 (d, J = 8.4 Hz, 1H, Ar H), 8.26 

(d, J = 8.4 Hz, 1H, Ar H), 7.57 (t, J = 7.8 Hz, 1H, Ar H), 6.65 (d, J = 8.4 Hz, 1H, Ar H), 6.20 (br 

s, 1H, NH), 4.92 (s, 2H, -CH2COO-), 4.24 (q, J = 7.2 Hz, 2H, -CH2CH3), 3.88 (t, J = 5.0 Hz, 2H, 

-OCH2-), 3.73-3.66 (m, 4H, -OCH2CH2O-), 3.61-3.53 (m, 4H, -OCH2- and -CH2NH-), 2.90 (br s, 

2H, -CH2NH2), 2.15 (br s, 2H, NH2), 1.30 (t, J = 7.2 Hz, 3H, -CH2CH3); 
13C NMR (CDCl3, 100 

MHz, ): 169.15 (1C), 164.15 (1C), 163.35 (1C), 150.09 (1C), 134.40 (1C), 131.04 (1C), 129.43 

(1C), 127.09 (1C), 124.27 (1C), 121.68 (1C), 120.02 (1C), 108.76 (1C), 103.92 (1C), 72.91 (1C), 

70.34 (1C), 70.09 (1C), 68.63 (1C), 61.47 (1C), 43.03 (1C), 41.47 (1C), 41.10 (1C), 14.16 (1C); 

HRMS-ESI (m/z): [M+Na]+ calcd for C22H27N3O6Na, 452.1798; found, 452.1760. 

 

Compound 17 was synthesized as follows: Amine 16 (0.0520 g, 0.121 mmol), D-biotin 

(0.0297 g, 0.122 mmol), HATU (0.0538 g, 0.141 mmol) and DIPEA (0.0371 g, 0.287 mmol) 

were dissolved in 5.0 mL of DMF. The mixture was stirred at room temperature under N2 

atmosphere for 20 h. DMF was removed in vacuo, then the residual solid was triturated to afford 
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17 as yellow solid (0.0539 g, 0.0822 mmol, 68%): 1H NMR (300 MHz, DMSO-d6, ): 8.76 (d, J 

= 8.1 Hz, 1H, Ar H), 8.46 (d, J = 6.9 Hz, 1H, Ar H), 8.28 (d, J = 8.4 Hz, 1H, Ar H), 7.93 (br t, 

1H, NH), 7.81 (br t, 1H, NH), 7.73 (t, J = 8.1 Hz, 1H, Ar H), 6.88 (d, J = 8.7 Hz, 1H, Ar H), 6.41 

(s, 1H, NH of biotin), 6.36 (s, 1H, NH of biotin), 4.77 (s, 2H, -CH2COO-), 4.28 (m, 1H, -

NHCH(CH)CH2-), 4.14 (q, J = 7.2 Hz, 2H, -CH2CH3), 4.12 (m, 1H, -NHCH(CH)CH-), 3.73 (m, 

2H, -OCH2-), 3.59 (m, 4H, -OCH2CH2O-), 3.53 (m, 2H, -OCH2-), 3.38 (m, 2H, -CH2NH-), 3.16 

(m, 2H, -CH2NH-), 3.06 (m, 1H, -CHCH(CH2)S-), 2.80 (dd, J = 12.5, 5.1 Hz, 1H, -CHCH2S-), 

2.56 (d, J = 12.0 Hz, 1H, -CHCH2S-), 2.04 (t, J = 7.5 Hz, 2H, -NHC(=O)CH2CH2-), 1.65-1.40 

(m, 4H, -NHC(=O)CH2CH2CH2CH2-), 1.27 (m, 2H, -NHC(=O)CH2CH2CH2CH2-), 1.21 (t, J = 

7.2 Hz, 3H, -CH2CH3); 
13C NMR (CDCl3, 75 MHz, ): 172.12 (1C), 168.37 (1C), 163.52 (1C), 

162.70 (1C), 162.46 (1C), 151.10 (1C), 134.61 (1C), 131.11 (1C), 129.63 (1C), 129.16 (1C), 

124.50 (1C), 121.34 (1C), 120.22 (1C), 107.02 (1C), 104.19 (1C), 69.81 (1C), 69.57 (1C), 69.18 

(1C), 68.13 (1C), 61.02 (1C), 60.94 (1C), 59.18 (1C), 55.43 (1C), 42.80 (1C), 40.88 (1C), 40.66 

(1C), 38.40 (1C), 35.09 (1C), 28.19 (1C), 28.03 (1C), 25.26 (1C), 14.07 (1C); HRMS-ESI (m/z): 

[M+Na]+ calcd for C32H41N5O8SNa, 678.2574; found, 678.2632. 

 

Compound 18 was synthesized as follows:: Ester 17 (0.355 g, 0.541 mmol) was 

suspended in 20 mL of MeOH. NaOH (0.266 g, 6.65 mmol) was dissolved in 10 mL of water 

and added to the suspension in MeOH. Upon addition of NaOH, the suspension changed to clear 

solution. The mixture was stirred at 40 °C for 5 h. The solution was acidified with 7 mL of 1 M 
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HCl at 0 °C, and yellow solid was formed. The solid was filtered, washed with cold water, and 

dried in vacuo to afford 18 (0.286 g, 0.4562 mmol, 84%): 1H NMR (300 MHz, DMSO-d6, ): 

12.94 (br s, 1H, -COOH), 8.76 (d, J = 8.7 Hz, 1H, Ar H), 8.46 (d, J = 7.2 Hz, 1H, Ar H), 8.28 (d, 

J = 8.7 Hz, 1H, Ar H), 7.91 (br t, 1H, NH), 7.82 (br t, 1H, NH), 7.72 (t, J = 7.8 Hz, 1H, Ar H), 

6.87 (d, J = 8.7 Hz, 1H, Ar H), 6.41 (s, 1H, NH of biotin), 6.36 (s, 1H, NH of biotin), 4.69 (s, 

2H, -CH2COO-), 4.28 (m, 1H, -NHCH(CH)CH2-), 4.11 (m, 1H, -NHCH(CH)CH-), 3.79 (m, 2H, 

-OCH2-), 3.59 (m, 4H, -OCH2CH2O-), 3.53 (m, 2H, -OCH2-), 3.39 (m, 2H, -CH2NH-), 3.16 (m, 

2H, -CH2NH-), 3.06 (m, 1H, -CHCH(CH2)S-), 2.80 (dd, J = 12.3, 5.1 Hz, 1H, -CHCH2S-), 2.56 

(d, J = 12.3 Hz, 1H, -CHCH2S-), 2.04 (t, J = 7.4 Hz, 2H, -NHC(=O)CH2CH2-), 1.65-1.40 (m, 

4H, -NHC(=O)CH2CH2CH2CH2-), 1.27 (m, 2H, -NHC(=O)CH2CH2CH2CH2-); 
13C NMR 

(CDCl3, 75 MHz, ): 172.14 (1C), 169.75 (1C), 163.56 (1C), 162.72 (1C), 162.55 (1C), 151.02 

(1C), 134.53 (1C), 131.03 (1C), 129.62 (1C), 129.10 (1C), 124.48 (1C), 121.48 (1C), 120.22 

(1C), 107.18 (1C), 104.14 (1C), 69.81 (1C), 69.59 (1C), 69.18 (1C), 68.13 (1C), 61.03 (1C), 

59.18 (1C), 55.45 (1C), 42.79 (1C), 40.87 (1C), 40.51 (1C), 38.41 (1C), 35.11 (1C), 28.21 (1C), 

28.05 (1C), 25.28 (1C); HRMS-ESI (m/z): [M+Na]+ calcd for C30H37N5O8SNa, 650.2261; found 

650.2259. 

 

 

Biotin conjugated dendrimer 19 was synthesized as follows: 283.5 mg (4.516 × 10-4 mol) 

of 18 was added to a solution of 78.90 mg (1.142 × 10-5 mol) of G3 PAMAM dendrimer in 25 
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mL of DMF. 197.9 mg (5.205 × 10-4 mol) of HATU and 300 µL (223 mg; 1.72 × 10-3 mol) of 

DIPEA were added. The reaction mixture was stirred at room temperature for two days under 

nitrogen atmosphere while monitoring for the disappearance of G3 PAMAM dendrimer by TLC. 

The compound was purified by dialysis using a regenerated cellulose membrane (nominal 

MWCO 12,000-14,000) in DMSO for four days. The solution recovered from the dialysis 

membrane was dried in a vacuum oven (40 °C, 50 mbar) to yield dendrimer 19 as brown solid 

(144 mg, 48%). 

3.2.2 Spectroscopic Characterization of of Lanthanide-Dendrimer Complexes 

Absorption spectra were recorded on samples in a Perkin-Elmer Lambda 9 BX Spectrometer, 

coupled with a personal computer using software supplied by Perkin-Elmer (Waltham, MA). 

Steady-state emission and excitation spectra were analyzed using a modified Horiba 

Jobin Yvon Spex Fluorolog-322 Spectrofluorometer, coupled to a personal computer with 

software supplied by Horiba Jobin Yvon Inc. (Edison, NJ). Emission and excitation spectra were 

corrected for the instrumental function. Samples were placed in 1 mm quartz fluorescence cells 

purchased from NSG Precision Cells, Inc. (Farmingdale, NY). 

The Eu3+ luminescence lifetime measurements were performed using a Nd:YAG 

Continuum Powerlite 8010 laser (354 nm, third harmonic) as the excitation source. Emission was 

collected at a right angle to the excitation beam, and signals arising from the 5D0 → 7F2 Eu3+ 

transition (615 nm) were selected by a Spectral Products CM 110 1/8 meter monochromator. The 

signal was monitored using a Hamamatsu R928 photomultiplier coupled to a 500 MHz band pass 

digital oscilloscope (Tektronix TDS 754D). For each flash, the experimental decay was recorded 
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with a resolution of 50,000 points. To minimize experimental contribution, signals from >1000 

flashes were collected and averaged. Luminescence decay curves were analyzed with Origin 7.0 

software. The experimental decay curves were fitted to single, double, and triple exponential 

models using the Chi-squared criteria to discriminate the best exponential fit. Four independent 

decay curves were collected for the sample. 

For the photobleaching experiments, approximately 0.9 mL of each solution (0.2 µM in 

30% DMSO/H2O) was transferred into a 0.9 mL semimicro absorbance cuvette supplied by 

Varian (catalog number 66-100127-00). The cuvette was stoppered and parafilmed at the 

beginning of each trial to prevent solvent evaporation. Photobleaching was quantified with a 

Perkin-Elmer UV/Vis, collecting at 240 λ/nm scan rates. Samples were exposed to white light 

from the Xenon lamp of the Horiba Jobin Yvon Spex Fluorolog-322 Spectrofluorometer in-

between scans. A water circulator was used to maintain constant room temperature (23 °C) 

within the fluorimeter during long periods of exposure. 

For the quantum yield experiments, spectra were collected and analyzed using the Horiba 

Jobin Yvon Spex Fluorolog-322 fitted with an integrating sphere108 using quartz tubes as sample 

holders. A 20 μM solution of Eu-G3P4A18N in 30% DMSO/H2O was used for this analysis, and 

all spectra were corrected for the response of the lamp before integrating. Integrated values were 

used to determine the quantum yield by calculating the ratio of the photons into the sample to the 

photons emitted by the sample. 
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3.2.3 Mobility Determination by Capillary Zone Electrophoresis 

The Eu-G3P4A18N dendrimer samples were characterized with electrophoretic analysis by CZE 

with diode array UV absorbance detection with an Agilent CE system (Agilent Technologies, 

Palo Alto, CA). A 75.0 μm i.d. unmodified fused silica capillary (Polymicro Technologies, 

Phoenix, AZ) 34.0 cm in total length, and 8.5 cm to the detector (short end) was employed. The 

background electrolyte was 40 mM phosphoric acid in 30% DMSO and 70% 18MΩ-cm water at 

pH of 2.3. Each day prior to use, the capillary was preconditioned with 1 M NaOH for 5 min, 18 

MΩ-cm water for 15 min and running buffer for 15 min. The capillary was flushed with running 

buffer for 2 min in between analysis. A separation potential of 17.0 kV was employed and a co-

flow pressure of 10 mbar was also applied during the electrophoresis. Dendrimer samples were 

at a concentration of 3 mg/mL in DMSO. Hydrodynamic injection (50 mbar, 1.5 sec) was 

employed, and the capillary was maintained at 25 °C. Detection was performed at 450 nm and 

280 nm, and UV-vis spectra were collected in each peak. A small co-flow pressure of 10 mbar 

during electrophoresis was needed to reliably detect the neutral zone corresponding to the 

DMSO from the injection plug, and the migration time for this solvent zone was used to 

calculate the electroosmotic mobility of the system. 

3.2.4 Methods for Imaging with Eu- ITC 

3.2.4.1 Cell culture and cell viability assay 

The human breast cancer cell line MDA-MB-231 and normal mammary epithelial cell line MCF-

10A was purchased from American Type Culture Collection (Manassas, VA). Monolayer 
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cultures of MDA-MB-231 were maintained in RPMI 1640 supplemented with 10% fetal bovine 

serum and antibiotics. The nontumorigenic human mammary epithelial cell line MCF-10A was 

cultured in serum-free Mammary Epithelial Growth Medium (Clonetics, San Diego, CA) 

supplemented with 100 ng/mL cholera toxin (Calbiochem, La Jolla, CA). Each cell line was 

maintained at 37 °C in an atmosphere of 95% air and 5% CO2. Stock solution of Eu-Dendrimer 

(Eu) and Eu-Dendrimer conjugated with an active agent, the isothiocyanite group (Eu-ITC), was 

prepared in dimethyl sulfoxide (DMSO) and stored at -20ºC. Each molecule of dendrimer was, 

on average, conjugated to 30 molecules of ITC therefore all concentrations presented refer to the 

concentrations of the active ITC molecule ([dendrimer] x 30 ITC attached = [Eu-ITC]). The 

NITC was reconstituted in DMSO and used as a positive control for ITC. An equal volume of 

DMSO (final concentration <0.1%) was added to the controls. Effect of Eu-ITC and Eu 

(dendrimer without the active ITC group) on cell viability was determined by trypan blue dye 

exclusion assay. 5 x 103 MDA-MB-231 cells and 2 x 104 MCF-10A cells were plated in 24-well 

plate and allowed to attach overnight. The medium was replaced with fresh complete medium 

containing desired concentrations of Eu-ITC, Eu NITC and DMSO (control), and the plates were 

incubated for 24 and 48 hrs at 37 °C in a humidified atmosphere of 95% air and 5% CO2. Both 

floating and adherent cells were collected by trypsinization and pelleted by centrifugation at 700 

g for 5 min. The cells were re-suspended in 25 µl phosphate buffered saline (PBS), mixed with 5 

µl of 0.4% trypan blue solution and counted using a hemocytometer.  

3.2.4.2 Determination of apoptosis 

The Cell Death Detection kit was purchased from Roche Applied Science (Indianapolis, IN). 

This ELISA-based method detects apoptotic cell death in cellular systems by measuring 
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cytoplasmic histone-associated DNA fragments. Briefly, 4 x 104 MDA-MB-231 cells and 1.2 x 

104 MCF-10A cells were seeded in 48-well plates, allowed to attach overnight and then treated 

with desired concentrations of Eu, Eu-ITC, NITC or DMSO for 24 and 48 h. Both floating and 

adherent cells were collected, and processed for quantification of cytoplasmic histone-associated 

DNA fragments according to the manufacturer's instructions. 

3.2.4.3 Western blot analyses 

The MDA-MB-231 cells were plated in at 1x 106 in 100 mm plates and exposed to desired 

concentrations of Eu-ITC, NITC and DMSO-control for 48 hrs. The cells were then harvested by 

scraping, washed with ice-cold PBS, lysed on ice with a solution containing 50 mM Tris, 1% 

Triton X-100, 0.1% sodium dodecyl sulfate, 150 mM NaCl, 2 mM Na3VO4, 2 mM EGTA, 12 

mM ß-glycerol phosphate, 10 mM NaF, 16 µg/ml benzamidine hydrochloride, 10 µg/ml 

phenanthroline, 10 µg/ml aprotinin, 10 µg/ml leupeptin, 10 µg/ml pepstatin and 1 nM phenyl 

methyl sulfonyl fluoride. The cell lysate was cleared by centrifugation at 14 000 g for 30 min. 

Supernatant was then collected and saved as protein lysate. Protein content in each sample was 

determined using the Bradford method. 60 μg of protein lysate was resolved by 10-12.5% 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the proteins were transferred 

onto polyvinylidene fluoride membrane. The membranes were then blocked by incubation in 

solution containing Tris-buffered saline, 0.05% Tween-20, and 5% (w/v) nonfat dry milk. The 

membrane was treated with the desired primary antibody (anti-Caspase-9, anti- PARP, anti-β-

actin) for 1 h at room temperature or overnight at 4 °C. Following treatment with appropriate 

secondary antibody, the immunoreactive bands were visualized by enhanced chemiluminescence 

method. The blots were stripped and re-probed with anti-actin antibody to correct for differences 
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in protein loading. Immunoblotting for each protein was performed at least twice using 

independently prepared lysates to ensure reproducibility of the results. 

3.2.4.4 Immunofluorescence and confocal microscopy 

The MDA-MB-231 cells (5x104) were plated on coverslips and allowed to attach by overnight 

incubation. The cells were then exposed to DMSO (control) or Eu-ITC dendrimer complex (5, 

10, or 20 μmol/L, as ITC) for 24 h at 37 °C, washed with PBS, and fixed with 2% 

paraformaldehyde at 4 °C overnight. The cells were permeabilized with 0.5% Triton X-100 for 

15 min at room temperature. Subsequently, the cells were washed with PBS, and counterstained 

with 100 ng/ml DAPI for 5 min. Slides were mounted and examined under a Leica fluorescence 

microscope at x100 (objective lens) magnification or under a FluoView 1000 confocal 

microscope at x100 (objective lens) magnification and a 1.4 zoom. 

For lysosomal labeling, cells were treated as described above, washed with PBS, and incubated 

with LysoTracker green DND-26 (50nM) for 30 min. The cells were then washed with PBS, and 

examined under a Leica fluorescence microscope at x100 magnification (objective lens). 

3.2.5 Methods for Imaging with Eu-G3P4A18N 

3.2.5.1 Animal model 

Four to six week old male WAG/RijHsd rats were purchased from Harlan, Netherlands. Rats 

were fed ad libitum and maintained in environments with controlled temperature of 22–24 °C 

and 12 hours light and dark cycles. All procedures involving the rats were in accordance with the 

Guide for the Care and Use of Laboratory Animals (National Research Council, 1996) and on a 
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protocol approved by the Institutional Animal Care and Use Committee of the University of 

Pittsburgh. 

3.2.5.2 Generation of colorectal metastasis by single tumor implantation 

While others have initiated colorectal metastasis by injecting cancer cells via the portal vein, 

superior mesenteric vein109 or spleen,110 these approaches lead to small diffuse lesions, which are 

difficult to study.111 We generated the isolated hepatic colorectal metastasis model by way of 

implanting CC531 tumor pieces into rat livers. Fourteen twenty-to-thirty-week-old WAG/RijHsd 

rats were anesthetized with a single intraperitoneal injection of 70 mg/kg of Ketamine (Bedford 

Labs) and 2.5 mg/kg of Acepromazine (Boehringer Ingleheim Vetmedica, Inc.). An 

intramuscular injection of 0.1 mg/kg of Buprenorphine (Bedford Labs) was also administered for 

analgesia prior to incision. Following midline incision, CC531 tumor nodules (1 × 2 mm 

weighing 25 mg) were implanted in the subcapsular area of the left lateral lobe (LLL) of the rat. 

These implanted tumor nodules were isolated from CC531 tumors grown hepatic implants in 

WAG/RijHsd rats. The tumors were placed about 5 mm deep to the subcapsular area of the LLL 

of the liver where it was easily found 20 – 30 days later when the rat underwent a second 

laparotomy for GDA cannulation and hepatic infusion of the Eu-G3P4A18N solution. 

3.2.5.3 Anesthesia 

Rats were anesthetized with a single intraperitoneal injection of 70 mg/kg of Ketamine (Bedford 

Labs, OH) and 2.5 mg/kg of Acepromazine (Boehringer Ingleheim Vetmedica, Inc., MO). An 

intramuscular injection of 0.1 mg/kg of buprenorphine (Bedford Labs, OH) was also 
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administered for analgesia prior to incision and 12-24 hours later if rats displayed any sign of 

distress. 

3.2.5.4 GDA cannulation procedure with Eu-G3P4A18N 

Once anesthetized, the rat was placed in the supine position on a heating pad (Deltaphase 

Isothermal Pad, Braintree Scientific, MA) to maintain body temperature. The abdomen was 

shaved and sterilely prepared; all subsequent steps were performed aseptically; non-glare bright 

lighting was obtained with a fiber optic light source (Ehrenreich Photo Optical Industries, NY). 

A 5 cm midline incision was made using a #10 scalpel and carried down into the peritoneal 

cavity and hemostasis was achieved with sterile gauze and pressure. The bowel was then brought 

to the surface and flipped to the left of the abdomen revealing the hepaticoduodenal ligament, 

portal vein, hepatic artery, bile duct and inferior aspect of the liver. The portal vein was isolated 

using a 6-0 silk suture and fine tipped tweezers (Miltex, PA) were used to reveal the vein, 

allowing clear visualization of the hepatic artery running posterior and adherent to it. After the 

hepatic artery was separated from the portal vein, the artery was then isolated with a 6-0 silk 

suture. The hepatic artery was traced inferiorly to the branching point where it meets with the 

GDA. The GDA was also isolated using a 6-0 silk suture at the most inferior point and 

skeletonized using fine tipped tweezers. Two 6-0 silk sutures were placed about 3 mm apart at 

the superior portion of the GDA and tied on loosely for control of the catheter after placement. 

Fine tipped 4.5 inch curved iris scissors (Miltex, A) were used to make a 0.5 mm arteriotomy 

into the middle of the GDA without bisecting it. Hemostasis was achieved with the superiorly 

placed 6-0 silk sutures. A 30 gauge needle bent halfway was used as a “hook” to help guide a 

polyethylene (PE-10) catheter (Becton, Dickinson and Company, NJ) retrograde into the GDA 
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and placed just before the bifurcation of the hepatic artery and the GDA. The catheter was 

inserted into the arteriotomy and placed approximately 4 mm into the GDA, stopping before the 

GDA-hepatic artery junction. The superiorly placed suture along with a second one placed 1 mm 

next to it was tied down to secure the catheter. 

To prevent inflow of blood into the liver, micro vessel clamps were placed on the portal 

vein and the hepatic artery. Catheter placement was confirmed by visualizing blood return in the 

catheter upon drawing back on the syringe and patency was confirmed with an infusion of 1-2 ml 

of normal saline. Complete isolation of the liver was achieved through occlusion of the 

suprahepatic inferior vena cava (IVC) with cotton swabs during infusion of Eu-G3P4A18N. 

3.2.5.5 Cell Culture and generation of colorectal metastasis by splenic injection 

CC531 cell line is a moderately differentiated colon adenocarcinoma syngeneic to WAG/RijHsd 

rats.112 Tumor cells were tested and found to be virus- and mycoplasma-free. CC531 cells were 

cultured in Dulbecco’s modified eagle medium (DMEM) (Gibco; Grand Island, NY) 

supplemented with 10% fetal bovine serum. Cells were maintained by serial passage. Tumor 

cells were harvested with a solution of 0.25% trypsin (Sigma; St. Louis, MO), washed three 

times in 0.9% NaCl solution buffered with 1.4 mM phosphate (PBS) and adjusted to a 

suspension containing 2 × 106 viable (trypan blue exclusion test) tumor cells per 200 µL of PBS, 

which were then injected into the spleen to generate metastatic tumor nodules in the liver. 

Metastatic lesions to the liver were revealed 20–25 days later after a midline incision was 

performed. 
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3.2.5.6 Luminescence imaging of hepatic tumors 

In vivo administration of the Eu-G3P4A18N (300L of a 60 M solution in 10% DMSO/H2O) 

was captured as it was being infused and selectively associating with the liver tumor. The 

imaging system used to detect the luminescence of the dendrimer is custom-made, combining 

either a Andor DU 434-BR-DD cooled charge coupled device (CCD) camera (Andor 

Technology, South Windsor, CT) or Rolera XR fast digital CCD camera (QImaging; Surrey, 

Canada) fitted with a 50 mm AF Nikkor lens containing a minimum aperture of F16 and 

maximum aperture of F1.4. The emission filters used were 610 / 30 nm and a 740 / 140 nm 

cutoff in wavelength (Chroma Technologies; VT). The rat livers on living animals were excited 

using four, 5 Watt LEDs, emitting at 450 nm (Lumileds Lighting; CA). Qcapture software 

(QImaging, Surrey, Canada) was used for the data acquisition. 

Luminescence imaging of 10 m tumor sections following hepatic arterial infusion of 

functionalized dendrimers was accomplished with an Olympus FV1000MPE multi photon laser-

scanning unit fitted to an IX81 microscope (Olympus Corp.; Tokyo, Japan). Illumination for 

two-photon excitation at 820 nm was provided by a mode-locked Chameleon Ultra Ti:Sapphire 

laser (Coherent Inc.; Santa Clara, CA). An Olympus 25x objective with N.A. of 1.05 was used to 

acquire images. Luminescence emission was collected with an external photomultiplier tube 

using a 570 – 625 nm bandpass filter. Scan resolution was set to 1024 × 1024 pixels at 4096 grey 

scales. 

3.2.5.7 Histopathology of liver tumors sections 

Tissue sections (10 microns) from dendrimer-infused livers were also processed for routine 

hematoxylin and eosin (H&E) and immunohistochemistry staining. Tissues were fixed with 2% 



 82 

 

paraformaldehyde for 2 h at 4 °C, and then left overnight in 30% sucrose at 4 °C. The samples 

were frozen in a liquid nitrogen-cooled bath of 2-methyl-butane and cryosectioned. Sections 

were labeled with monoclonal CD31 (ABR MA1-26196) and Alexa Fluor 647 phalloidin 

(Invitrogen A22287). Goat anti mouse Cy3 secondary antibody for CD31 and DAPI followed. 

Images were then taken on the Olympus FV1000 confocal microscope. 

3.2.6 Methods for Imaging with Ln-G3P-NB 

3.2.6.1 Cytotoxicity test 

The cells were seeded 2 days before the experiment in a 96 well plate at a rate of 1,104 cells per 

well. The next day, cells were incubated with different concentrations of dendrimer diluted in 

OptiMEM medium + 2% FCS. After 24 h of incubation at 37 °C, the Alamar Blue (Invitrogen) 

was added at 10% volume of culture medium from each well and the cells are at 37 °C for about 

4h. Fluorescence was measured using a fluorimetric plate reader (Victor, Perkin-Elmer). The 

wavelengths of excitation and emission are 560nm and 605nm respectively. The fluorescence 

intensity of the medium is in connection with the cellular respiration. The percentage of toxicity 

was calculated based on the fluorescence of untreated control cells. 

3.2.6.2 Imaging of HeLa cell with Yb-G3P-NB 

HeLa cells were seeded at 7104 cells per well in a LabTek 4-well 24 hours before being 

incubated with the dendrimer-Yb-G3P NB 1μM at 37 °C.The cells were observed using a Zeiss 

Axiovert 200M ® video microscope coupled to a cooled Evolve EMCCD camera 512 (Roper 

Scientific) to work in the near infrared. The objective used was a Zeiss Plan Apochromat 40x 
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and the excitation source is a lamp 120W-HXP. The chromophore is excited at 485/20nm, the 

emission of the chromophore is collected 525/50nm (4ms exposure) and that of Yb3+ with a 

770nm Long Pass (1.6s exposure). The acquisition and image processing are made with Zeiss 

AxioVision software 3.1. 

3.3 RESULTS AND DICUSSION 

3.3.1 Imaging with the generation-3 PAMAM dendrimer with 3-isothiocyanato-1,8-

naphthalimide containing europium ions (Eu-ITC) 

3.3.1.1 Design and synthesis of the compound 

A luminescent lanthanide-dendrimer system based on a generation-3 dendrimer (Figure 3.2) was 

designed and synthesized. The use of this dendrimer allows a high density of naphthalimide 

emitting groups, resulting in a large number of emitted photons and a large number of attached 

therapeutic ITC units. We also have formulated the hypothesis that the dendrimer impacts the 

retention time of the imaging modalities and therapeutic units. Naphthalimides also offer the 

opportunity to be covalently attached to therapeutic units. Therapeutic agents may include 

antibody moieties which could target specific tissue or active treatment agents. We selected 

isothiocyantes (ITC) as an interesting group of compounds for several reasons: 1) organic ITC 

has been identified as the active components of cruciferous vegetables,113, 114 whose dietary 

intake is known to be correlated with reduced risk of a variety of malignancies, including breast 

cancer;115-120 2) ITC can be relatively easily attached covalently to the naphthalimides; 3) 
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previous in vitro and in vivo studies demonstrated that ITC selectively inhibits growth of cancer 

cells without significant impact on normal tissues;121-125 4) based on pharmacokinetics and 

pharmacodynamic studies ITC can be readily removed from the body (half-life of 5 h),13, 126-128 

thus covalently attaching them to naphthalimides could extend their bioavailability and 

therapeutic efficiency. 

The ITC groups were covalently attached on the surface of dendrimer, i.e. on the 

chromophore (1,8-naphthalimide). With this design, a large number of ITC units per unit volume 

can be delivered to the cells, and the bio-distribution as well as the water-solubility of dendrimer 

can be increased. Since ITC groups readily react with primary amines, ITC groups were 

introduced at the final step of the synthesis. 3-Amino-1,8-naphthalimide was used as a precursor 

for the ITC-compound, which can be easily converted to an ITC group by reaction with 

thiophosgene. 3-Amino-1,8-naphthalic anhydride was reacted with NH2-terminated generation-3 

PAMAM dendrimers, inspired by a previously reported method. In order to ensure the complete 

substitution of each dendrimer arms, 1.5 equivalent (in respect to each arm) of 3-amino-1,8-

naphthalic anhydride was used. After conversion of amino groups to ITC groups, the compound 

was characterized using elemental analysis. The result indicates complete substitution and 

conversion of each arm to 3-isocyanato-1,8-naphthalimide. Interestingly, the analytical data 

show that this molecule still contains 32 molecules of DMSO that corresponds to one solvent 

molecule for each of the 32 arms (final molecular weight = 17204.14 g/mol). This result 

indicates that despite the extensive vacuum drying of the compound, some solvent molecules 

remain strongly bound by the dendrimer arms. We have previously observed a comparable 

phenomenon for a dendrimer of the same family (2,3-naphthalimide substituted generation-3 

PAMAM) that contains 32 molecules of a different solvent, H2O. 
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Figure 3.2. Molecular structure of the generation-3 PAMAM dendrimer with 3-isothiocyanato-1,8-naphthalimide 

containing europium ions (Eu-ITC) 
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Figure 3.3. Synthesis of the generation-3 PAMAM dendrimer with 3-isothiocyanato-1,8-naphthalimide containing 

europium ions 

3.3.1.2 Photophysical properties 

The absorption spectrum of the Eu-ITC compound is depicted in Figure 3.4(a) (blue) and 

compared to that of the precursor system which does not contain ITC (red). The overall 

absorption cross-section is broadened as a result of ITC conjugation, with significantly increased 

epsilon values at longer wavelengths. The increased epsilon values in the red domain of the 

absorption profile are an advantage of ITC conjugation. Photons in the red/near-infrared region 

interact less with biological media and allow better detection sensitivity due to the absence of 

native biological emission in region of the electromagnetic spectrum. Fluorescence spectra of 

both compounds obtained upon excitation at 347 nm are presented in Figure 3.4(b). The apparent 

fluorescence maximum of Eu-ITC appears to be blue-shifted in respect to the precursor. In order 

to quantify the efficiency of the fluorescent system, quantum yields were collected for the ITC 

compound upon 347 nm excitation using a quinine sulfate reference. A value of 4.33 ± 0.03% 

was calculated. The red-edge tail of Eu-ITC emission extends further than that of the precursor 
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system, offering an area of detection which is favorable for biologic applications. Time-resolved 

emission spectroscopy was utilized to confirm the nature of Eu-ITC emission. In addition to 

observing the characteristically sharp Eu3+ bands at 614 nm and 698 nm (5D0→
7F2 and 5D0→

7F4 

transitions, respectively), the apparent emission maximum shifts from approximately 425 nm to 

500 nm after a 0.1 ms delay time is applied to detection acquisition. This noted shift is consistent 

with the time-resolved emission signal being partly due to phosphorescence. The steady-state 

signal, however, was used to monitor the emission arising from the compound in the cells, 

providing good detection sensitivity. 

  

Figure 3.4. Photophysical properties of the Eu-ITC dendrimer versus control compound Eu-G3P18N-G3-(1,8-

naphthalimide)32 (that does not contains the ITC groups) 7 × 10-6 M solutions in a mixture of 10% DMSO/H2O: (a) 

Absorption spectra for both ITC (blue) and control (red) compounds in solution, b) Fluorescence profiles for ITC 

(blue) and control (red) solutions upon excitation at 347 nm 

3.3.1.3 Eu-ITC inhibits proliferation of MDA-MB-231 breast cancer cells 

To examine the effects of Eu-ITC on cell growth and viability we treated breast cancer cells and 

normal breast cells with Eu-ITC, NITC (naphthyl isothiocyanate), Eu (dendrimer without the 

(a) (b) 
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ITC moieties attached), or DMSO (control) for 24 hours and evaluated cell viability by trypan 

blue exclusion assay. Previous experimental data shows that ITC can inhibit cancer cell growth 

at concentrations as low as 2.5-10 μM.122, 129, 130 As observed in Figure 3.5(a), treatment with Eu-

ITC resulted in significant reduction in cell viability (by 30-40% for 5 and 10 M Eu-ITC, 

respectively) in MDA-MB-231 cells. However, the same treatment of normal breast MCF-10A 

cells did not result in reduction of their viability (Figure 3.5(a) lower panel). Exposure to NITC 

(positive control) produced reduction in viability that was similar to that observed with Eu-ITC 

in MDA-MB-231 cancer cells (Figure 3.5(a)). However it was not selective for cancer cells, as 

NITC treatment reduced the viability of normal breast MCF-10A cells as well. Interestingly, the 

presence of Eu-dendrimer alone was not able to induce any changes in cell viability in either 

normal breast cells or the cancerous ones, which indicates that the activity of the compound can 

be attributed to the ITC moiety of the Eu-ITC compound and that the Eu-ITC is selectively 

affecting cancer cells without having a toxic effect on normal breast cells. 

3.3.1.4 Eu-ITC treatment induces apoptosis in MDA-MB-231 cells 

Reduced cell viability may be a result of apoptosis or reduced proliferation. In order to determine 

whether Eu-ITC induced apoptosis, we quantified cytoplasmic histone-associated DNA 

fragmentation. Exposure of MDA-MB-231 breast cancer cells to 10 M Eu-ITC resulted in an 

over two-fold increase in cytoplasmic histone-associated DNA fragments as compared to control 

cells, which is indicative of apoptosis (Figure 3.5(b)). A similar increase was observed in 

response to NITC treatment in the cancer cells. When MCF-10A normal breast cells were 

exposed to Eu-ITC, it did not result in a significant increase in the levels of cytosolic histone-

associated DNA fragments, while NITC treatment increased the cytosolic histone-associated 
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DNA by over three fold (Figure 3.5(b)).  It is important to note that the Eu dendrimer alone did 

not have an appreciable effect on either the normal or the breast cancer cells. To confirm our 

initial observation, expression of caspase-9 and PARP cleavage were examined as markers of 

apoptosis. We observed that a 24 hour treatment with Eu-ITC induced PARP cleavage in a dose 

dependent manner in MDA-MB-231 cells (Figure 3.5(c)). We have also detected a noticeable 

increase in the cleaved caspase 9 form with simultaneous decrease in the pro-caspase 9 form in 

MDA-MB-231 breast cancer cells in response to the Eu-ITC treatment (Figure 3.5(c)). All 

together these results indicate that Eu-ITC is affecting breast cancer cells by inducing apoptosis. 

Our results clearly indicate that Eu-ITC dendrimers retain the selectivity for the cancer cells that 

was previously observed for naturally occurring organic ITC.122, 131 At this time, it is not fully 

clear yet what mechanisms are responsible for induction of cell death. It is possible that just like 

in case of other ITC, the mechanism is related to the presence of an electrophilic substance that 

can be reacting with nucleophilic compounds in the cell such as glutathione.132 In such a case, 

the redox status of the cell would be changed leading to apoptosis.129, 130 We should also consider 

other possibilities as the size of the dendrimer molecule may induce changes in the ITC 

activities. Elucidation of the mechanism behind Eu-ITC pro-apoptotic activity will require 

further evaluations.  
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Figure 3.5. Differential response of MDA-MB-231 breast cancer cells and normal epithelial breast cells MCF-10A 

to treatment with europium dendrimer (Eu), europium dendrimer with isothiocyanate moieties (Eu-ITC), and NITC. 

(a) Cell viability of MDA-MB-231 and MCF-10A cells after 48 hrs of treatment with Eu, Eu-ITC, NITC or DMSO 

(control); (b) Induction of apoptosis in MDA-MB-231 and MCF-10A cells in response to Eu, Eu-ITC, NITC, or 

DMSO (control) (48hrs); (c) Immunoblotting for PARP and Caspase-9 using protein lysates from MDA-MB-231 

cells treated with Eu-ITC, NITC or DMSO-control for 48 hrs. Blots were stripped and re-probed with an anti-actin 

antibody to ensure protein loading. 

 

(a) (b) 

(c) 
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3.3.1.5 Cellular uptake and localization of Eu-ITC dendrimer in MDA-MB-231 breast 

cancer cells 

Thanks to the fluorescence of the Eu-ITC dendrimer, we were able to evaluate cellular uptake 

and localization of Eu-ITC dendrimer in MDA-MB-231 breast cancer cells by using fluorescent 

and confocal microscopy. Fluorescent microscopy showed a dose-dependent cellular uptake of 

Eu-ITC dendrimer in breast cancer cells (Figure 3.6). Cellular distribution of red fluorescence 

showed that Eu-ITC dendrimer was mainly localized in the cytoplasm, and revealed a punctuate 

pattern, indicating that Eu-ITC dendrimer may be sequestered into vesicles. At higher 

concentrations (>20 μmol/L), a low level of red fluorescence was observed throughout the cell, 

suggesting a slow diffusion of Eu-ITC dendrimer throughout the cell. The control (DMSO-

treated) cells showed no red fluorescence (Figure 3.6). 

 

Figure 3.6. Fluorescence microscopy images showing a dose-dependent cellular uptake of Eu-ITC dendrimer in 

MDA-MB-231 cells. Fluorescent microscopy images depicting Eu-ITC dendrimer (red), DAPI (blue), and merged 

images of  MDA-MB-231 cells treated with DMSO (control) or Eu-ITC dendrimer (10, and 20μmol/L, as ITC) for 

24 h. 100x objective lens magnification. 
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The cellular delivery of Eu-ITC dendrimer inside the cells was also confirmed using 

confocal microscopy (Figure 3.7(a)), which clearly shows presence of the Eu-ITC within the cell 

and in the vicinity of the nucleus. Finally, to elucidate the origin of the punctuate pattern we 

observed in our initial microscopic analysis, LysoTracker green probes were used for labeling 

and tracking acidic organelles such as lysosomes in MDA-MB-231 live cells. Lyosomal 

fluorescence was co-localized with Eu-ITC dendrimer fluorescence indicating the uptake of 

dendrimer into the acidic vesicles (Figure 3.7(b)). It is hypothesized that accumulation of 

nanoparticles in lysosomes could lead to disruption of the lysosomal membrane (due to increased 

osmotic pressure) thus leading to the release of the nanoparticles into the cytoplasm.133-135 

Lysosomal localization of nanoparticles was previously reported in several models. For example, 

Bottini et al134 showed that in Jurkat T leukemia cells exposed to silica nanobeads functionalized 

with antihuman CD2 and CD28 were able to uptake them via endocytosis and encapsulate them 

in lysosomal compartment. In this case, the endocytosis was mediated by receptor interaction.134 

However this interaction is not necessary for the uptake of dendrimer nanoparticles. Specifically, 

Ottaviani et al133 indicated that PAMAM dendrimers may be able to interact with cellular 

membranes via electrostatic interactions between cationic polymer and anionic cell surface. The 

presence of eight Eu3+ in the Eu-ITC compound may further augment these electrostatic 

interactions. Use of the dendrimer as a mode of delivering ITC to the cells could also have other 

advantages: 1) increase in the local concentration of ITC and thus potentially increasing their 

activity, and 2) improvement of the bioavailability of the ITC by increasing the half-life of these 

molecules. 
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Figure 3.7. Confocal microscopy images showing Eu-ITC dendrimer internalization in MDA-MB-231 cells. (a) 

Confocal microscopy images depicting Eu-ITC dendrimer (red), DAPI (blue), and merged images of MDA-MB-231 

cells treated with DMSO (control) or Eu-ITC dendrimer (20 μmol/L, as ITC) for 24 h. 100x objective lens 

magnification, 1.4 zoom; (b) Fluorescence microscopy images showing retention of Eu-ITC dendrimer in acidic 

organelles. Fluorescent microscopy images depicting Eu-ITC dendrimer (red), acidic organelles (green), and merged 

images of MDA-MB-231 cells treated with Eu-ITC dendrimer (20 μmol/L, as ITC) for 24 h. 100x objective lens 

magnification. 

 

 

(b) 

(a) 
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3.3.2 Imaging with the generation-3 PAMAM dendrimer with 4-amino-1,8-naphthalimide 

containing europium ions (Eu-G3P4A18N) 

3.3.2.1 Dendrimer with 4-amino-1,8-naphthalimide and europium 

We have designed and synthesized a nanoscale dendrimer complex that achieves site-specificity 

requirements and tested its use in live animal imaging. The dendrimer provides a versatile 

organic framework to which multiple fluorophores have been covalently attached. Covalently 

attaching organic fluorophores to the surface of the dendrimer can drastically improve the 

stability of the association when compared to occupying the interior cavities and being secured 

by secondary interactions. As a luminescent moiety, we have chosen 4-amino-1,8-naphthalimide 

since this molecule is hypothesized to emit a significant amount of photons in the red/near-

infrared region of the electromagnetic spectrum. Such emission wavelengths allow for sensitive 

detection due to the absence of native fluorescence of biological systems in this spectral region 

(improvement of the signal-to-noise ratio). Higher generation dendrimers have a greater number 

of terminal branches, which correlates to the number of fluorophores which can be substituted on 

the surface of each dendrimer, thereby increasing the overall absorptivity and number of emitted 

photons per unit volume and further improving signal intensity. 

By providing alternate routes of energy transfer with respect to photoreaction, 

luminescent lanthanide cations such as Eu3+ are hypothesized to partially depopulate the excited 

state(s) of fluorophores when the donor-acceptor energy levels are sufficiently matched, thereby 

preventing significant photobleaching from occurring. Polyamidoamine dendrimers (PAMAM) 

contain numerous binding sites along the alternating amide bond architecture of their arms, a 

requirement for coordinating metal cations.136 A lanthanide complex was based on a generation-
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3 PAMAM dendrimer, capable of coordinating multiple Eu3+ cations within the interior. The 

thirty-two amino end branches of the generation-3 dendrimer were functionalized with 4-amino-

1,8-naphthalimide fluorophores (4A18N) using glycine linkers to yield the functionalized 

dendrimer: generation-3-PAMAM-(glycine-4-amino-1,8-naphthalimide)32 (G3P4A18N). The 

complete functionalization of each dendrimer branch was confirmed by 1H-NMR (Figure 3.8) 

and elemental analysis. Eight Eu3+ cations were coordinated within the branches to yield the Eu3+ 

complex Eu-G3P4A18N by following a procedure that we have previously developed for a 

dendrimer carrying different fluorophores.104 

 

Figure 3.8. 1H-NMR spectrum and peak assignment of G3P4A18N 
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CZE analysis of the Eu-G3P4A18N dendrimer with detection at 450 nm gave rise to one 

major peak with a cationic electrophoretic mobility of 1.39 × 10-4 cm2/V s (Figure 3.9). A minor 

component present in some samples represented no more than 7% by peak area and had a 

mobility of about 6.8 × 10-5 cm2/V s. The UV-Vis spectrum obtained from the major peak is 

consistent with the expected spectrum for the dendrimer. These data are consistent with a well-

defined species not showing any significant dispersity. The chemical structure of Eu-G3P4A18N 

is depicted in Figure 3.10. 

 

Figure 3.9. Electropherogram of Eu-G3P4A18N. Electropherogram obtained at 450 nm upon CZE analysis of 3 

mg/mL (in DMSO) sample of Eu-G3P4A18N. Key: 1. Dendrimer, 2. Impurity, 3. DMSO solvent zone (to mark 

flow). Insets: UV-Vis spectra collected from peaks 1 and 3. Separation conditions listed in experimental section. 
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Figure 3.10. The chemical structure of the Eu-G3P4A18N dendrimer. The chromophoric group, 4-amino-1,8-

naphthalimide were in blue. The red spheres indicate the coordination of eight lanthanide cations. 

 

The absorption spectrum indicates an apparent maximum at approximately 440 nm; 

however, it is worth noting that the compound does absorb significantly at longer wavelengths. 

The molar extinction coefficient is 5,000 cm-1mol-1L at 630 nm, which is almost two times 
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greater than that of Photofrin at the same wavelength.137 Absorption at longer wavelengths is 

attractive for biological imaging since photons at these wavelengths generate very little 

autofluorescence and since such photons are not harmful to biological systems, preventing any 

perturbation of the system to be monitored. The luminescence emission spectrum indicates the 

presence of a prominent broad band with a significant component in the red/NIR part of the 

electromagnetic spectrum (Figure 3.11, solid line). The collection of luminescence lifetime 

measurements arising from Eu3+-centered emission was made possible with the help of the 

spectroscopic resolution of a laser exciting at 354 nm. A monoexponential decay of 1.09 (± 0.03) 

ms was fitted best from the experimental decay curve. This value is in good agreement with 

comparable systems104 and provides strong evidence that each of the eight Eu3+ cations located 

within the dendrimer are both well protected and feel a similar coordination environment inside 

the dendritic architecture. The similar coordination environment around each of the lanthanide 

cation is a strong indication that only one well defined species is formed in solution. 

Polydispersity would result in several luminescence lifetimes as these cations are highly sensitive 

to their environment. The quantum yield of the compound upon excitation at 450 nm is 2.9 

(±0.1)%. This value is relatively low, but the overall sensitivity provided by the imaging agent 

will be related to the number of emitted photons per unit of volume and, in this case, the small 

quantum yield will be compensated by the high density of luminescent 4-amino-1,8-

naphthalimide groups. 



 99 

 

 

Figure 3.11. The luminescence emission spectrum displays a prominent band with an intensity maximum at 550 nm 

and a tail extending into the red/NIR part of the spectrum (solid line). The shaded area of the emission spectrum 

indicates the luminescence signal detected during the confocal microscopy experiments. A steady-state excitation 

spectrum (dashed line), collected upon monitoring the maximum intensity of the luminescence band (555 nm), 

overlaps significantly with the absorption spectrum (dotted line). 

 

When specific conditions are met, the electronic structures of lanthanide cations are 

hypothesized138 to stabilize the excited states of organic fluorophores against photobleaching. To 

analyze this hypothesis, the absorbance from the 1,8-naphthalimide derivative was monitored as 

a function of time upon exposure to white excitation light (Figure 3.12). In the absence of Eu3+, 

the absorbance of G3P4A18N decreased exponentially. This behavior indicates that the 

fluorophores are vulnerable to photobleaching. In the presence of Eu3+, the absorbance of Eu-

G3P4A18N experienced a modest decrease within the first hour of exposure to white light; 
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however, the absorbance maintained constant values for the remaining part of the experiment. 

Indeed, the exciting side-by-side comparison depicted in Figure 3.12 lends an evidence to the 

idea that the eight Eu3+ provide increased stabilization to the electronic structure of the thirty-two 

4-amino-1,8-naphthalimide fluorophores (singlet and triplet states). This feature is advantageous 

for applications, allowing for an extended shelf life, longer exposure time to excitation light, and 

repeatability of experiments. Such stabilization for a molecular complex in solution has been, to 

the best of our knowledge, only reported in one article so far.57 

 

Figure 3.12. The absorbance of G3P4A18N was monitored as a function of time upon exposure to white light. In 

the absence of Eu3+ (open circle), the absorption decreased exponentially for the duration of the experiment, leading 

to an overall decrease approaching 30%. The trend observed in the presence of Eu3+ (filled square) was a modest 

decrease in absorbance during the first minutes, followed by an impressive level of stability for the same duration. 
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3.3.2.2 Hepatic arterial infusion of Eu-G3P4A18N 

Regional hepatic delivery of Eu-G3P4A18N was made possible by infusion via the 

gastroduodenal artery (GDA) of 160 – 330 gm WAG/RijHsd rats. This technique involves 

isolation of the vasculature of the liver by clamping closed the common hepatic artery, portal 

vein and infra-hepatic inferior vena cava (Figure 3.13). A polyethylene 10 (PE-10) catheter was 

inserted retrograde into the GDA for a length of approximately 4 mm and secured with two 6-0 

silk sutures. Infusion of 7 mL of 100 units/mL of heparinized normal saline was made into the 

GDA of a live WAG/RijHsd rat to temporarily evacuate the hepatic blood volume prior to 

delivery of the functionalized dendrimer complex. To demonstrate its preferential accumulation 

in tumors, Eu-G3P4A18N (0.8 µg/g total body weight) was infused through the GDA followed 

by 5 mL of normal saline to ensure full distribution of the dendrimer into the liver. The liver was 

excised following infusion to evaluate the luminescence signal emitted by the Eu-G3P4A18N in 

the tumor and the background liver parenchyma. 

3.3.2.3 Ex vivo imaging of Eu-G3P4A18N infusion 

Imaging of ex vivo rat livers demonstrated that high-intensity luminescence was evident in the 

tumors only seconds following an ex vivo Eu-G3P4A18N infusion (Figure 3.14(a),(b)) when 

observing emission signal at 610 nm and 740 nm. Although there were some minor uptakes by 

the non-tumorous portion of the liver, these background signals were negligible in the red/NIR 

range of imaging. In animals with extra-hepatic intra-abdominal tumor deposits, no 

luminescence was observed in these tissues. To confirm that Eu-G3P4A18N enhancement is 

occurring specifically in the tumor tissues, histological evaluation of the luminescent foci 

demonstrated that they were adenocarcinomas (Figure 3.14(c)). 
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Figure 3.13. Diagram of the GDA cannulation illustrating isolation of the liver with clamping of the major vessels: 

portal vein, infra-hepatic inferior vena cava, and the common hepatic artery. The cannulation is indicated by a 

syringe and catheter leading into the site of the GDA. 

 

Figure 3.14. (a) White light image of an ex vivo liver with an established tumor implant. The white circle indicates 

the location of the tumor within the liver. (b) Luminescence image of liver after Eu-G3P4A18N infusion with an 

excitation wavelength of 450 nm and emission filter of 610 nm with a 30 nm bandpass. The circle shows the 

luminescence emitted by the tumor area only seconds after infusion of Eu-G3P4A18N. (c) 20x, H&E stained section 

of the tumor from the same liver showing the transition zone between adenocarcinoma on the left and normal liver 

parenchyma on the right of the solid black line. 

(a) (b) (c) 
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To verify that only Eu-G3P4A18N has the capacity labeling tumors in the liver, rat livers 

were infused in vivo with Eu3+ cations only, dendrimers without Eu3+ and naphthalimide (G3P), 

or Eu-G3P4A18N. Figure 3.15. demonstrates the gross and luminescence images of the livers 

infused with the three different molecules or cations. The Eu3+-only infusion and the dendrimer-

only infusion both show minimal or no luminescence arising from the tumor when compared to 

the tissue autofluorescence. However, intrahepatic Eu-G3P4A18N infusion demonstrated 

specific higher-intensity luminescence in the tumor. These data are represented quantitatively in 

Figure 3.15. 

 

Figure 3.15. Gross photographs (top row) and luminescence images (bottom row) of the livers containing tumors 

(arrows) that were implanted 20 – 30 days prior to infusion and excised at 0 h time point. Images are from liver 

infused with Eu3+ only (first column), G3P (non-functionalized dendrimer without Eu3+; second column) or Eu-

G3P4A18N (third column). Average tumor luminescence was corrected for background autofluorescence in the 

resulting graph. Asterisks represent specular reflection of the liver. Scale bars represent 1 cm. 
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Multiple metastatic tumor nodules were generated in a rat liver via a splenic injection of 

CC531 colorectal cancer cells. After infusion of Eu-G3P4A18N, the rat liver was excised and 

imaged by luminescence. Figure 3.16(a) shows the gross and corresponding luminescence 

photographs of an ex vivo liver. This liver was used as a control and was not infused with the 

dendrimer complex to demonstrate that the metastatic tumor nodules themselves have minimal 

native fluorescence within the spectral region of detection (595 to 625 nm). Figure 3.16(b) 

presents the gross and corresponding luminescence photographs of another ex vivo rat liver with 

metastatic lesions. The metastatic nodules display a more intense luminescence signal than the 

background after infusion of Eu-G3P4A18N. 

 

Figure 3.16. Colorectal metastasis to the liver (a) without and (b) with infusion of Eu-G3P4A18N. (a) Arrows show 

tumor nodules in the liver of a rat generated after a splenic injection of CC531 tumor cells. No dendrimer was 

infused into this liver. The second image shows the absence of luminescence in the nodules. (b) Arrows show 

metastatic lesions in another liver of a rat from a splenic injection of CC531 tumor cells. The liver was infused with 

Eu-G3P4A18N (300 µL of a 60 µM solution in 10%DMSO/H2O). Luminescence image were taken with a CCD 

camera (excitation light of 450 nm and emission filter of 610 nm with a 30 nm bandpass filter). 

(a) 

(b) 
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To determine the retention time of the dendrimer in the tumor post infusion, rats were 

injected intrahepatically with Eu-G3P4A18N and sacrificed at the following time points: 0 h, 4 h, 

24 h, and 72 h (Figure 3.17). Sustained luminescence signals from the tumors were observed at 

all-time points post infusion. Background autofluorescence of the liver was accounted for and the 

resulting bar graph (Figure 3.17) demonstrates quantitatively that signals from the tumors were 

present up to 72 h post injection. 

 

Figure 3.17. Gross and luminescent photographs of tumors in the livers of rats with analysis of the tumor 

luminescence. Gross (top row) and luminescent (bottom row) images of the livers containing tumors (arrows) that 

were implanted 20 – 30 days prior to infusion and excised at 0 h, 4 h, 24 h and 72 h time points after hepatic 

infusion with Eu-G3P4A18N. Average signals obtained from the tumors were compared to that of tissue 

autofluorescence and displayed in the resulting graph. Asterisks represent specular reflection. 

3.3.2.4 In vivo imaging of Eu-G3P4A18N infusion 

To evaluate the preferential accumulation in tumors of our functionalized dendrimer in vivo, in 

vivo intrahepatic infusion of Eu-G3P4A18N in anesthetized rats (Figure 3.18) was performed. 

Localized luminescence was observed in the tumor tissues within seconds following infusion. 

This result is consistent with our previous observations in the ex vivo setting. The infused liver 
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was excised and sectioned for red/NIR microscopy. We found that the signal-to-noise ratio was 

improved when luminescence was detected at 740 nm/140 nm as compared to 610/30 nm. 

 

Figure 3.18. In vivo colorectal hepatic tumor localization after the infusion of Eu-G3P4A18N and histological 

imaging using confocal and multi-photon scanning microscopy. (left) White light photograph of an in vivo rat liver 

containing a tumor; Luminescent images of the abdominal cavity of the rat before (center) and after (right) Eu-

G3P4A18N infusion (excitation 450 nm and emission filter of 610 nm with a 30 nm bandpass). 

 

Use of a two-photon excitation scanning confocal microscope allowed us to confirm that 

the luminescence signal of the dendrimer was present within the vasculature of the liver (Figure 

3.19(a)). Higher magnifications of the tissue sections revealed that the luminescence is located 

outside of the vessels in the perivascular space (Figure 3.19(b)). Figure 3.19(c) and (d) also show 

a section of tumor from a rat liver that was infused with Eu-G3P4A18N displaying the same 

association of the dendrimer with the vasculature under confocal microscopy. Tumor vasculature 

is disorganized and displays widened inter-endothelial junctions and fenestrae that range from 

400 – 800 nm in size.137 Thus, tumor vasculature is often described as “leaky”, allowing for 

larger molecules to extravasate the vascular endothelium into the extravascular space and in the 

process bypass normal liver parenchyma. The relatively small size of our dendrimer139 facilitates 

its exit through the fenestrae and allows it to be trapped in the extravascular spaces of the tumor. 

The confocal microscopy observations are consistent with the hypothesis that Eu-G3P4A18N has 
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increased extravasation from the leaky tumor vasculature and therefore is more likely to be 

trapped in the perivascular spaces of the tumor. 

 

Figure 3.19. (a) 20x confocal microscopic image of a section of liver without the tumor after Eu-G3P4A18N 

infusion, no luminescence of the dendrimer is seen. The excitation wavelength was 488 nm and emission 

wavelength was 567 nm. Vessels are labeled with CD-31 (red), nuclei of hepatocytes with dapi (blue) and dendrimer 

(green); (b) Eu-G3P4A18N can be seen in green (arrows) with the 40x magnification of a confocal microscopic 

image of tumor in the liver after infusion. The same colored labels are used; (c) 25x magnification of a tumor section 

in a rat liver after infusion of Eu-G3P4A18N. The two-photon excitation was 820 nm and the luminescence 

emission was 570 – 625 nm. The nuclei of cancer cells are seen in blue, the aberrant vessels are depicted in red and 

the dendrimer is designated in green (arrows) to show the association of Eu-G3P4A18N with the tumor vasculature 

seen in red; (d) 60x magnification of another section of tumor within the same liver also demonstrating the same 

concept. 

3.3.3 Imaging with the generation-3 PAMAM dendrimer with naphthalimide and biotin 

(G3P-NB) 

3.3.3.1 Synthetic strategy of functionalized dendrimer complex 

When the dendrimer with 3-isothiocyanato-1,8-naphthalimide was synthesized, ITC group was 

introduced on the naphthalimide group which was already on the surface of dendrimer. It was 

confirmed that all the 32 naphthalimide groups on the dendrimer, but this method is not ideal 

(a) (b) (c) (d) 
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because some of the branches may not be substituted, and there is no practical way to separate 

the mixture of dendrimers with different number of substituents. The other problem of this 

approach is that the reaction can be completed only at high temperature. As shown in Figure 

3.20, the direct reaction between the terminal amino groups on PAMAM dendrimer and 

naphthalic anhydride requires high temperature over 90 °C. It is questionable whether the 

functional groups or their precursors on naphthalic groups remain intact in this reaction 

condition. 

 

Figure 3.20. Direct attachment of naphthalic anhydride on dendrimer in high temperature 

 

In order to ensure the functionalization of dendrimer branches, a mild condition reaction 

is required for the attachment of naphthalic moiety with functional groups. Amide coupling 

reaction condition with coupling reagents is a good candidate for such reaction. The general 

strategy of the syntheses of functionalized dendrimer is depicted in Figure 3.21. The synthesis of 

G3P4A18N in the previous section was a proof of concept of this synthetic strategy, adopting 

glycine as a linker and using HATU as an amide coupling reagent. 
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Figure 3.21. Synthetic strategy for synthesis of naphthalimide-attached dendrimer with functional groups 

 

In this work, biotin was conjugated dendrimer was synthesized as a first example of 

biological functional group on the dendrimer complex. Biotin is a water soluble vitamin, which 

is also known as vitamin H or coenzyme R. It is important in several biochemical reactions, such 

as fatty acid synthesis, amino acid catabolism and gluconeogenesis.140 Biotin binds strongly with 

protein avidin and streptavidin with a dissociation constant on the order of 10-15 M, which is one 

of the strongest interactions in biological systems.141 It is expected that the attachment of biotin 

to the dendrimer can enhance water solubility and biocompatibility of the complex. Due to the 

strong binding with avidin or streptavidin, it is easy to conjugate the dendrimer complex with 

many biological molecules such as proteins, oligonucleotides or antibodies  
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The synthetic protocol for biotinylated dendrimer is summarized in Figure 3.22. 

Triethylene glycol was used as a linker between naphthalimide and biotin, and glycine linked 

naphthalimide and dendrimer. Except for the reactions of attachment of glycine and triethylene 

glycol amine on the naphthalimide, all the reactions were carried out in mild conditions, which 

can ensure integrity of biotin. 

 

Figure 3.22. Synthetic protocol of generation 3 PAMAM dendrimer conjugated with biotin 

3.3.3.2 Cell imaging 

Europium, neodymium and ytterbium complexes were made with the generation 3 PAMAM 

dendrimer with naphthalimide and biotin (Ln-G3P-NB; Ln = Eu, Nd or Yb). The complexation 

was carried out following the method that we have already established.104 
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In order to evaluate the bio compatibility of these complexes, cytotoxicity test was 

carried out with HeLa cell. As shown in Figure 3.23, the percentage of viability is around 100% 

in the concentration range of 1 to 2 μM, indicating these complexes are not toxic to HeLa cells at 

this range. 

 

Figure 3.23. Cytotoxicity test of Ln-G3P-NB complexes after 24 h of incubation 

 

The Yb3+ complex, Yb-G3P-NB dendrimer was incubated with HeLa cell for 24 h, and 

the microscopy image was taken under visible and near infrared regions. The Yb-G3P-NB 

dendrimer was observed inside of the cell, which means the dendrimer could penetrate or be 

transported without damage to the cell membrane. On the near infrared image, the main signal 

arises from dendrimer not the autofluorescence from cell as in visible image. This promising 

dendrimer system is under further investigations, such as other cell imaging, oxygen sensing and 

interaction with DNA. 
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Figure 3.24. Microscopy images of HeLa cell (a) without dendrimer complex and (b) after incubation with Yb-G3P-

NB (1μM, 24 h): bright field (left), visible (λex:417/60nm; λem: 525/50nm; center) and near infrared (λex: 417/60nm; 

λem: > 700nm; right) with 

3.4 CONCLUSIONS 

Several lanthanide-dendrimer complexes based on a generation-3 dendrimer were designed and 

synthesized. The versatility of the functionalized dendrimer platform has been proved through 

these examples. 

The lanthanide-dendrimer complex with ITC not only emits photons in the red domain of 

the spectrum, allowing real-time monitoring of the compound localization, but also can be used 

as a delivery system for ITC. We demonstrated the uptake of this complex by the cancer cells, 

most likely through the process of endocytosis, and localized into the lysosomal compartment 

(a) 
 

 

 

 

(b) 
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within the cells. We also showed that the ITC functionalized dendrimer can selectively reduce 

viability and induce apoptosis in cancer cells, but not in normal cells. 

The dendrimer complex with 4-amino-1,8-naphthalimide acts as a robust luminescent 

marker. Real-time luminescence imaging of hepatic tumors in the WAG/Rij Hsd rat model was 

possible with this complex. We have observed that the luminescence located in the tumor was 

visible within seconds following hepatic arterial infusion of the dendrimer. These dendrimers are 

strongly resistant to photobleaching and preferentially accumulate within liver tumors after 

hepatic artery infusion.  These results suggest that the dendrimer complex has great potential to 

serve as imaging agent to detect metastatic sites during regional therapy. 

The syntheses of functionalized dendrimer need a strategy which can minimize the effect 

on the functionalized groups. A mild reaction condition – amide coupling with coupling reagent 

was adopted. Biotin-conjugated dendrimer was designed and synthesized using this strategy. The 

lanthanide complexes of this dendrimer showed strong bio-compatibility. 
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4.0  OXYGEN SENSING WITH LANTHANIDE COMPLEXES 

Parts of the work presented here have been completed in collaboration with Benedikt Huber, 

Matthias Bischof (Visiting Students from Philipps-Universität Marburg, Germany), Chad Shade, 

Jason Cross (Stéphane Petoud Research Group, Department of Chemistry, University of 

Pittsburgh), Douglas Kauffman (Alex Star Research Group, Department of Chemistry, 

University of Pittsburgh) and Claudette M. St Croix (Center for Biologic Imaging, University of 

Pittsburgh). A portion of the results presented here have been published in Nature Chemistry, 

Vol. 1, No. 6, p 500, 2009: “Decorated carbon nanotubes with unique oxygen sensitivity.”142 

4.1 INTRODUCTION 

The determination of the concentration of oxygen in solution or in the gas phase is important in 

many fields such as industry, military, and medicine. The widely used oxygen sensor 

technologies, such as solid-state or solution-phase electrochemistry,143, 144 and resistive metal–

oxide semiconductors144, 145 are based on electrochemical measurement. The current 

electrochemical oxygen sensors sometimes need high operating temperatures, high power or 

complicated fabrication,143-145 and the electrochemical methods cannot be applied in biological 

applications, especially at cellular level, because it is challenging to make and manipulate tiny 
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electrode which has comparable size of a cell. In order to overcome the limitation of 

electrochemical methods, development of simple low-power devices146, 147 or photochemical 

sensor is required.148-151 

In this work, we present oxygen sensor systems based on luminescent lanthanide 

complexes. These systems have advantages over common organic and inorganic fluorophores 

such as easiness of spectral discrimination, long luminescence life time and photostability. The 

oxygen sensitivity was quantified with specially designed device which can measure 

luminescence spectra and to monitor the amount of oxygen at the same time. The luminescent 

lanthanide complex successfully showed oxygen sensitivity in cells. The oxygen sensing ability 

was also demonstrated in solid state in combination with SWNT (single-walled nanotubes). The 

simple chemiresistor device composed of SWNT networks with an oxygen-sensitive europium 

complex showed bimodal (optical and electrical) sensitivity to oxygen. 

4.2 EXPERIMENTAL 

4.2.1 Synthesis of Compounds 
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2-(3-Hydroxy-propyl)-benzo[de]isoquinoline-1,3-dione (20) was synthesized as follows: 1,8-

napthalic anhydride (5g, 0.025 mol) and 3-amino-1-propanol (0.01 mol) was suspended in 1,4-

dioxane (200 mL) and refluxed under N2 with stirring for 24 hours. The solution was allowed to 

cool and the solvent volume reduced to ca. 50 mL. The remaining material was poured into water 

(100 mL) causing a beige precipitate to form then was filtered off, washed with water (2 × 20 

mL) and ether (2 × 20 mL). The crude material was recrystallized from 1,4-dioxane to yield the 

title compound as a white crystalline solid (4.73 g, 84%); mp 122-124 C; 1H NMR (300MHz; 

CDCl3, ): 2.34 (m, 2H, -CH2CH2CH2-), 3.50 (t, J=7 Hz, 2H, N(CO)2-CH2CH2), 4.33 (t, J=7 Hz, 

2H, CH2CH2OH), 7.77 (t, J=8 Hz, 2H, 3-H and 6-H), 8.23 (dd, J=1 Hz and 8 Hz, 2H, 2-H and 7-

H), 8.60 (dd, J=1 Hz and 8 Hz, 2H, 4-H and 5-H); EIMS m/z: 255 (M+, 82%). 

 

2-(3-Bromopropyl)-benzo[de]ioquinoline-1,3-dione (21) was synthesized as follows: the 

hydroxyl naphthalimide 20 (1 g, 7.84 mmol) suspended in phosphorus tribromide (15 mL) was 

heated at 100 ºC with stirring under an N2 atmosphere for 24 hours. The solution was allowed to 

cool and quenched by the slow addition of water, causing a beige precipitate to form. The 

precipitate was filtered, washed with water (2 × 10 mL) and ether (2 × 10 mL) and recrystallized 

from ethanol to yield white needles (1.70 g, 68%); mp 142-144C; 1H NMR (300MHz; CDCl3, 

): 2.34 (m, 2H, -CH2CH2CH2-), 3.45 (t, J=7 Hz, 2H, N(CO)2-CH2CH2), 4.38 (t, J=7 Hz, 2H, 
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CH2CH2OH), 7.77 (t, J=8 Hz, 2H, 3-H and 6-H), 8.23 (dd, J=1 Hz and 8 Hz, 2H, 2-H and 7H), 

8.60 (dd, J=1 Hz and 8 Hz, 2H, 4-H and 5-H); EIMS m/z: 317 (M+, 79Br, 83%), 319 (M+, 81Br, 

79%). 
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1-[(3-propyl)-benzo[de]iosoquinoline-1,3-dione]-4,7,10-tris-(tert-butoxycarbonylmethyl 

)-1,4,7,10-tetraazaylododecane (23) was synthesized as follows: the ester hydrobromide salt 

22152 (400 mg, 0.67 mmol) was dissolved in freshly distilled acetonitrile (25 mL) with 

triethylamine (149 mg, 4.47 mmol) and stirred at 70 ºC under an argon atmosphere. The propyl 

bromide 21 (234 mg, 0.74 mmol) in acetonitrile (10 mL) was added dropwise over 1 hour and 

the mixture left to react for 24 hours. After which period, the solvent was removed under reduced 

pressure and the title compound was isolated by preparative TLC (silica gel) using 10% 

methanol in dichloromethane as the eluent as a cream colored foam (431 mg, 86%); mp 89-91C; 

1H NMR (300MHz; CDCl3, ): 1.25 (s, 18H, tert-Bu), 1.34 (s, 9H, tert-Bu), 1.70 (s, 2H, -

CH2CH2CH2-), 2.18-3.78 (broad m, 26H, aza crown ring, bridgehead and C1-CH2), 3.97 (s, 2H, -

CH2CH2-N), 7.58 (t, J=7.7 Hz, 2H, 3-H and 6-H), 8.14 (d, J=8 Hz, 2H, 2-H and 7-H), 8.35 (d, 

J=8 Hz, 2H, 4-H and 5-H); API-ESMS m/z: 752 ([M + H]+ ,82%). 
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1-[(3-propyl)-benzo[de]iosoquinoline-1,3-dione]-4,7,10-tris-(carboxymethyl)-1,4,7,10-

tetraazaylododecane (24) was synthesized as follows: the ester 23 (362 mg, 0.48 mmol) was 

dissolved in dichloromethane (5 mL) and trifluoroacetic acid (5 mL) was added to the solution. 

The solution was allowed to stir at room temperature for 24 hours. The solvents were removed 

under reduced pressure and the residue was twice evaporated with dichloromethane (2 × 10 mL) 

followed by methanol (2 × 10 mL). The remaining tan solid was dissolved in the minimum 

amount of methanol and the title complex isolated by the slow diffusion of ether as a fine, white 

microcrystalline solid (244 g, 87%); max (H2O)/nm 233 (/M-1cm-1, 19,700 cm-1), 344 (6770cm-

1); 1H NMR (300MHz; CDCl3, ): 2.24 (s, 2H, -CH2CH2CH2-), 2.87-3.52 (broad m, 26H, aza 

crown ring, bridgehead and C1-CH2), 3.97 (s, 2H, -CH2CH2-N), 7.80 (t, J=7.7 Hz, 2H, 3-H and 

6-H), 8.38 (d, J=8 Hz, 2H, 2-H and 7-H), 8.58 (d, J=8 Hz, 2H, 4-H and 5-H); API-ESMS m/z: 

584 ([M + H]+, 100%), 606 ([M + Na]+, 22%). 
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Europium complex of 1-[(3-propyl)-benzo[de]iosoquinoline-1,3-dione]-4,7,10-tris-

(carboxymethyl)-1,4,7,10-tetraazaylododecane (25) was synthesized as follows: the cyclen tris 

acid 24 (50 mg, 0.086 mmol) and europium triflate hexahydrate (0.1 mmol) was dissolved in 

anhydrous methanol (2 mL) with a few drops of water. The solution was heated at 50 °C for 14 

hours under N2 with stirring. After which time the solvent was removed under reduced pressure 

and residue redissolved in water (4 mL). The resulting turbid solution was passed through a 

celite plug with washing with water (2 × 5 mL). The filtrate was evaporated to dryness, 

redissolved in methanol (0.5 mL) and the complex isolated as a white microcrystalline solid by 

the slow diffusion of ether (35 mg, 55%); mp >300C; max (H2O)/nm 233 (/M-1cm-1, 17,970 

cm-1), 344 (6410 cm-1); APIESMS m/z: 734 ([M + H]+ 153Eu, 100%), 732 ([M + H]+ 151Eu, 78%); 

HRMS (TOF-ES+): [M + H]+ calcd for C29H35N5O8Eu  732.1684; found 732.1705. 

G3-PAMAM-(1,8-naphthalimide)32 was synthesized as follows: generation 3 PAMAM 

dendrimer with NH2 terminal groups (390.5 mg, 0.0565 mmol) and 1,8-naphthalic anhydride 

(447.9 mg, 2.26 mmol) were suspended in DMF (25 mL) and stirred at 95oC for 48 hours under a 

nitrogen atmosphere, with monitoring for the disappearance of the naphthalic anhydride by TLC. 
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The compound was purified by dialysis using a regenerated cellulose membrane (Fisher; nominal 

MWCO 12,000-14,000) in DMSO for three days. The solution in the dialysis membrane was 

dried in a vacuum oven to yield the title product as brown solid (517.6 mg, 72%); 1H NMR 

(300MHz; CDCl3, ): 8.23 (br s, 64H, Ar H), 7.97 (br s, 64H, Ar H), 7.69 (m, 60H, -NH), 7.49 

(br s, 64H, Ar H), 4.12 (br s, 64H, –N(CO)2CH2–), 3.51 (br s, 64H, -NHCH2-), 3.19 (m, 56H, -

NHCH2-), 2.90–2.40 (m, 60H, –NCH2CH2NH–), 2.27 (m, 120H, –NCH2CH2CO–), 1.93 (m, 

120H, –COCH2–). 

Eu-G3P18N-G3-PAMAM-(1,8-naphthalimide)32 was synthesized as follows: G3-

PAMAM-(1,8-naphthalimide)32 (16.81 mg, 1.326×10-6 mol) was dissolved in DMSO (5.0 mL) 

and 1.397 mM Eu(NO3)3 solution in DMSO (7.593 mL, 1.061×10-5 mol) was added. The mixture 

was incubated for one week. DMSO was evaporated in a vacuum oven, and the residual solid 

was dissolved in 10.0 mL of DMF to make 1.40×10-4 M solution. 

4.2.2 Determination of Oxygen Concentration with Clark Electrode 

A commercially available oxygen electrode was used, consisting of a lead anode and a platinum 

cathode, surrounded by an electrolyte solution of 65% 0.1 M NaOH and 35% ethylene glycol. To 

power the electrode and record the currents, a potentiostat was used, made by Bioanalytical 

Systems Inc., West Lafayette, IND, model CV-1A-110. The used potential between the 

electrodes and the running current have been monitored on a computer using a USB-aquisition 

card and recording software from Dataq Instruments, Akron, OH, model DI-158U. For all 

measurements, always a potential of 200 mV was used. 
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Calibration of the electrode was done accordingly to the method of LeFevre,153 by 

generating solutions of known oxygen concentrations by mixing air- and nitrogen saturated water 

in different relations. Information on the absolute solubility of oxygen in water at certain 

temperatures and pressures was obtained from USGS National Field Manual for the Collection 

of Water-Quality Data.154 

4.2.3 Cell Imaging with Eu Complex 

An IX81 Olympus microscope was used for microinjection and imaging. Both were done using a 

40X oil, UplanFl, 1.3 numerical aperture objectives. Rat aortic endothelial cells (RAECs) were 

plated at approximately 70% confluence on single chamber Labteks (Nalge Nunce International, 

Naperville, IL) in phosphate free hepes buffer maintained at 37 °C in an open Harvard 

microincubator (Harvard Apparatus, Holliston, MA). Individual RAECs were injected using an 

InjectMan NI2, Femtojet, and Femtotips II (all by Eppendorf North America, Westbury, NY). 

Injection was done using 100 mg/mL europium complex for 1.2 sec and an injection pressure of 

180 hpa. Cells were imaged using MetaMorph 6.2 (Universal Imaging Corp, Downington, PA ) 

using differential interference contrast (dic), and fluorescence was detected using 380 nm 

excitation filter and BA515IF emission filter. Cells were imaged prior to microinjection to 

identify any autofluorescence and then were immediately imaged after microinjection and then 

timelapse imaging was obtained every 2 minutes while hypo- or hyper-oxic gas was bubbled into 

the media.  
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4.2.4 Dendrimer-SWNT Device 

4.2.4.1 SWNT device fabrication 

Optically transparent and electrically conductive SWNT network devices were fabricated and 

measured as described previously. Briefly, commercially available SWNTs (Carbon Solutions, 

P2 SWNTs; reported purity 70–90%) were suspended in DMF using sonication without further 

purification. Fused quartz (SiO2) plates (1 in2 times 0.0625 in thick; Quartz Scientific; reported 

specific resistance of 10 Ω 1018 V cm-3 at 20 °C) served as the device substrates, and were 

cleaned prior to SWNT deposition with acetone, rinsed with water and dried under compressed 

air. After spray casting the SWNT networks with a commercial air brush (Iwata) onto the heated 

quartz plates, aluminum tape and silver paint were used to form the device electrodes. To create 

devices with two SWNT networks a cotton-tipped applicator soaked in acetone was used to wipe 

clean a section of the spray-cast SWNT network. Two devices were created from the bisected 

SWNT network by Individually connecting electrodes to each section with aluminum tape and 

silver paint. Quartz plates with additional hydroxyl surface groups were created by soaking 

overnight in Piranha solution (1:3 H2SO4:H2O2 v/v; Warning: Piranha is a vigorous oxidant and 

this solution should be handled appropriately). Nanotube field-effect transistor (NTFET) devices 

consisted of interdigitated gold electrodes (10 μm pitch size) on a Si–SiO2 substrate, and dilute 

suspensions of Carbon Solutions P2 SWNTs in DMF were drop cast onto heated devices to form 

the conduction channel. 
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4.2.4.2 SWNT device decoration and measurement 

SWNT devices were heated to just above the solvent boiling temperature and 200 μL (4 μL for 

NTFETs) of a particular molecule was drop cast evenly onto the surface of the device. For 

NTFET devices, all measurements were conducted in ambient conditions with a drain-source 

bias voltage of 100 mV with two Keithley model 2400 SourceMeters interfaced with LabVIEW 

7.1 software.155 UVVNIR absorption spectra were recorded with a Perkin Elmer Lambda 900 

UVVNIR spectrophotometer, and steady-state excitation and emission spectra, as well as the 

luminescence lifetime measurements, were recorded using a custom-designed JY Horiba 

Fluorolog-322 spectrofluorimeter and a Tektronix TDS model 754D oscilloscope. At least 1,000 

luminescence decay curves, each containing 50,000 points, were averaged and treated to 

calculate the lifetimes using Origin Pro 7.0 software.156 The reported lifetime for a particular 

excited state is the average of at least two independent measurements. For multiexponential 

fittings, we used the amplitude of the major component as a criterion to isolate the values 

reported; components with amplitudes less than 1% were discarded. Time-resolved excitation 

and emission spectra of the dendrimer complex solutions were measured using a Varian Cary 

Eclipse spectrofluorimeter. 

For the optically transparent SWNT devices, the ultraviolet-exposure and gas sensitivity 

measurements were performed in a custom-built gas-delivery chamber housed within the 

spectrometers for simultaneous electrical and optical measurements; the device conductance was 

measured at a bias voltage of 500 mV using a Keithley model 2400 SourceMeter interfaced to 

LabVIEW 7.1 software. The network conductance of two devices on a single quartz substrate 

was simultaneously measured at 500 mV with a Keithley 2602 SourceMeter and a Keithley 

708A switching matrix using Zephyr data-acquisition software (Zephyr is an open source, Java-
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based data acquisition and measurement program freely available for download at 

http://zephyr.sourceforge.net/). The atmosphere inside the chamber was controlled with flowing 

research-grade gases at a constant flow rate of 1,000 standard cubic centimetres per minute; all 

gases were dry unless otherwise noted. Atmospheres of 43% relative humidity were created by 

passing the gases over the headspace of a sealed container of saturated K2CO3 solution (literature 

relative humidity, 43.2 ± 0.3% at 20 °C157). The ultraviolet lamp used for device illumination 

was a UVP Model UVGL-55 hand-held unit (365 nm; 250 μW cm-2; Warning: ultraviolet light 

can be dangerous and appropriate eye protection should be worn). All measurements were 

conducted at room temperature and ambient pressure. SEM and EDX spectroscopy were 

conducted on a Phillips XL30 FEG microscope operated at an accelerating voltage of 10 kV; 

samples were sputter coated with palladium prior to imaging to prevent charging of the 

insulating quartz substrate. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Oxygen Sensing with Europium-Cyclen Complex 

4.3.1.1 Novel europium-cyclen complex 

The europium complex is depicted in Figure 4.1. The ligand has cyclen derivative DOTA 

chelator for stable coordination of Eu3+ ion, and 1,8-naphthamide chromophore as a sensitizer. 

1,8-Naphthalimide was chosen on the basis of the relatively low energy of its triplet state (18 500 cm-1) 

that can potentially interact with the electronic levels of oxygen. Recently, de Sousa et al reported the use 
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of a 1,8-naphthalimide chromophore as sensitizer of europium with its emission being sensitive in 

presence and absence of oxygen.158 However, this system limited in a practical application due to the 

complex being formed in situ in acetonitrile at high concentrations and the ligand forming a mixture of 

species in solution. 

 

Figure 4.1. Europium complex (25) for oxygen sensing and its ligand (24) 

 

The luminescence properties are outlined in Table 4.1. Excitation of the 25 in water at 10-

5 M revealed typical metal centered emission arising from the 5D0 
7F0, 1, 2, 3, 4 transitions. Lifetime 

of the 5D0→
7F2 transition at 615 nm was determined to be 0.36ms. Analogous measurements in 

D2O revealed a lifetime of 1.08 ms indicating that the complex has 2.5 water molecules 

associated with it and is not coordinatively saturated.15 

Table 4.1. Luminescence lifetime and quantum yield of europium complex 25 

Solvent H2O D2O H2O, deoxygenated 

Luminescence lifetime 
at 300 K (ms) 

0.36 1.08 0.43 

Luminescence lifetime 
at 77 K (ms) 

0.74 and 4.4 0.66 and 8.8 n/a 

Quantum yield (%) 0.18 0.48 0.45 
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Luminescent lifetimes recorded at 77 K in both H2O and D2O indicate that there is a 

significant degree of thermal deactivation associated with the complex arising from both back 

energy transfer and solvent oscillations. The luminescent lifetime in both H2O and D2O at 77 K 

produce decays that fit well to a biexponential decay curves with the longer lived components 

being 4.4 ms and 8.8 ms, respectively. The lifetime in D2O at 77 K is almost twice as large as the 

analogous water measurement (Table 4.1). O-D oscillations at 77 K are relatively inefficient 

along with thermally activated back energy transfer mechanism. This however cannot be deemed 

an accurate measurement as there is significant emission arising from the triplet state of the 

naphthalimide chromophore at this temperature due to inefficient energy transfer. 

Phosphorescence emission from the triplet state significantly overlaps with the emission arising 

from the sensitized europium and the observed longer lifetime is likely to arise from such 

emission. A phosphorescence emission spectra at 77 K in water of both ligand 24 and its 

gadolinium complex show very little change in the relative position of the triplet state of the 1,8-

naphthalimide moiety, with both values being 18,300 cm-1 taken from the onset of 

phosphorescence emission and extends to cover the emission region of europium. This indicates 

that the chromophore has no significant interaction with the paramagnetic metal ion that could 

possibly affect the triplet state energy of the chromophore.159 Further evidence for this lack of 

interaction is given by the near identical UV absorption spectra of 24 and 25, showing the 

chromophore is not significantly influenced by the lanthanide ion.160 

The quantum yield of metal centered emission at 298 K in water was calculated relative 

to Ru(bipy)3 and was found to be 0.18%.161 Upon deoxygenating of an aqueous solution of 25 

either by displacing the dissolve oxygen with argon or by freeze-pump-thaw cycles, the emission 

intensity of europium is significantly increased. More importantly, the red emission becomes 
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visible with the naked eye when irradiated with 354 nm light whereas under ambient conditions, 

only blue fluorescence arising from 1,8-naphthalimide is observed (Figure 4.2). The quantum 

yield upon degassing rises to 0.45% giving a 2.6 fold increase in europium luminescence output 

comparison to aerated conditions. 

 

Figure 4.2 (a) Luminescence spectra of 25; (b) Solution of 25 at 10-5 M in aerated water (left) and deoxygenated 

water (right) irradiated with 354 nm UV light. 

 

The mechanism of oxygen sensitivity of lanthanide complexes was explained by 

Parker.162, 163 A typical photochemical sequence of sensitized lanthanide luminescence is shown 

in Figure 4.3. The first two steps, initial excitation of sensitizer and formation of excited triplet 

state of sensitizer by intersystem crossing, are generally fast. If the rate of energy transfer to the 

lanthanide excited state (k1) is sufficiently slow, then rate processes that lead to deactivation of 

the triplet state may compete: quenching by molecular oxygen (kq’[O2]) often occurs in such 

cases due to the high second-order quenching rate constants (ca. 1 × 109 dm3 mol-1 s-1) typically 

found with aromatic triplet states.164, 165 

(a) (b) 
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Figure 4.3. Kinetic scheme showing the three key photophysical processes that occur during sensitized lanthanide 

luminescence. (Sens = sensitizer)163 

4.3.1.2 Quantification oxygen sensitivity 

In order to quantify the oxygen sensitivity of the lanthanide complexes in solution, we designed a 

specialized apparatus to record luminescence spectra and to monitor the amount of oxygen at the 

same time. This glassware consists of a luminescence measurement cuvette combined with 

temperature controlled chamber with vacuum insulation. When mounted in the spectrometer, the 

sample holder around the cuvette as well as the upper part are heated and cooled with water from 

the same source. The apparatus is sealed with a Teflon® cap with precise holes for the electrodes 

and gas tubes for nitrogen and oxygen. 

We have found quantitatively that the oxygen concentration can be held constant for at 

least 20 minutes whereas the temperature can be maintained constant with water circulator for 

several hours. In order to perform a measurement, the sample chamber was filled with the 

solution to examine (~10 mL). A little stir bar placed on the bottom of the cuvette to reach the 

equilibrium. We could generate solutions with various contents of oxygen and nitrogen by 

bubbling gasses into the solutions. When the gas was bubbled, the tube was always placed on the 

bottom of the cuvette to ensure the saturation of the solution with bubbled gas, and then the tube 
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was removed from solution during fluorescence measurement to prevent any interference. Since 

there was no stir bar in the upper part of the apparatus, the electrode we had to be twisted and 

moved slightly until a constant signal was obtained. 

 

Figure 4.4. Apparatus for measuring luminescence and oxygen concentration 

 

With this apparatus the luminescence spectra of 25 were recorded at 22.5 °C and 37.5 °C 

varying the concentration of dissolved oxygen (Figure 4.5). The differences of the luminescence 

intensities between nitrogen and air saturated solutions are 78% and 66%, at 22.5 °C and 37.5 

°C, respectively. The changes at both temperatures were high enough to use for actual 

application. The both data fit well to a biexponential decay curves (red curves in Figure 4.4). The 

equations for the best-fit curves are y = 1.46 + 6.58 e−x/0.464 + 2.78 e−x/8.34 and y = 1.14 + 1.12 

e−x/0.0684 + 1.05 e−x/1.72 for the data at 22.5 °C and 37.5 °C, respectively. This result indicates that 

there are two luminescent components that were quenched by molecular oxygen. This can be the 
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europium centered emission along with the emission from the triplet state of the naphthalimide 

chromophore. 
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Figure 4.5. Luminescence intensity change versus oxygen concentration at (a) 22.5 °C and (b) 37.5 °C at 980 hPa. 

[25] = 1 × 10-5 M, λex = 344 nm. The emission signal around 614 nm was integrated for each measurement. 

4.3.1.3 Measurement of cellular oxygen contents 

In order to investigate the viability of the europium complex 25 in cellar imaging, the complex 

was microinjected to rat aortic endothelial cells and the luminescence were recorded. Figure 4.6 

shows the time-lapse images of at 5 min intervals. As demonstrated in solution, the europium 

centered emission of the complex 25 decreased upon the addition of O2 into the cell. Though this 

cell imaging experiment was a qualitative result, it demonstrated the oxygen sensitivity of the 

complex along with the sufficient stability and kinetic inertness in biological system. 

(a) (b) 
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Figure 4.6. Rat aortic endothelial cell microinjected  with europium complex 25. Imaged at 40X using 380nm 

excitation and 515 nm long pass emission. Initially cell in normoxic conditions but gradually subjected to O2 

saturated media by constant bubbling with 95% O2. Images collected every 5 min. 

 

4.3.2 Oxygen Sensing with Carbon Nanotube decorated with Europium-dendrimer 

Complex 

4.3.2.1 Europium-dendrimer complex Eu-G3P18N and its behavior in solution 

In order to establish an understanding of the solid state oxygen sensitivity of naphthalimide-

sensitized europium complex system, we have developed a chemiresistor device composed of 

single-walled nanotube (SWNT) networks decorated with an oxygen-sensitive Eu3+-containing 

dendrimer complex. The dendrimer complex was synthesized from generation 3 

polyamidoamine (PAMAM) dendrimer, 1,8-naphthalimide and europium cations. The structure 

of this dendrimer complex is depicted in Figure 4.7. As already demonstrated by de Sousa et al158 

and in the previous section, 1,8-naphthalimide shows oxygen sensitivity coupled with lanthanide 

luminescence. Additionally, the choice of 1,8-naphthalimide as a surface group of dendrimer 

complex is advantageous in terms of stability of the whole SWNT-dendrimer network, because 

highly conjugated naphthalimides can link with SWNT through π-stacking interactions.166 
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Figure 4.7. Molecular structure of the generation-3 PAMAM dendrimer 1,8-naphthalimide containing europium 

ions (Eu-G3P18N) 

 

Figure 4.8 presents the emission spectra of a Eu-G3P18N solution in DMF saturated with 

either argon or oxygen; oxygen saturation results in a decrease of the apparent emission 

intensity. The emission profile contains a broad band that arises from the excited states of 1,8-



 133 

 

naphthalimide groups centered around 469 nm, and three narrow emission bands located at lower 

energies characteristic of the Eu3+-centered transitions. The reversible and reproducible 

quenching effect of oxygen on the solution-phase emission intensity is in accordance with its 

predicted behavior. However, we find that the Eu3+-centered emission bands show a larger 

sensitivity to oxygen compared with the 1,8-naphthalimide band. As shown in Figure 4.8(b), the 

relative emission intensity of the naphthalimide-centered (469 nm, open squares) and Eu3+ 

5D0→
7F2 (615 nm, filled circles) bands in a solution cycled several times between oxygen and 

argon saturation. The larger relative change in the Eu3+ emission spectrum suggests that oxygen 

deactivates the Eu3+ excited state more effectively compared with 1,8-naphthalimide, through the 

introduction of non-radiative pathways. 

 

Figure 4.8. Solution-phase oxygen sensitivity of Eu-G3P18N. (a) emission spectrum of a Eu-G3P18N solution (in 

DMF, 1.45 × 10-5 M; λex = 354 nm) saturated with oxygen (black curve) and argon (red curve); (b) Relative 

emission intensity of the 1,8-naphthalimide-centered (λem = 469 nm, open squares) and Eu3+-centered (λem = 615 nm, 

filled circles) emission bands cycled between argon and oxygen saturation. 

 

(a) (b) 
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In the solid state, the relative intensity of the Eu3+-centered transitions are greatly 

attenuated, and we could only resolve the 5D0→
7F2 transition. The decreased emission intensity 

and apparent absence of distinguishable 5D0→
7F1 and 5D0→

7F4 transitions may result from less 

efficient sensitization through a decrease in the efficiency of energy transfer into the accepting 

levels of Eu3+. Measurement in a pure O2 atmosphere did not result in substantial quenching of 

the intensity of Eu-G3P18N emission. However, the apparent maximum of the naphthalimide 

emission band undergoes a slight apparent red-shift, as compared to a pure Ar atmosphere 

(Figure 4.9(a)). Irradiation with UV light (in flowing Ar) decreased the emission intensities of 

both the naphthalimide and Eu3+-centered bands, and the naphthalimide band showed a slight 

apparent blue-shift (Figure 4.9(b)). The introduction of pure O2 in the system results in the 

partial restoration of the intensity of the emission bands and a red-shift of the naphthalimide 

centered emission (Figure 4.9(b)). 

 

Figure 4.9. (a) Normalized emission spectra of Eu-G3P18N (on quartz) in flowing Ar (black line) and pure O2 (red 

line). (b) Emission spectra of Eu-G3P18N before (black line) and after (blue line) UV illumination in flowing Ar, 

and in flowing O2 (red lines); spectra in flowing O2 were recorded every minute. 

(a) (b) 
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The similar spectroscopic response of pure Eu-G3P18N films and the Eu-G3P18N-

SWNT devices (Figure 4.11(a)) observed after UV illumination suggests this phenomenon was 

not induced by the underlying SWNT network. 

4.3.2.2 Behavior of Eu-G3P18N-SWNT networks 

The Eu-G3P18N-SWNT device was composed of a SWNT network with Eu-G3P18N dendrimer 

complex for simultaneous spectroscopic and electrical conductance measurement. The schematic 

representation and photograph of the device are depicted in Figure 4.10. 

 

Figure 4.10. (a) Schematic representation of the Eu-G3P18N-SWNT device. SWNT network (black bars) was 

decorated with Eu-G3P18N (green layer). (b) Digital photographs of Eu-G3P18N-SWNT device under white light 

(left) and UV light (365 nm, right);. Drop-cast layer of Eu-G3P18N was luminescent in green color under UV light. 

 

Using simultaneous ultraviolet-visible-near infrared (UV-Vis-NIR) absorbance 

spectroscopy and network conductance measurements on Eu-G3P18N-SWNT devices, we found 

that the underlying SWNT network was able to transduce changes in the electronic properties of 

the Eu-G3P18N layer during illumination with 365 nm light and exposure to pure oxygen gas. 

(a) (b) 
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After an illumination period of 30 minutes the device experienced a decrease in the first 

semiconducting SWNT absorption band, labelled S11 in Figure 4.11(b).167, 168 

 

Figure 4.11. Bimodal oxygen sensitivity of the Eu-G3P18N-SWNT devices. (a) Emission (λex = 354 nm) spectra of 

a Eu-G3P18N -SWNT device before (black) and after (blue) 30 minutes of illumination with 365 nm light (in 

flowing argon) and during one hour of oxygen exposure (red); the ultraviolet- and gas-exposure times are identical 

in a–c. (b) UV-vis-NIR absorbance spectra of the Eu-G3P18N-SWNT device before and after illumination with 365 

nm light (in argon) and during oxygen exposure. (c) Network conductance of the Eu-G3P18N-SWNT device during 

365 nm illumination and sustained photogenerated ON-state (in flowing argon), followed by the introduction of pure 

oxygen. (d) Proposed mechanism to describe the Eu-G3P18N -SWNT oxygen sensitivity in terms of the Eu-

G3P18N electronic structure. 

(a) (b) 

(c) (d) 
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Additionally, illumination triggered an increase in the network conductance (Figure 

4.11(c)), which we call the photogenerated ON-state. We found that the ON-state conductance 

abruptly increased after termination of the ultraviolet light and then slowly decayed as a function 

of time. To test the reproducibility of the Eu-G3P18N-SWNT response to ultraviolet light we 

exposed nine individual devices to 365 nm light for 30 minutes. Each device’s behavior was 

qualitatively similar, but we found that the magnitude of the response scaled inversely with the 

initial device conductance. This behavior differs drastically from the response of undecorated 

SWNTs to ultraviolet light, which show a decrease in the SWNT network conductance and an 

increase in the S11 absorption band.169, 170 

 

Figure 4.12. Normalized conductance of SWNT networks decorated with (a) G3P18N, (b) G3P, (c)1,8-

naphthalimide, (d) tetraphenylporphyrin Fe(III) chloride and (e) without decoration. 

 

Further control experiments were conducted on SWNT networks individually decorated 

with each component of the Eu-G3P18N complex, including the generation-3 PAMAM 
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dendrimer, generation-3 PAMAM dendrimer with naphthalimide (G318N) and the 1,8-

naphthalic anhydride molecule alone. Additionally, SWNT networks were decorated with an 

iron-containing tetraphenylporphyrin as an analogue to a heme-containing moiety (Figure 4.12). 

We found that only the SWNT networks decorated with G3P18N demonstrated both a 

photoresponse and oxygen sensitivity comparable to those of the Eu-G3P18N-SWNT networks, 

which indicates that the set of 1,8-naphthalimide attached on the dendrimer structure plays a key-

role for the observed behavior. 

Oxygen has been shown to passivate quartz charge traps, such as SiOH, through the 

introduction of non-radiative relaxation pathways.171 Consequently, we suggest that the 

introduction of oxygen results in adsorption on the device surface and passivation of the electron 

traps through the addition of non-radiative pathways. The adsorption of oxygen removes the 

electronic bottleneck, increases ISC and leads to the restoration of both the naphthalimide and 

Eu3+-centered emission band intensities. The increased lifetime of the Eu3+-centered transition 

after 365 nm illumination is a consequence of oxygen desorption, which removes any oxygen-

induced non-radiative pathways in the Eu3+ electronic structure. Finally, exciton recombination 

in the naphthalimide S0 state eliminates the Coulombic attraction between the Eu-G3P18N 

ground-state holes and SWNT valence-band electrons, which decreases the Eu-GP18N-SWNT 

network conductance and increases the absorption of the SWNT S11 band. 

To summarize the proposed response mechanism, we suggest that photoexcitation of the 

Eu-G3P18N-SWNT system promotes Eu-G3P18N ground-state electrons into an excited state, 

which subsequently fill electron traps at the quartz substrate surface (Figure 4.11(d)). This leads 

to a Coulombic attraction between SWNT valence-band electrons and the depleted Eu-G3P18N 

ground-state orbital, effectively p-doping the SWNT valence band. Upon the introduction of 
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oxygen gas, nonradiative relaxation pathways allow electrons to return from the quartz electron 

traps back into the Eu-G3P18N ground state. This alleviates the Coulombic attraction between 

the SWNT valence band and Eu-G3P18N ground state and reverses the SWNT p-doping. 

4.3.2.3 Oxygen detection 

Using the Eu-G3P18N-SWNT devices in a chemiresistor configuration, we found a linear 

electrical response to oxygen in the concentration range tested (5–27%). By exploiting the 

stability of the Eu-G3P18N-SWNT photogenerated ON-state conductance we were able to create 

a baseline for measuring oxygen response. For example, an initial 365 nm illumination in dry 

argon (left-most blue asterisk in Figure 4.13(a)) established a baseline at an arbitrary network 

conductance (GON). Sequential pulses of dry oxygen gas (diluted in argon) produced a 

concentration-dependent decrease in the network conductance. Oxygen exposure (indicated with 

dashed lines, Figure 4.13(a)) was followed by short periods of 365 nm illumination (marked with 

blue asterisks) to return the device to its arbitrarily defined ON-state conductance. 

During the oxygen-exposure periods of 200 seconds the device response did not saturate, 

but we found that the rate of change in the network conductance scaled with the concentration of 

oxygen. Figure 4.13(b) shows the rate of conductance change (ΔG relative to GON) during 

oxygen-exposure cycles. Based on the standard deviation in the ON-state conductance before the 

first oxygen exposure, we calculated a signal-to-noise ratio of 4.44 for the device response to 5% 

oxygen. The linear response to oxygen and repeated return to the ON-state conductance indicate 

that the Eu-G3P18N-SWNT network did not experience any photodegradation or chemical 

damage during operation. Using a value three times the standard deviation of the ON-state 

conductance as the minimum detection limit (MDL), we determined that the MDL of our 
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unoptimized devices is approximately 0.8% oxygen for an exposure time of 200 seconds, which 

is comparable with state-of-the-art, high-temperature metal–oxide semiconductor sensor 

platforms.172 

 

Figure 4.13. (a) Network conductance of the Eu-G3P18N-SWNT device during gas exposure cycles (200 seconds) 

of pure argon and increasing oxygen concentrations (in argon) at 0% relative humidity. The dotted lines represent 

the period of oxygen delivery, the red bars represent the delivered oxygen concentration and the blue asterisks 

represent the initiation of brief ultraviolet illumination periods (365 nm light, flowing argon) that returned the device 

to a designated ON-state conductance (GON). (b) Electrical response rate of the Eu-G3P18N –SWNT device to 

increasing oxygen concentrations during an exposure cycle of 200 seconds; the response rate is defined as the 

change in network conductance (ΔG as measured from GON) during an oxygen-exposure period. 

 

The Eu-G3P18N-SWNT devices showed a comparable photoresponse with nitrogen as 

the carrier gas, demonstrated insignificant response to CO2 and NH3, were not affected adversely 

by relative humidity (0–43%) and retained good oxygen sensitivity, even with storage of the 

device in ambient conditions up to one week after the initial measurement. Typical of most solid-

state oxygen sensors, we observed sensitivity towards NO2. To identify false positives caused by 

oxidizing species we created a device that contained both a Eu-G3P18N-SWNT network and a 
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bare SWNT network (Figure 4.14). Bare SWNTs respond to oxidizing gases, such as NO2,
173 but 

do not respond to oxygen, so this device design provides an internal reference against the 

measurement of false positives. By monitoring the simultaneous conductance of both networks 

during ultraviolet, oxygen and NO2 exposure we determined the difference between a true 

oxygen response and a false response caused by NO2. 

 

Figure 4.14. Simultaneously recorded conductance of a Eu-G3P18N-SWNT network (black curve) and bare SWNT 

network (green curve) on a single quartz substrate during illumination with 365 nm UV light (in flowing nitrogen) 

and exposure to pure oxygen, 10.5% CO2, 100 ppm NH3 and 10 ppm NO2. 

 

The insignificant sensitivity towards CO2 and NH3, identifiable response to an oxidizing 

species (NO2) and comparable device operation in nitrogen and humid atmospheres indicate that 

this system holds promise as a low-temperature platform for monitoring oxygen levels under 

ambient conditions. However, in the design of a field-usable platform we need to take into 
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consideration the requirement for a small reservoir of inert gas, such as nitrogen or argon, to 

purge the sample chamber during illumination with a compact ultraviolet light source. 

4.4 CONCLUSION 

We presented here a novel type of photostable oxygen sensor based on a lanthanide complex that 

can work in living cells. Even if the quantum yield of the reported europium complex is modest, 

due in good part to the insufficient protection of the lanthanide cation from non-radiative 

deactivations, we were able to measure microscopy images for an extended period of time, used 

on the emission of these lanthanide complexes due to the photophysical robustness of these 

compounds. The oxygen sensitivity was quantified with newly designed apparatus which can 

measure luminescence and oxygen concentration through spectroscopic and electrochemical 

detection at the same time. The microscopy images presented the oxygen sensitivity of the 

complex along with the sufficient stability and kinetic inertness in biological system. We are 

currently working on a lanthanide complex that can be loaded into a cell without injection and 

has higher luminescence intensity. 

We have used SWNT networks as a tool to establish a mechanistic understanding of the 

solid-state oxygen sensitivity observed in the Eu-G3P18N system. When incorporated into 

electrically conductive and optically transparent devices, the Eu-G3P18N-SWNT system shows 

bimodal (optical spectroscopic and electrical conductance) sensitivity to oxygen gas at room 

temperature and ambient pressure. Using Eu-G3P18N-SWNT devices as chemiresistors, we have 

demonstrated a linear and reversible response to environmentally relevant oxygen concentrations 
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between 5 and 27%, with a calculated MDL of 0.8% oxygen. The response of Eu-G3P18N-

SWNTs towards ultraviolet light and oxygen gas is completely unlike that of bare SWNTs, and 

allows us to explore the mechanisms of device behavior without the controversy concerning the 

direct interaction between SWNTs and oxygen.174 
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APPENDIX A 

CRYSTALLOGRAPHIC DATA AND STRUCTURE REFINEMENT FOR SALOPHEN-

LANTHANIDE COMPLEXES 

Table AA.1. Crystal data and structure refinement for Nd2(DMSal)3·MeOH 

Identification code  hyu404s 

Empirical formula  C67 H54 N6 Nd2 O7 

Formula weight  1343.64 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1) 

Unit cell dimensions a = 14.2974(15) Å α = 90°. 

 b = 25.028(3) Å β = 106.392(2)°. 

 c = 17.7418(18) Å γ = 90°. 

Volume 6090.7(11) Å3 

Z 4 

Density (calculated) 1.465 Mg/m3 

Absorption coefficient 1.744 mm-1 

F(000) 2696 

Crystal size ? × ? × ? mm3 
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Theta range for data collection 1.48 to 25.00°. 

Index ranges -17 ≤ h ≤ 17, -29 ≤ k ≤ 29, -21 ≤ l ≤ 21 

Reflections collected 48619 

Independent reflections 21403 [R(int) = 0.0505] 

Completeness to theta = 25.00° 99.9 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 21403 / 3 / 1469 

Goodness-of-fit on F2 1.285 

Final R indices [I>2sigma(I)] R1 = 0.0676, wR2 = 0.1643 

R indices (all data) R1 = 0.0813, wR2 = 0.1703 

Absolute structure parameter 0.043(17) 

Extinction coefficient 0.00000(4) 

Largest diff. peak and hole 5.462 and -1.699 e.Å-3 
 

Table AA.2 Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 × 103) for 

Nd2(DMSal)3·MeOH. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

Nd(1) 1075(1) 8491(1) 1313(1) 23(1) 

C(1) -191(8) 9404(5) 2095(7) 26(3) 

O(1) 270(6) 9211(3) 1599(5) 33(2) 

N(1) 689(6) 8314(3) 2606(5) 22(2) 

Nd(2) 257(1) 7168(1) 77(1) 23(1) 

O(2) 2496(6) 8906(3) 1387(5) 32(2) 

N(2) 2406(7) 8037(4) 2390(6) 26(2) 

C(2) -582(9) 9915(5) 2000(8) 36(3) 

Nd(3) 6409(1) 8469(1) 6186(1) 25(1) 

O(3) -210(6) 7799(3) 931(5) 28(2) 
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N(3) 26(7) 6689(4) 1311(6) 27(2) 

C(3) -1073(10) 10121(5) 2475(8) 42(3) 

Nd(4) 5083(1) 7166(1) 5135(1) 25(1) 

O(4) 1573(5) 7790(3) 577(5) 25(2) 

N(4) 1790(7) 6705(4) 1096(5) 28(2) 

C(4) -1153(10) 9823(5) 3139(8) 44(3) 

O(5) -1376(6) 6945(4) -373(5) 40(2) 

N(5) 73(9) 6176(4) -320(6) 41(3) 

C(5) -770(8) 9329(5) 3259(7) 31(3) 

O(6) 83(6) 7788(3) -960(4) 28(2) 

N(6) 1220(7) 6826(4) -853(6) 31(2) 

C(6) -270(8) 9105(5) 2751(7) 30(3) 

C(7) 156(7) 8577(5) 2961(7) 26(3) 

N(7) 7450(7) 7999(4) 7422(6) 32(2) 

O(7) 221(7) 8698(4) -65(5) 48(3) 

O(8) 6049(6) 8842(4) 7216(5) 34(2) 

C(8) 1044(8) 7809(5) 2895(7) 26(3) 

N(8) 8172(7) 8314(4) 6255(5) 25(2) 

O(9) 6998(6) 9224(3) 5766(5) 30(2) 

C(9) 586(9) 7449(5) 3251(7) 27(3) 

N(9) 6001(6) 6640(4) 6445(6) 30(2) 

O(10) 5365(6) 7728(3) 6284(4) 22(2) 

N(10) 6812(7) 6743(4) 5252(6) 26(2) 

C(10) 962(9) 6947(5) 3527(7) 27(3) 

O(11) 6233(6) 7846(3) 5094(5) 25(2) 

N(11) 3634(7) 6772(4) 5560(5) 32(2) 

C(11) 1884(8) 6807(4) 3406(7) 26(3) 

O(12) 3784(6) 7778(3) 4790(5) 27(2) 
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C(12) 2317(8) 7168(7) 3070(7) 38(3) 

N(12) 4646(7) 6183(4) 4829(6) 32(2) 

O(13) 4987(6) 7011(3) 3839(5) 37(2) 

C(13) 1957(8) 7660(4) 2783(6) 21(2) 

C(14) 3342(8) 8089(4) 2576(7) 27(3) 

O(14) 4838(7) 8703(4) 5258(6) 56(3) 

C(15) 3885(7) 8426(5) 2185(6) 21(2) 

C(16) 4886(9) 8363(5) 2384(8) 37(3) 

C(17) 5468(9) 8638(5) 2032(8) 39(3) 

C(18) 5053(10) 9015(6) 1474(8) 45(4) 

C(19) 4060(10) 9095(5) 1271(8) 41(3) 

C(20) 3445(10) 8807(5) 1610(7) 34(3) 

C(21) 419(9) 6571(5) 3892(8) 40(3) 

C(22) 2287(9) 6273(5) 3652(7) 32(3) 

C(23) -1008(8) 7768(5) 1165(7) 30(3) 

C(24) -1605(9) 8203(5) 1121(7) 32(3) 

C(25) -2456(10) 8192(6) 1351(8) 45(4) 

C(26) -2717(10) 7710(7) 1640(9) 52(4) 

C(27) -2111(9) 7264(6) 1739(7) 39(3) 

C(28) -1246(9) 7277(5) 1491(7) 34(3) 

C(29) -636(9) 6816(5) 1651(8) 37(3) 

C(30) 623(9) 6223(5) 1559(6) 30(3) 

C(31) 297(10) 5778(5) 1863(7) 37(3) 

C(32) 953(12) 5348(5) 2133(7) 44(4) 

C(33) 1876(10) 5360(5) 2051(6) 29(3) 

C(34) 2185(10) 5817(5) 1726(7) 38(3) 

C(35) 1567(9) 6251(4) 1459(7) 30(3) 

C(36) 2679(9) 6834(5) 1186(7) 30(3) 
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C(37) 3016(8) 7264(5) 764(7) 29(3) 

C(38) 3967(9) 7218(6) 686(7) 40(3) 

C(39) 4332(11) 7591(6) 260(9) 52(4) 

C(40) 3739(10) 8004(6) -71(8) 43(3) 

C(41) 2825(9) 8084(5) 14(7) 31(3) 

C(42) 2448(8) 7704(5) 456(7) 24(3) 

C(43) 549(11) 4853(6) 2462(8) 52(4) 

C(44) 2577(12) 4914(6) 2325(10) 59(4) 

C(45) -1918(10) 6536(6) -371(8) 47(4) 

C(46) -2840(13) 6627(7) -323(11) 69(5) 

C(47) -3499(14) 6193(9) -365(13) 91(7) 

C(48) -3223(18) 5642(11) -498(17) 136(12) 

C(49) -2301(16) 5576(8) -488(15) 105(9) 

C(50) -1634(11) 6003(6) -414(9) 51(4) 

C(51) -654(16) 5874(8) -398(7) 79(6) 

C(52) 997(11) 5968(5) -352(7) 37(3) 

C(53) 1406(15) 5454(6) -73(8) 64(5) 

C(54) 2321(15) 5311(7) -117(10) 68(6) 

C(55) 2874(15) 5648(7) -370(9) 68(6) 

C(56) 2515(11) 6135(6) -633(7) 48(4) 

C(57) 1582(11) 6295(5) -634(7) 38(3) 

C(58) 1412(9) 7051(5) -1460(7) 34(3) 

C(59) 1124(8) 7573(5) -1773(7) 30(3) 

C(60) 1508(9) 7737(5) -2373(7) 37(3) 

C(61) 1327(10) 8236(6) -2712(7) 45(4) 

C(62) 701(9) 8576(5) -2479(7) 37(3) 

C(63) 261(9) 8407(6) -1902(7) 39(3) 

C(64) 483(9) 7906(5) -1525(6) 23(3) 
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C(65) 2709(19) 4752(8) 222(12) 105(9) 

C(66) 3889(17) 5483(9) -338(13) 111(9) 

C(67) 6082(11) 8732(6) 7956(9) 45(4) 

C(68) 5440(9) 9017(6) 8308(8) 42(3) 

C(69) 5443(10) 8899(6) 9077(8) 46(4) 

C(70) 6064(10) 8501(7) 9513(8) 53(4) 

C(71) 6678(11) 8244(6) 9203(8) 42(4) 

C(72) 6721(8) 8340(5) 8424(7) 28(3) 

C(73) 7391(9) 8007(5) 8129(7) 36(3) 

C(74) 8099(8) 7636(5) 7213(6) 26(3) 

C(75) 8321(9) 7152(5) 7544(6) 34(3) 

C(76) 8936(8) 6798(5) 7282(7) 31(3) 

C(77) 9325(8) 6953(5) 6664(7) 33(3) 

C(78) 9072(9) 7449(5) 6328(7) 32(3) 

C(79) 8462(8) 7791(5) 6583(7) 26(3) 

C(80) 8795(8) 8594(5) 5999(6) 26(3) 

C(81) 8626(8) 9118(5) 5676(7) 25(3) 

C(82) 9429(9) 9369(5) 5493(7) 33(3) 

C(83) 9385(9) 9890(5) 5214(7) 36(3) 

C(84) 8509(10) 10175(5) 5127(7) 38(3) 

C(85) 7715(10) 9961(5) 5313(8) 38(3) 

C(86) 7761(9) 9409(5) 5588(7) 30(3) 

C(87) 9178(10) 6235(5) 7632(8) 38(3) 

C(88) 9953(10) 6586(5) 6343(8) 41(3) 

C(89) 5010(9) 7601(5) 6877(7) 31(3) 

C(90) 4355(9) 7945(6) 7106(8) 38(3) 

C(91) 4014(11) 7835(7) 7740(9) 53(4) 

C(92) 4298(11) 7383(7) 8184(9) 57(4) 
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C(93) 4921(12) 7034(6) 7952(8) 54(4) 

C(94) 5258(9) 7124(6) 7302(7) 41(3) 

C(95) 5911(8) 6725(5) 7139(8) 31(3) 

C(96) 6608(10) 6221(5) 6311(9) 44(4) 

C(97) 6781(11) 5742(6) 6772(9) 51(4) 

C(98) 7331(10) 5330(6) 6605(10) 49(4) 

C(99) 7681(10) 5371(6) 5945(10) 52(4) 

C(100) 7527(9) 5835(5) 5498(9) 43(3) 

C(101) 6987(9) 6267(5) 5682(8) 38(3) 

C(102) 7422(9) 6927(5) 4902(7) 33(3) 

C(103) 7365(9) 7433(5) 4501(7) 32(3) 

C(104) 7961(10) 7508(6) 3987(8) 48(4) 

C(105) 8009(11) 7998(7) 3634(9) 55(4) 

C(106) 7480(9) 8414(6) 3755(7) 42(3) 

C(107) 6864(8) 8359(5) 4246(6) 30(3) 

C(108) 6786(9) 7874(5) 4605(7) 30(3) 

C(109) 7483(13) 4838(7) 7102(11) 71(5) 

C(110) 8280(11) 4914(6) 5736(11) 65(5) 

C(111) 2935(8) 7863(5) 4906(7) 28(3) 

C(112) 2443(8) 8378(6) 4614(7) 40(3) 

C(113) 1546(8) 8485(6) 4763(7) 35(3) 

C(114) 1100(10) 8126(6) 5143(8) 41(3) 

C(115) 1540(10) 7647(5) 5401(8) 40(3) 

C(116) 2445(9) 7510(5) 5297(7) 30(3) 

C(117) 2805(9) 6987(5) 5567(7) 31(3) 

C(118) 3851(9) 6245(5) 5838(8) 34(3) 

C(119) 3626(9) 6043(6) 6487(8) 43(3) 

C(120) 3924(11) 5532(7) 6764(9) 56(5) 
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C(121) 4439(11) 5210(7) 6378(11) 60(5) 

C(122) 4648(9) 5422(6) 5713(10) 51(4) 

C(123) 4358(9) 5929(5) 5447(8) 36(3) 

C(124) 4773(8) 5905(6) 4257(9) 46(4) 

C(125) 5011(10) 6085(6) 3565(8) 47(4) 

C(126) 5089(13) 5670(7) 3032(11) 67(5) 

C(127) 5357(16) 5816(10) 2349(10) 98(8) 

C(128) 5537(15) 6357(8) 2215(10) 82(7) 

C(129) 5432(12) 6741(7) 2727(9) 61(5) 

C(130) 5129(9) 6627(6) 3395(7) 39(3) 

C(131) 3745(13) 5326(8) 7484(11) 86(7) 

C(132) 4791(15) 4670(7) 6700(14) 93(7) 

C(133) -651(8) 8491(6) -878(6) 29(2) 

C(134) 4117(7) 8498(5) 4281(6) 26(2) 
 

Table AA.3. Bond lengths [Å] and angles [°] for Nd2(DMSal)3·MeOH. 

Nd(1)-O(2) 2.253(8) 

Nd(1)-O(1) 2.271(8) 

Nd(1)-O(4) 2.409(8) 

Nd(1)-O(7) 2.459(10) 

Nd(1)-O(3) 2.476(8) 

Nd(1)-N(1) 2.545(9) 

Nd(1)-N(2) 2.552(10) 

Nd(1)-Nd(2) 3.9605(9) 

C(1)-O(1) 1.330(14) 

C(1)-C(2) 1.386(17) 

C(1)-C(6) 1.415(17) 

N(1)-C(7) 1.297(14) 

N(1)-C(8) 1.404(14) 

Nd(2)-O(5) 2.313(8) 

Nd(2)-O(6) 2.365(8) 

Nd(2)-O(3) 2.409(8) 

Nd(2)-O(4) 2.410(8) 

Nd(2)-N(5) 2.573(11) 

Nd(2)-N(6) 2.575(10) 

Nd(2)-N(3) 2.598(10) 

Nd(2)-N(4) 2.679(10) 

O(2)-C(20) 1.326(15) 

N(2)-C(14) 1.292(14) 

N(2)-C(13) 1.428(14) 
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C(2)-C(3) 1.344(17) 

C(2)-H(2A) 0.9500 

Nd(3)-O(8) 2.237(8) 

Nd(3)-O(9) 2.279(8) 

Nd(3)-O(10) 2.418(8) 

Nd(3)-O(11) 2.443(8) 

Nd(3)-O(14) 2.453(11) 

Nd(3)-N(8) 2.519(9) 

Nd(3)-N(7) 2.562(11) 

Nd(3)-Nd(4) 3.9629(10) 

O(3)-C(23) 1.321(14) 

N(3)-C(29) 1.297(16) 

N(3)-C(30) 1.440(15) 

C(3)-C(4) 1.426(18) 

C(3)-H(3A) 0.9500 

Nd(4)-O(13) 2.298(8) 

Nd(4)-O(12) 2.351(8) 

Nd(4)-O(11) 2.382(8) 

Nd(4)-O(10) 2.413(8) 

Nd(4)-N(12) 2.560(10) 

Nd(4)-N(11) 2.591(10) 

Nd(4)-N(10) 2.642(9) 

Nd(4)-N(9) 2.671(10) 

O(4)-C(42) 1.346(13) 

N(4)-C(36) 1.277(15) 

N(4)-C(35) 1.386(15) 

C(4)-C(5) 1.344(18) 

C(4)-H(4A) 0.9500 

O(5)-C(45) 1.284(16) 

N(5)-C(51) 1.26(2) 

N(5)-C(52) 1.436(18) 

C(5)-C(6) 1.415(17) 

C(5)-H(5A) 0.9500 

O(6)-C(64) 1.320(14) 

N(6)-C(58) 1.312(16) 

N(6)-C(57) 1.438(16) 

C(6)-C(7) 1.458(16) 

C(7)-H(7A) 0.9500 

N(7)-C(73) 1.282(15) 

N(7)-C(74) 1.420(15) 

O(7)-C(133) 1.700(13) 

O(8)-C(67) 1.329(16) 

C(8)-C(9) 1.369(17) 

C(8)-C(13) 1.424(15) 

N(8)-C(80) 1.310(14) 

N(8)-C(79) 1.445(14) 

O(9)-C(86) 1.303(15) 

C(9)-C(10) 1.400(16) 

C(9)-H(9A) 0.9500 

N(9)-C(95) 1.290(16) 

N(9)-C(96) 1.424(17) 

O(10)-C(89) 1.331(14) 

N(10)-C(102) 1.291(15) 

N(10)-C(101) 1.399(16) 

C(10)-C(11) 1.437(16) 

C(10)-C(21) 1.480(16) 
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O(11)-C(108) 1.331(14) 

N(11)-C(117) 1.305(15) 

N(11)-C(118) 1.412(15) 

C(11)-C(12) 1.329(18) 

C(11)-C(22) 1.472(16) 

O(12)-C(111) 1.304(14) 

C(12)-C(13) 1.376(19) 

C(12)-H(12A) 0.9500 

N(12)-C(124) 1.283(18) 

N(12)-C(123) 1.425(16) 

O(13)-C(130) 1.294(15) 

C(14)-C(15) 1.448(15) 

C(14)-H(14A) 0.9500 

O(14)-C(134) 1.822(12) 

C(15)-C(16) 1.382(15) 

C(15)-C(20) 1.409(17) 

C(16)-C(17) 1.359(17) 

C(16)-H(16A) 0.9500 

C(17)-C(18) 1.377(19) 

C(17)-H(17A) 0.9500 

C(18)-C(19) 1.377(19) 

C(18)-H(18A) 0.9500 

C(19)-C(20) 1.396(17) 

C(19)-H(19A) 0.9500 

C(21)-H(21A) 0.9800 

C(21)-H(21B) 0.9800 

C(21)-H(21C) 0.9800 

C(22)-H(22A) 0.9800 

C(22)-H(22B) 0.9800 

C(22)-H(22C) 0.9800 

C(23)-C(24) 1.371(17) 

C(23)-C(28) 1.441(18) 

C(24)-C(25) 1.389(17) 

C(24)-H(24A) 0.9500 

C(25)-C(26) 1.40(2) 

C(25)-H(25A) 0.9500 

C(26)-C(27) 1.39(2) 

C(26)-H(26A) 0.9500 

C(27)-C(28) 1.425(16) 

C(27)-H(27A) 0.9500 

C(28)-C(29) 1.426(17) 

C(29)-H(29A) 0.9500 

C(30)-C(31) 1.374(17) 

C(30)-C(35) 1.411(17) 

C(31)-C(32) 1.421(18) 

C(31)-H(31A) 0.9500 

C(32)-C(33) 1.37(2) 

C(32)-C(43) 1.549(19) 

C(33)-C(34) 1.407(17) 

C(33)-C(44) 1.487(19) 

C(34)-C(35) 1.397(17) 

C(34)-H(34A) 0.9500 

C(36)-C(37) 1.468(17) 

C(36)-H(36A) 0.9500 

C(37)-C(42) 1.387(16) 

C(37)-C(38) 1.410(16) 
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C(38)-C(39) 1.39(2) 

C(38)-H(38A) 0.9500 

C(39)-C(40) 1.36(2) 

C(39)-H(39A) 0.9500 

C(40)-C(41) 1.371(18) 

C(40)-H(40A) 0.9500 

C(41)-C(42) 1.430(17) 

C(41)-H(41A) 0.9500 

C(43)-H(43A) 0.9800 

C(43)-H(43B) 0.9800 

C(43)-H(43C) 0.9800 

C(44)-H(44A) 0.9800 

C(44)-H(44B) 0.9800 

C(44)-H(44C) 0.9800 

C(45)-C(46) 1.36(2) 

C(45)-C(50) 1.40(2) 

C(46)-C(47) 1.43(2) 

C(46)-H(46A) 0.9500 

C(47)-C(48) 1.47(3) 

C(47)-H(47A) 0.9500 

C(48)-C(49) 1.32(3) 

C(48)-H(48A) 0.9500 

C(49)-C(50) 1.41(2) 

C(49)-H(49A) 0.9500 

C(50)-C(51) 1.43(2) 

C(51)-H(51A) 0.9500 

C(52)-C(57) 1.36(2) 

C(52)-C(53) 1.442(19) 

C(53)-C(54) 1.38(3) 

C(53)-H(53A) 0.9500 

C(54)-C(55) 1.32(3) 

C(54)-C(65) 1.56(2) 

C(55)-C(56) 1.35(2) 

C(55)-C(66) 1.50(3) 

C(56)-C(57) 1.393(19) 

C(56)-H(56A) 0.9500 

C(58)-C(59) 1.434(17) 

C(58)-H(58A) 0.9500 

C(59)-C(60) 1.390(17) 

C(59)-C(64) 1.399(16) 

C(60)-C(61) 1.377(19) 

C(60)-H(60A) 0.9500 

C(61)-C(62) 1.381(18) 

C(61)-H(61A) 0.9500 

C(62)-C(63) 1.408(17) 

C(62)-H(62A) 0.9500 

C(63)-C(64) 1.414(18) 

C(63)-H(63A) 0.9500 

C(65)-H(65A) 0.9800 

C(65)-H(65B) 0.9800 

C(65)-H(65C) 0.9800 

C(66)-H(66A) 0.9800 

C(66)-H(66B) 0.9800 

C(66)-H(66C) 0.9800 

C(67)-C(72) 1.437(19) 

C(67)-C(68) 1.436(18) 
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C(68)-C(69) 1.395(19) 

C(68)-H(68A) 0.9500 

C(69)-C(70) 1.41(2) 

C(69)-H(69A) 0.9500 

C(70)-C(71) 1.326(19) 

C(70)-H(70A) 0.9500 

C(71)-C(72) 1.421(17) 

C(71)-H(71A) 0.9500 

C(72)-C(73) 1.470(18) 

C(73)-H(73A) 0.9500 

C(74)-C(75) 1.345(17) 

C(74)-C(79) 1.414(16) 

C(75)-C(76) 1.416(18) 

C(75)-H(75A) 0.9500 

C(76)-C(77) 1.417(18) 

C(76)-C(87) 1.539(16) 

C(77)-C(78) 1.381(17) 

C(77)-C(88) 1.504(17) 

C(78)-C(79) 1.385(17) 

C(78)-H(78A) 0.9500 

C(80)-C(81) 1.425(16) 

C(80)-H(80A) 0.9500 

C(81)-C(86) 1.405(16) 

C(81)-C(82) 1.424(16) 

C(82)-C(83) 1.389(18) 

C(82)-H(82A) 0.9500 

C(83)-C(84) 1.411(18) 

C(83)-H(83A) 0.9500 

C(84)-C(85) 1.377(18) 

C(84)-H(84A) 0.9500 

C(85)-C(86) 1.460(18) 

C(85)-H(85A) 0.9500 

C(87)-H(87A) 0.9800 

C(87)-H(87B) 0.9800 

C(87)-H(87C) 0.9800 

C(88)-H(88A) 0.9800 

C(88)-H(88B) 0.9800 

C(88)-H(88C) 0.9800 

C(89)-C(94) 1.403(19) 

C(89)-C(90) 1.413(18) 

C(90)-C(91) 1.38(2) 

C(90)-H(90A) 0.9500 

C(91)-C(92) 1.37(2) 

C(91)-H(91A) 0.9500 

C(92)-C(93) 1.39(2) 

C(92)-H(92A) 0.9500 

C(93)-C(94) 1.388(18) 

C(93)-H(93A) 0.9500 

C(94)-C(95) 1.451(19) 

C(95)-H(95A) 0.9500 

C(96)-C(101) 1.38(2) 

C(96)-C(97) 1.434(19) 

C(97)-C(98) 1.38(2) 

C(97)-H(97A) 0.9500 

C(98)-C(99) 1.40(2) 

C(98)-C(109) 1.49(2) 
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C(99)-C(100) 1.39(2) 

C(99)-C(110) 1.535(19) 

C(100)-C(101) 1.418(19) 

C(100)-H(10A) 0.9500 

C(102)-C(103) 1.443(17) 

C(102)-H(10B) 0.9500 

C(103)-C(108) 1.421(17) 

C(103)-C(104) 1.426(18) 

C(104)-C(105) 1.39(2) 

C(104)-H(10C) 0.9500 

C(105)-C(106) 1.34(2) 

C(105)-H(10D) 0.9500 

C(106)-C(107) 1.409(16) 

C(106)-H(10E) 0.9500 

C(107)-C(108) 1.392(17) 

C(107)-H(10F) 0.9500 

C(109)-H(10G) 0.9800 

C(109)-H(10H) 0.9800 

C(109)-H(10I) 0.9800 

C(110)-H(11A) 0.9800 

C(110)-H(11B) 0.9800 

C(110)-H(11C) 0.9800 

C(111)-C(116) 1.424(17) 

C(111)-C(112) 1.489(18) 

C(112)-C(113) 1.406(16) 

C(112)-H(11D) 0.9500 

C(113)-C(114) 1.382(18) 

C(113)-H(11E) 0.9500 

C(114)-C(115) 1.371(18) 

C(114)-H(11F) 0.9500 

C(115)-C(116) 1.401(18) 

C(115)-H(11G) 0.9500 

C(116)-C(117) 1.439(17) 

C(117)-H(11H) 0.9500 

C(118)-C(119) 1.376(18) 

C(118)-C(123) 1.385(19) 

C(119)-C(120) 1.39(2) 

C(119)-H(11I) 0.9500 

C(120)-C(121) 1.40(3) 

C(120)-C(131) 1.46(2) 

C(121)-C(122) 1.40(2) 

C(121)-C(132) 1.50(2) 

C(122)-C(123) 1.375(18) 

C(122)-H(12B) 0.9500 

C(124)-C(125) 1.44(2) 

C(124)-H(12C) 0.9500 

C(125)-C(130) 1.41(2) 

C(125)-C(126) 1.43(2) 

C(126)-C(127) 1.42(3) 

C(126)-H(12D) 0.9500 

C(127)-C(128) 1.41(3) 

C(127)-H(12E) 0.9500 

C(128)-C(129) 1.36(2) 

C(128)-H(12F) 0.9500 

C(129)-C(130) 1.40(2) 

C(129)-H(12G) 0.9500 
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C(131)-H(13A) 0.9800 

C(131)-H(13B) 0.9800 

C(131)-H(13C) 0.9800 

C(132)-H(13D) 0.9800 

C(132)-H(13E) 0.9800 

C(132)-H(13F) 0.9800 

  

O(2)-Nd(1)-O(1) 97.2(3) 

O(2)-Nd(1)-O(4) 88.2(3) 

O(1)-Nd(1)-O(4) 160.7(3) 

O(2)-Nd(1)-O(7) 98.5(3) 

O(1)-Nd(1)-O(7) 85.1(3) 

O(4)-Nd(1)-O(7) 75.8(3) 

O(2)-Nd(1)-O(3) 157.8(3) 

O(1)-Nd(1)-O(3) 103.5(3) 

O(4)-Nd(1)-O(3) 69.7(3) 

O(7)-Nd(1)-O(3) 75.8(3) 

O(2)-Nd(1)-N(1) 116.7(3) 

O(1)-Nd(1)-N(1) 71.6(3) 

O(4)-Nd(1)-N(1) 122.3(3) 

O(7)-Nd(1)-N(1) 139.4(3) 

O(3)-Nd(1)-N(1) 78.0(3) 

O(2)-Nd(1)-N(2) 72.1(3) 

O(1)-Nd(1)-N(2) 120.2(3) 

O(4)-Nd(1)-N(2) 79.0(3) 

O(7)-Nd(1)-N(2) 153.4(3) 

O(3)-Nd(1)-N(2) 103.4(3) 

N(1)-Nd(1)-N(2) 63.4(3) 

O(2)-Nd(1)-Nd(2) 122.6(2) 

O(1)-Nd(1)-Nd(2) 134.3(2) 

O(4)-Nd(1)-Nd(2) 34.74(18) 

O(7)-Nd(1)-Nd(2) 68.89(19) 

O(3)-Nd(1)-Nd(2) 35.27(19) 

N(1)-Nd(1)-Nd(2) 104.4(2) 

N(2)-Nd(1)-Nd(2) 94.8(2) 

O(1)-C(1)-C(2) 120.9(11) 

O(1)-C(1)-C(6) 121.3(11) 

C(2)-C(1)-C(6) 117.8(11) 

C(1)-O(1)-Nd(1) 144.4(8) 

C(7)-N(1)-C(8) 118.8(10) 

C(7)-N(1)-Nd(1) 131.0(8) 

C(8)-N(1)-Nd(1) 109.8(6) 

O(5)-Nd(2)-O(6) 90.9(3) 

O(5)-Nd(2)-O(3) 86.7(3) 

O(6)-Nd(2)-O(3) 94.2(3) 

O(5)-Nd(2)-O(4) 152.9(3) 

O(6)-Nd(2)-O(4) 76.3(3) 

O(3)-Nd(2)-O(4) 70.8(3) 

O(5)-Nd(2)-N(5) 70.0(4) 

O(6)-Nd(2)-N(5) 116.1(3) 

O(3)-Nd(2)-N(5) 141.1(3) 

O(4)-Nd(2)-N(5) 137.2(3) 

O(5)-Nd(2)-N(6) 111.7(3) 

O(6)-Nd(2)-N(6) 71.2(3) 

O(3)-Nd(2)-N(6) 156.1(3) 

O(4)-Nd(2)-N(6) 87.1(3) 
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N(5)-Nd(2)-N(6) 62.3(3) 

O(5)-Nd(2)-N(3) 79.8(3) 

O(6)-Nd(2)-N(3) 161.4(3) 

O(3)-Nd(2)-N(3) 69.4(3) 

O(4)-Nd(2)-N(3) 105.0(3) 

N(5)-Nd(2)-N(3) 76.0(3) 

N(6)-Nd(2)-N(3) 127.2(3) 

O(5)-Nd(2)-N(4) 133.0(3) 

O(6)-Nd(2)-N(4) 134.1(3) 

O(3)-Nd(2)-N(4) 100.2(3) 

O(4)-Nd(2)-N(4) 68.1(3) 

N(5)-Nd(2)-N(4) 76.6(3) 

N(6)-Nd(2)-N(4) 78.8(3) 

N(3)-Nd(2)-N(4) 60.4(3) 

O(5)-Nd(2)-Nd(1) 120.3(2) 

O(6)-Nd(2)-Nd(1) 80.35(19) 

O(3)-Nd(2)-Nd(1) 36.41(18) 

O(4)-Nd(2)-Nd(1) 34.73(18) 

N(5)-Nd(2)-Nd(1) 161.7(2) 

N(6)-Nd(2)-Nd(1) 120.4(2) 

N(3)-Nd(2)-Nd(1) 90.4(2) 

N(4)-Nd(2)-Nd(1) 86.0(2) 

C(20)-O(2)-Nd(1) 139.6(8) 

C(14)-N(2)-C(13) 121.3(10) 

C(14)-N(2)-Nd(1) 130.2(8) 

C(13)-N(2)-Nd(1) 108.5(7) 

C(3)-C(2)-C(1) 122.8(12) 

C(3)-C(2)-H(2A) 118.6 

C(1)-C(2)-H(2A) 118.6 

O(8)-Nd(3)-O(9) 96.4(3) 

O(8)-Nd(3)-O(10) 88.4(3) 

O(9)-Nd(3)-O(10) 162.3(3) 

O(8)-Nd(3)-O(11) 156.6(3) 

O(9)-Nd(3)-O(11) 103.6(3) 

O(10)-Nd(3)-O(11) 68.9(2) 

O(8)-Nd(3)-O(14) 94.0(3) 

O(9)-Nd(3)-O(14) 86.3(3) 

O(10)-Nd(3)-O(14) 76.4(3) 

O(11)-Nd(3)-O(14) 75.5(3) 

O(8)-Nd(3)-N(8) 118.8(3) 

O(9)-Nd(3)-N(8) 71.7(3) 

O(10)-Nd(3)-N(8) 120.6(3) 

O(11)-Nd(3)-N(8) 79.6(3) 

O(14)-Nd(3)-N(8) 141.6(3) 

O(8)-Nd(3)-N(7) 72.8(3) 

O(9)-Nd(3)-N(7) 118.8(3) 

O(10)-Nd(3)-N(7) 78.9(3) 

O(11)-Nd(3)-N(7) 106.9(3) 

O(14)-Nd(3)-N(7) 152.3(3) 

N(8)-Nd(3)-N(7) 63.6(3) 

O(8)-Nd(3)-Nd(4) 122.5(2) 

O(9)-Nd(3)-Nd(4) 134.5(2) 

O(10)-Nd(3)-Nd(4) 34.85(18) 

O(11)-Nd(3)-Nd(4) 34.27(17) 

O(14)-Nd(3)-Nd(4) 69.8(2) 

N(8)-Nd(3)-Nd(4) 103.7(2) 
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N(7)-Nd(3)-Nd(4) 96.3(2) 

C(23)-O(3)-Nd(2) 125.3(7) 

C(23)-O(3)-Nd(1) 126.4(7) 

Nd(2)-O(3)-Nd(1) 108.3(3) 

C(29)-N(3)-C(30) 120.2(10) 

C(29)-N(3)-Nd(2) 124.2(8) 

C(30)-N(3)-Nd(2) 115.3(7) 

C(2)-C(3)-C(4) 119.7(12) 

C(2)-C(3)-H(3A) 120.1 

C(4)-C(3)-H(3A) 120.1 

O(13)-Nd(4)-O(12) 91.7(3) 

O(13)-Nd(4)-O(11) 86.4(3) 

O(12)-Nd(4)-O(11) 91.6(3) 

O(13)-Nd(4)-O(10) 153.1(3) 

O(12)-Nd(4)-O(10) 76.8(3) 

O(11)-Nd(4)-O(10) 70.0(3) 

O(13)-Nd(4)-N(12) 71.5(3) 

O(12)-Nd(4)-N(12) 116.3(3) 

O(11)-Nd(4)-N(12) 144.1(3) 

O(10)-Nd(4)-N(12) 135.4(3) 

O(13)-Nd(4)-N(11) 113.6(3) 

O(12)-Nd(4)-N(11) 71.7(3) 

O(11)-Nd(4)-N(11) 153.7(3) 

O(10)-Nd(4)-N(11) 86.1(3) 

N(12)-Nd(4)-N(11) 61.9(3) 

O(13)-Nd(4)-N(10) 78.5(3) 

O(12)-Nd(4)-N(10) 159.0(3) 

O(11)-Nd(4)-N(10) 69.5(3) 

O(10)-Nd(4)-N(10) 103.7(3) 

N(12)-Nd(4)-N(10) 78.4(3) 

N(11)-Nd(4)-N(10) 129.2(3) 

O(13)-Nd(4)-N(9) 131.5(3) 

O(12)-Nd(4)-N(9) 134.9(3) 

O(11)-Nd(4)-N(9) 101.9(3) 

O(10)-Nd(4)-N(9) 68.2(3) 

N(12)-Nd(4)-N(9) 75.0(3) 

N(11)-Nd(4)-N(9) 78.2(3) 

N(10)-Nd(4)-N(9) 61.0(3) 

O(13)-Nd(4)-Nd(3) 119.7(2) 

O(12)-Nd(4)-Nd(3) 79.89(19) 

O(11)-Nd(4)-Nd(3) 35.28(18) 

O(10)-Nd(4)-Nd(3) 34.92(18) 

N(12)-Nd(4)-Nd(3) 161.2(2) 

N(11)-Nd(4)-Nd(3) 119.5(2) 

N(10)-Nd(4)-Nd(3) 88.9(2) 

N(9)-Nd(4)-Nd(3) 86.8(2) 

C(42)-O(4)-Nd(1) 129.3(7) 

C(42)-O(4)-Nd(2) 120.1(7) 

Nd(1)-O(4)-Nd(2) 110.5(3) 

C(36)-N(4)-C(35) 119.9(10) 

C(36)-N(4)-Nd(2) 124.8(8) 

C(35)-N(4)-Nd(2) 114.7(7) 

C(5)-C(4)-C(3) 119.2(12) 

C(5)-C(4)-H(4A) 120.4 

C(3)-C(4)-H(4A) 120.4 

C(45)-O(5)-Nd(2) 138.0(9) 
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C(51)-N(5)-C(52) 121.1(14) 

C(51)-N(5)-Nd(2) 128.7(13) 

C(52)-N(5)-Nd(2) 109.7(8) 

C(4)-C(5)-C(6) 121.4(12) 

C(4)-C(5)-H(5A) 119.3 

C(6)-C(5)-H(5A) 119.3 

C(64)-O(6)-Nd(2) 139.8(7) 

C(58)-N(6)-C(57) 118.5(11) 

C(58)-N(6)-Nd(2) 131.0(8) 

C(57)-N(6)-Nd(2) 110.6(8) 

C(1)-C(6)-C(5) 119.0(11) 

C(1)-C(6)-C(7) 124.4(11) 

C(5)-C(6)-C(7) 116.5(11) 

N(1)-C(7)-C(6) 126.6(11) 

N(1)-C(7)-H(7A) 116.7 

C(6)-C(7)-H(7A) 116.7 

C(73)-N(7)-C(74) 119.7(11) 

C(73)-N(7)-Nd(3) 130.3(9) 

C(74)-N(7)-Nd(3) 109.6(7) 

C(133)-O(7)-Nd(1) 144.9(7) 

C(67)-O(8)-Nd(3) 140.2(9) 

C(9)-C(8)-N(1) 126.2(10) 

C(9)-C(8)-C(13) 118.0(11) 

N(1)-C(8)-C(13) 115.8(10) 

C(80)-N(8)-C(79) 118.5(10) 

C(80)-N(8)-Nd(3) 132.1(7) 

C(79)-N(8)-Nd(3) 109.2(7) 

C(86)-O(9)-Nd(3) 141.8(8) 

C(8)-C(9)-C(10) 124.5(11) 

C(8)-C(9)-H(9A) 117.8 

C(10)-C(9)-H(9A) 117.8 

C(95)-N(9)-C(96) 120.7(11) 

C(95)-N(9)-Nd(4) 126.3(8) 

C(96)-N(9)-Nd(4) 113.0(8) 

C(89)-O(10)-Nd(4) 121.3(7) 

C(89)-O(10)-Nd(3) 128.4(7) 

Nd(4)-O(10)-Nd(3) 110.2(3) 

C(102)-N(10)-C(101) 121.6(11) 

C(102)-N(10)-Nd(4) 124.4(8) 

C(101)-N(10)-Nd(4) 113.8(8) 

C(9)-C(10)-C(11) 116.4(11) 

C(9)-C(10)-C(21) 121.8(11) 

C(11)-C(10)-C(21) 121.8(11) 

C(108)-O(11)-Nd(4) 126.8(7) 

C(108)-O(11)-Nd(3) 122.5(7) 

Nd(4)-O(11)-Nd(3) 110.5(3) 

C(117)-N(11)-C(118) 119.5(11) 

C(117)-N(11)-Nd(4) 130.4(8) 

C(118)-N(11)-Nd(4) 110.1(8) 

C(12)-C(11)-C(10) 117.7(11) 

C(12)-C(11)-C(22) 123.9(12) 

C(10)-C(11)-C(22) 118.4(11) 

C(111)-O(12)-Nd(4) 140.1(8) 

C(11)-C(12)-C(13) 127.0(10) 

C(11)-C(12)-H(12A) 116.5 

C(13)-C(12)-H(12A) 116.5 
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C(124)-N(12)-C(123) 120.2(12) 

C(124)-N(12)-Nd(4) 127.4(10) 

C(123)-N(12)-Nd(4) 111.8(8) 

C(130)-O(13)-Nd(4) 139.4(8) 

C(12)-C(13)-C(8) 116.4(10) 

C(12)-C(13)-N(2) 126.8(10) 

C(8)-C(13)-N(2) 116.9(10) 

N(2)-C(14)-C(15) 126.4(10) 

N(2)-C(14)-H(14A) 116.8 

C(15)-C(14)-H(14A) 116.8 

C(134)-O(14)-Nd(3) 137.4(7) 

C(16)-C(15)-C(20) 118.7(11) 

C(16)-C(15)-C(14) 117.9(11) 

C(20)-C(15)-C(14) 123.4(10) 

C(17)-C(16)-C(15) 123.3(13) 

C(17)-C(16)-H(16A) 118.4 

C(15)-C(16)-H(16A) 118.4 

C(16)-C(17)-C(18) 118.8(12) 

C(16)-C(17)-H(17A) 120.6 

C(18)-C(17)-H(17A) 120.6 

C(17)-C(18)-C(19) 119.3(13) 

C(17)-C(18)-H(18A) 120.3 

C(19)-C(18)-H(18A) 120.3 

C(18)-C(19)-C(20) 122.8(14) 

C(18)-C(19)-H(19A) 118.6 

C(20)-C(19)-H(19A) 118.6 

O(2)-C(20)-C(19) 119.4(13) 

O(2)-C(20)-C(15) 123.6(11) 

C(19)-C(20)-C(15) 117.0(12) 

C(10)-C(21)-H(21A) 109.5 

C(10)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21B) 109.5 

C(10)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21C) 109.5 

H(21B)-C(21)-H(21C) 109.5 

C(11)-C(22)-H(22A) 109.5 

C(11)-C(22)-H(22B) 109.5 

H(22A)-C(22)-H(22B) 109.5 

C(11)-C(22)-H(22C) 109.5 

H(22A)-C(22)-H(22C) 109.5 

H(22B)-C(22)-H(22C) 109.5 

O(3)-C(23)-C(24) 121.0(12) 

O(3)-C(23)-C(28) 119.9(11) 

C(24)-C(23)-C(28) 119.1(11) 

C(23)-C(24)-C(25) 123.4(13) 

C(23)-C(24)-H(24A) 118.3 

C(25)-C(24)-H(24A) 118.3 

C(24)-C(25)-C(26) 118.0(13) 

C(24)-C(25)-H(25A) 121.0 

C(26)-C(25)-H(25A) 121.0 

C(27)-C(26)-C(25) 121.0(13) 

C(27)-C(26)-H(26A) 119.5 

C(25)-C(26)-H(26A) 119.5 

C(26)-C(27)-C(28) 120.4(13) 

C(26)-C(27)-H(27A) 119.8 

C(28)-C(27)-H(27A) 119.8 
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C(27)-C(28)-C(29) 117.2(12) 

C(27)-C(28)-C(23) 117.9(11) 

C(29)-C(28)-C(23) 124.7(11) 

N(3)-C(29)-C(28) 126.3(12) 

N(3)-C(29)-H(29A) 116.9 

C(28)-C(29)-H(29A) 116.9 

C(31)-C(30)-C(35) 122.2(12) 

C(31)-C(30)-N(3) 122.6(11) 

C(35)-C(30)-N(3) 115.2(10) 

C(30)-C(31)-C(32) 118.8(13) 

C(30)-C(31)-H(31A) 120.6 

C(32)-C(31)-H(31A) 120.6 

C(33)-C(32)-C(31) 120.8(12) 

C(33)-C(32)-C(43) 122.1(13) 

C(31)-C(32)-C(43) 116.9(14) 

C(32)-C(33)-C(34) 119.1(12) 

C(32)-C(33)-C(44) 122.0(12) 

C(34)-C(33)-C(44) 118.9(12) 

C(35)-C(34)-C(33) 122.0(12) 

C(35)-C(34)-H(34A) 119.0 

C(33)-C(34)-H(34A) 119.0 

N(4)-C(35)-C(34) 126.1(11) 

N(4)-C(35)-C(30) 116.9(10) 

C(34)-C(35)-C(30) 117.0(11) 

N(4)-C(36)-C(37) 125.4(11) 

N(4)-C(36)-H(36A) 117.3 

C(37)-C(36)-H(36A) 117.3 

C(42)-C(37)-C(38) 119.9(12) 

C(42)-C(37)-C(36) 123.0(11) 

C(38)-C(37)-C(36) 117.1(11) 

C(39)-C(38)-C(37) 121.3(13) 

C(39)-C(38)-H(38A) 119.3 

C(37)-C(38)-H(38A) 119.4 

C(40)-C(39)-C(38) 117.3(13) 

C(40)-C(39)-H(39A) 121.3 

C(38)-C(39)-H(39A) 121.3 

C(39)-C(40)-C(41) 124.0(13) 

C(39)-C(40)-H(40A) 118.0 

C(41)-C(40)-H(40A) 118.0 

C(40)-C(41)-C(42) 118.9(12) 

C(40)-C(41)-H(41A) 120.6 

C(42)-C(41)-H(41A) 120.6 

O(4)-C(42)-C(37) 122.1(11) 

O(4)-C(42)-C(41) 119.5(10) 

C(37)-C(42)-C(41) 118.4(11) 

C(32)-C(43)-H(43A) 109.5 

C(32)-C(43)-H(43B) 109.5 

H(43A)-C(43)-H(43B) 109.5 

C(32)-C(43)-H(43C) 109.5 

H(43A)-C(43)-H(43C) 109.5 

H(43B)-C(43)-H(43C) 109.5 

C(33)-C(44)-H(44A) 109.5 

C(33)-C(44)-H(44B) 109.5 

H(44A)-C(44)-H(44B) 109.5 

C(33)-C(44)-H(44C) 109.5 

H(44A)-C(44)-H(44C) 109.5 
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H(44B)-C(44)-H(44C) 109.5 

O(5)-C(45)-C(46) 117.6(15) 

O(5)-C(45)-C(50) 125.0(14) 

C(46)-C(45)-C(50) 117.4(14) 

C(45)-C(46)-C(47) 120.4(18) 

C(45)-C(46)-H(46A) 119.8 

C(47)-C(46)-H(46A) 119.8 

C(46)-C(47)-C(48) 121.2(19) 

C(46)-C(47)-H(47A) 119.4 

C(48)-C(47)-H(47A) 119.4 

C(49)-C(48)-C(47) 115.3(18) 

C(49)-C(48)-H(48A) 122.4 

C(47)-C(48)-H(48A) 122.3 

C(48)-C(49)-C(50) 123(2) 

C(48)-C(49)-H(49A) 118.4 

C(50)-C(49)-H(49A) 118.4 

C(45)-C(50)-C(49) 121.8(17) 

C(45)-C(50)-C(51) 120.7(14) 

C(49)-C(50)-C(51) 117.5(18) 

N(5)-C(51)-C(50) 129.7(18) 

N(5)-C(51)-H(51A) 115.1 

C(50)-C(51)-H(51A) 115.2 

C(57)-C(52)-N(5) 117.6(11) 

C(57)-C(52)-C(53) 115.5(14) 

N(5)-C(52)-C(53) 126.8(14) 

C(54)-C(53)-C(52) 120.8(17) 

C(54)-C(53)-H(53A) 119.6 

C(52)-C(53)-H(53A) 119.6 

C(55)-C(54)-C(53) 121.4(16) 

C(55)-C(54)-C(65) 121.5(18) 

C(53)-C(54)-C(65) 117(2) 

C(54)-C(55)-C(56) 119.3(19) 

C(54)-C(55)-C(66) 118.7(17) 

C(56)-C(55)-C(66) 122(2) 

C(55)-C(56)-C(57) 121.9(18) 

C(55)-C(56)-H(56A) 119.1 

C(57)-C(56)-H(56A) 119.1 

C(52)-C(57)-C(56) 121.0(14) 

C(52)-C(57)-N(6) 116.2(12) 

C(56)-C(57)-N(6) 122.5(14) 

N(6)-C(58)-C(59) 127.4(11) 

N(6)-C(58)-H(58A) 116.3 

C(59)-C(58)-H(58A) 116.3 

C(60)-C(59)-C(64) 120.0(12) 

C(60)-C(59)-C(58) 115.7(11) 

C(64)-C(59)-C(58) 124.2(11) 

C(61)-C(60)-C(59) 122.4(12) 

C(61)-C(60)-H(60A) 118.8 

C(59)-C(60)-H(60A) 118.8 

C(60)-C(61)-C(62) 119.0(12) 

C(60)-C(61)-H(61A) 120.5 

C(62)-C(61)-H(61A) 120.5 

C(61)-C(62)-C(63) 119.6(13) 

C(61)-C(62)-H(62A) 120.2 

C(63)-C(62)-H(62A) 120.2 

C(62)-C(63)-C(64) 121.6(12) 
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C(62)-C(63)-H(63A) 119.2 

C(64)-C(63)-H(63A) 119.2 

O(6)-C(64)-C(59) 124.6(11) 

O(6)-C(64)-C(63) 118.1(11) 

C(59)-C(64)-C(63) 117.3(11) 

C(54)-C(65)-H(65A) 109.5 

C(54)-C(65)-H(65B) 109.5 

H(65A)-C(65)-H(65B) 109.5 

C(54)-C(65)-H(65C) 109.5 

H(65A)-C(65)-H(65C) 109.5 

H(65B)-C(65)-H(65C) 109.5 

C(55)-C(66)-H(66A) 109.4 

C(55)-C(66)-H(66B) 109.5 

H(66A)-C(66)-H(66B) 109.5 

C(55)-C(66)-H(66C) 109.5 

H(66A)-C(66)-H(66C) 109.5 

H(66B)-C(66)-H(66C) 109.5 

O(8)-C(67)-C(72) 123.4(12) 

O(8)-C(67)-C(68) 118.6(14) 

C(72)-C(67)-C(68) 117.9(13) 

C(69)-C(68)-C(67) 119.6(15) 

C(69)-C(68)-H(68A) 120.2 

C(67)-C(68)-H(68A) 120.2 

C(68)-C(69)-C(70) 121.0(13) 

C(68)-C(69)-H(69A) 119.5 

C(70)-C(69)-H(69A) 119.5 

C(71)-C(70)-C(69) 120.2(13) 

C(71)-C(70)-H(70A) 119.9 

C(69)-C(70)-H(70A) 119.9 

C(70)-C(71)-C(72) 122.5(14) 

C(70)-C(71)-H(71A) 118.8 

C(72)-C(71)-H(71A) 118.7 

C(71)-C(72)-C(67) 118.8(12) 

C(71)-C(72)-C(73) 117.5(11) 

C(67)-C(72)-C(73) 123.6(11) 

N(7)-C(73)-C(72) 126.0(11) 

N(7)-C(73)-H(73A) 117.0 

C(72)-C(73)-H(73A) 117.0 

C(75)-C(74)-C(79) 120.0(11) 

C(75)-C(74)-N(7) 123.6(11) 

C(79)-C(74)-N(7) 116.3(11) 

C(74)-C(75)-C(76) 120.8(11) 

C(74)-C(75)-H(75A) 119.6 

C(76)-C(75)-H(75A) 119.6 

C(75)-C(76)-C(77) 119.9(11) 

C(75)-C(76)-C(87) 122.0(11) 

C(77)-C(76)-C(87) 118.1(11) 

C(78)-C(77)-C(76) 118.0(12) 

C(78)-C(77)-C(88) 119.8(12) 

C(76)-C(77)-C(88) 122.1(11) 

C(77)-C(78)-C(79) 121.8(13) 

C(77)-C(78)-H(78A) 119.1 

C(79)-C(78)-H(78A) 119.1 

C(78)-C(79)-C(74) 119.5(11) 

C(78)-C(79)-N(8) 124.4(11) 

C(74)-C(79)-N(8) 116.1(11) 
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N(8)-C(80)-C(81) 125.2(10) 

N(8)-C(80)-H(80A) 117.4 

C(81)-C(80)-H(80A) 117.4 

C(86)-C(81)-C(82) 119.1(11) 

C(86)-C(81)-C(80) 124.4(11) 

C(82)-C(81)-C(80) 116.3(10) 

C(83)-C(82)-C(81) 122.5(11) 

C(83)-C(82)-H(82A) 118.7 

C(81)-C(82)-H(82A) 118.7 

C(82)-C(83)-C(84) 117.5(11) 

C(82)-C(83)-H(83A) 121.3 

C(84)-C(83)-H(83A) 121.3 

C(85)-C(84)-C(83) 123.0(12) 

C(85)-C(84)-H(84A) 118.5 

C(83)-C(84)-H(84A) 118.5 

C(84)-C(85)-C(86) 119.0(12) 

C(84)-C(85)-H(85A) 120.5 

C(86)-C(85)-H(85A) 120.5 

O(9)-C(86)-C(81) 124.0(12) 

O(9)-C(86)-C(85) 117.0(11) 

C(81)-C(86)-C(85) 118.9(12) 

C(76)-C(87)-H(87A) 109.5 

C(76)-C(87)-H(87B) 109.5 

H(87A)-C(87)-H(87B) 109.5 

C(76)-C(87)-H(87C) 109.5 

H(87A)-C(87)-H(87C) 109.5 

H(87B)-C(87)-H(87C) 109.5 

C(77)-C(88)-H(88A) 109.5 

C(77)-C(88)-H(88B) 109.5 

H(88A)-C(88)-H(88B) 109.5 

C(77)-C(88)-H(88C) 109.5 

H(88A)-C(88)-H(88C) 109.5 

H(88B)-C(88)-H(88C) 109.5 

O(10)-C(89)-C(94) 122.2(12) 

O(10)-C(89)-C(90) 120.9(12) 

C(94)-C(89)-C(90) 116.9(12) 

C(91)-C(90)-C(89) 121.9(14) 

C(91)-C(90)-H(90A) 119.1 

C(89)-C(90)-H(90A) 119.0 

C(92)-C(91)-C(90) 121.3(15) 

C(92)-C(91)-H(91A) 119.4 

C(90)-C(91)-H(91A) 119.3 

C(91)-C(92)-C(93) 117.3(14) 

C(91)-C(92)-H(92A) 121.3 

C(93)-C(92)-H(92A) 121.3 

C(92)-C(93)-C(94) 123.1(15) 

C(92)-C(93)-H(93A) 118.4 

C(94)-C(93)-H(93A) 118.5 

C(93)-C(94)-C(89) 119.3(14) 

C(93)-C(94)-C(95) 116.6(13) 

C(89)-C(94)-C(95) 123.9(11) 

N(9)-C(95)-C(94) 123.1(12) 

N(9)-C(95)-H(95A) 118.4 

C(94)-C(95)-H(95A) 118.4 

C(101)-C(96)-N(9) 118.2(11) 

C(101)-C(96)-C(97) 119.3(14) 



 166 

 

N(9)-C(96)-C(97) 122.4(14) 

C(98)-C(97)-C(96) 121.3(16) 

C(98)-C(97)-H(97A) 119.3 

C(96)-C(97)-H(97A) 119.3 

C(97)-C(98)-C(99) 118.9(14) 

C(97)-C(98)-C(109) 119.1(17) 

C(99)-C(98)-C(109) 121.9(15) 

C(100)-C(99)-C(98) 120.2(14) 

C(100)-C(99)-C(110) 119.7(16) 

C(98)-C(99)-C(110) 120.1(14) 

C(99)-C(100)-C(101) 121.0(14) 

C(99)-C(100)-H(10A) 119.5 

C(101)-C(100)-H(10A) 119.5 

C(96)-C(101)-N(10) 117.5(12) 

C(96)-C(101)-C(100) 119.1(12) 

N(10)-C(101)-C(100) 123.3(13) 

N(10)-C(102)-C(103) 126.7(12) 

N(10)-C(102)-H(10B) 116.7 

C(103)-C(102)-H(10B) 116.7 

C(108)-C(103)-C(104) 117.2(12) 

C(108)-C(103)-C(102) 124.8(11) 

C(104)-C(103)-C(102) 118.0(12) 

C(105)-C(104)-C(103) 121.3(14) 

C(105)-C(104)-H(10C) 119.4 

C(103)-C(104)-H(10C) 119.3 

C(106)-C(105)-C(104) 120.8(13) 

C(106)-C(105)-H(10D) 119.6 

C(104)-C(105)-H(10D) 119.6 

C(105)-C(106)-C(107) 120.2(14) 

C(105)-C(106)-H(10E) 119.9 

C(107)-C(106)-H(10E) 119.9 

C(108)-C(107)-C(106) 120.9(12) 

C(108)-C(107)-H(10F) 119.6 

C(106)-C(107)-H(10F) 119.6 

O(11)-C(108)-C(107) 118.9(11) 

O(11)-C(108)-C(103) 121.4(11) 

C(107)-C(108)-C(103) 119.5(12) 

C(98)-C(109)-H(10G) 109.5 

C(98)-C(109)-H(10H) 109.5 

H(10G)-C(109)-H(10H) 109.5 

C(98)-C(109)-H(10I) 109.5 

H(10G)-C(109)-H(10I) 109.5 

H(10H)-C(109)-H(10I) 109.5 

C(99)-C(110)-H(11A) 109.5 

C(99)-C(110)-H(11B) 109.5 

H(11A)-C(110)-H(11B) 109.5 

C(99)-C(110)-H(11C) 109.5 

H(11A)-C(110)-H(11C) 109.5 

H(11B)-C(110)-H(11C) 109.5 

O(12)-C(111)-C(116) 125.7(12) 

O(12)-C(111)-C(112) 117.2(11) 

C(116)-C(111)-C(112) 117.2(11) 

C(113)-C(112)-C(111) 117.8(13) 

C(113)-C(112)-H(11D) 121.1 

C(111)-C(112)-H(11D) 121.1 

C(114)-C(113)-C(112) 122.6(13) 
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C(114)-C(113)-H(11E) 118.7 

C(112)-C(113)-H(11E) 118.7 

C(115)-C(114)-C(113) 120.1(12) 

C(115)-C(114)-H(11F) 120.0 

C(113)-C(114)-H(11F) 120.0 

C(114)-C(115)-C(116) 121.5(12) 

C(114)-C(115)-H(11G) 119.2 

C(116)-C(115)-H(11G) 119.3 

C(115)-C(116)-C(111) 120.9(12) 

C(115)-C(116)-C(117) 115.8(11) 

C(111)-C(116)-C(117) 123.2(11) 

N(11)-C(117)-C(116) 127.8(11) 

N(11)-C(117)-H(11H) 116.1 

C(116)-C(117)-H(11H) 116.1 

C(119)-C(118)-C(123) 119.2(12) 

C(119)-C(118)-N(11) 123.8(13) 

C(123)-C(118)-N(11) 116.9(12) 

C(118)-C(119)-C(120) 120.8(15) 

C(118)-C(119)-H(11I) 119.6 

C(120)-C(119)-H(11I) 119.6 

C(119)-C(120)-C(121) 120.6(14) 

C(119)-C(120)-C(131) 121.3(18) 

C(121)-C(120)-C(131) 118.1(15) 

C(120)-C(121)-C(122) 117.5(14) 

C(120)-C(121)-C(132) 120.0(16) 

C(122)-C(121)-C(132) 122.4(19) 

C(123)-C(122)-C(121) 121.6(16) 

C(123)-C(122)-H(12B) 119.2 

C(121)-C(122)-H(12B) 119.2 

C(122)-C(123)-C(118) 120.3(13) 

C(122)-C(123)-N(12) 123.4(14) 

C(118)-C(123)-N(12) 115.9(11) 

N(12)-C(124)-C(125) 128.9(14) 

N(12)-C(124)-H(12C) 115.6 

C(125)-C(124)-H(12C) 115.6 

C(130)-C(125)-C(126) 121.4(15) 

C(130)-C(125)-C(124) 123.7(13) 

C(126)-C(125)-C(124) 114.9(15) 

C(127)-C(126)-C(125) 118.0(18) 

C(127)-C(126)-H(12D) 121.0 

C(125)-C(126)-H(12D) 121.0 

C(128)-C(127)-C(126) 119.8(17) 

C(128)-C(127)-H(12E) 120.1 

C(126)-C(127)-H(12E) 120.1 

C(129)-C(128)-C(127) 120.3(18) 

C(129)-C(128)-H(12F) 119.8 

C(127)-C(128)-H(12F) 119.9 

C(128)-C(129)-C(130) 122.8(18) 

C(128)-C(129)-H(12G) 118.6 

C(130)-C(129)-H(12G) 118.6 

O(13)-C(130)-C(129) 120.2(14) 

O(13)-C(130)-C(125) 122.4(13) 

C(129)-C(130)-C(125) 117.4(13) 

C(120)-C(131)-H(13A) 109.5 

C(120)-C(131)-H(13B) 109.5 

H(13A)-C(131)-H(13B) 109.5 
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C(120)-C(131)-H(13C) 109.5 

H(13A)-C(131)-H(13C) 109.5 

H(13B)-C(131)-H(13C) 109.5 

C(121)-C(132)-H(13D) 109.5 

C(121)-C(132)-H(13E) 109.5 

H(13D)-C(132)-H(13E) 109.5 

C(121)-C(132)-H(13F) 109.5 

H(13D)-C(132)-H(13F) 109.5 

H(13E)-C(132)-H(13F) 109.5 

 

Table AA.4. Anisotropic displacement parameters (Å2 × 103) for Nd2(DMSal)3·MeOH. The anisotropic 

displacement factor exponent takes the form: -2p2[ h2 a*2U11 + ... + 2 h k a* b* U12 ] 

 U11 U22 U33 U23 U13 U12 

Nd(1) 24(1) 23(1) 22(1) -1(1) 7(1) 0(1) 

C(1) 20(6) 28(7) 26(7) -2(5) 3(5) -10(5) 

O(1) 39(5) 28(5) 37(5) -2(4) 19(4) 3(4) 

N(1) 19(5) 24(5) 17(5) 2(4) -3(4) 7(4) 

Nd(2) 25(1) 22(1) 21(1) 0(1) 5(1) 0(1) 

O(2) 19(5) 36(5) 39(5) 1(4) 1(4) -2(4) 

N(2) 35(6) 14(5) 33(6) -3(4) 15(5) 1(4) 

C(2) 40(8) 32(7) 39(8) 6(6) 16(6) 12(6) 

Nd(3) 22(1) 26(1) 28(1) -1(1) 5(1) -2(1) 

O(3) 19(4) 30(5) 33(5) -4(4) 6(4) -6(4) 

N(3) 22(5) 31(6) 26(6) 2(4) 3(4) -9(4) 

C(3) 53(9) 33(7) 44(8) 10(6) 22(7) 14(6) 

Nd(4) 20(1) 24(1) 27(1) 2(1) 1(1) -2(1) 

O(4) 20(4) 22(4) 37(5) 0(4) 15(4) -1(3) 

N(4) 25(6) 41(6) 21(5) -4(4) 13(4) 9(5) 

C(4) 56(9) 36(8) 49(8) -6(6) 29(7) 7(7) 

O(5) 24(5) 50(6) 38(5) 13(4) -2(4) -17(4) 

N(5) 69(9) 31(7) 21(6) 7(5) 8(6) -13(6) 

C(5) 29(7) 35(7) 28(7) 5(5) 7(5) -1(5) 
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O(6) 33(5) 31(5) 19(4) 1(3) 7(4) 12(4) 

N(6) 25(5) 27(6) 31(6) -1(4) -8(4) 5(4) 

C(6) 18(6) 29(7) 42(8) -3(5) 7(5) 0(5) 

C(7) 14(5) 36(8) 27(6) -8(5) 2(5) -2(5) 

N(7) 22(5) 30(6) 45(7) -8(5) 12(5) -11(4) 

O(7) 57(6) 45(6) 53(6) -50(5) 33(5) -13(5) 

O(8) 33(5) 40(5) 34(5) -8(4) 16(4) -1(4) 

C(8) 25(6) 35(7) 21(6) -3(5) 13(5) 4(5) 

N(8) 25(5) 25(5) 21(5) 7(4) 0(4) 4(4) 

O(9) 26(5) 25(4) 43(5) 2(4) 17(4) 2(4) 

C(9) 22(6) 36(7) 22(6) -7(5) 3(5) 2(5) 

N(9) 12(5) 30(6) 44(7) 0(5) 2(4) -5(4) 

O(10) 20(4) 28(4) 22(4) 3(3) 11(3) 2(3) 

N(10) 14(5) 31(6) 26(5) -3(4) -4(4) -3(4) 

C(10) 30(7) 24(6) 30(7) -3(5) 11(5) -1(5) 

O(11) 24(4) 29(5) 28(5) 3(3) 16(4) -2(4) 

N(11) 31(6) 36(6) 21(5) 9(4) -4(4) -11(5) 

C(11) 28(7) 23(6) 22(6) -3(5) -1(5) 0(5) 

O(12) 20(4) 28(5) 35(5) 6(4) 9(4) -3(3) 

C(12) 12(5) 64(9) 41(7) -23(8) 16(5) -4(7) 

N(12) 29(6) 22(6) 36(6) -6(5) -5(5) 2(4) 

O(13) 34(5) 42(6) 32(5) 2(4) 2(4) 9(4) 

C(13) 15(5) 21(6) 24(6) -4(5) -2(5) 1(4) 

C(14) 15(6) 24(6) 33(7) 2(5) -8(5) 5(5) 

O(14) 61(6) 60(7) 54(6) -34(5) 24(5) -59(5) 

C(15) 20(5) 22(6) 24(5) -2(5) 11(4) 2(5) 

C(16) 24(6) 44(9) 41(7) -13(6) 7(5) -5(6) 

C(17) 31(7) 46(9) 45(8) -23(6) 19(6) -8(6) 
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C(18) 40(8) 61(10) 45(8) -15(7) 28(7) -8(7) 

C(19) 45(9) 38(8) 48(9) -2(6) 25(7) -7(6) 

C(20) 39(8) 33(7) 34(7) -17(6) 15(6) -17(6) 

C(21) 39(8) 42(8) 43(8) 21(6) 16(6) 3(6) 

C(22) 31(7) 36(7) 29(7) -3(5) 8(6) 4(6) 

C(23) 15(6) 46(8) 26(7) -9(6) 1(5) -3(6) 

C(24) 38(7) 35(7) 25(7) -5(5) 13(6) 2(6) 

C(25) 39(8) 68(10) 37(8) -4(7) 25(7) 7(7) 

C(26) 28(8) 73(11) 63(10) -17(8) 24(7) -3(7) 

C(27) 34(7) 50(9) 41(7) -6(6) 22(6) -9(6) 

C(28) 24(6) 46(9) 30(7) -9(6) 5(5) 2(6) 

C(29) 34(8) 37(8) 42(8) 16(6) 14(6) 1(6) 

C(30) 44(8) 29(7) 15(6) 1(5) 3(5) -6(6) 

C(31) 46(8) 37(8) 25(7) -2(5) 6(6) -1(6) 

C(32) 73(11) 28(7) 24(7) 0(6) 1(7) -1(7) 

C(33) 43(7) 20(6) 19(6) -4(5) 3(5) -3(5) 

C(34) 46(8) 42(8) 30(7) -8(6) 20(6) -3(6) 

C(35) 40(7) 15(6) 33(7) 13(5) 6(6) 2(5) 

C(36) 32(7) 29(7) 31(7) -1(5) 11(6) 10(5) 

C(37) 27(6) 32(8) 23(6) -12(5) -1(5) -1(5) 

C(38) 31(7) 57(9) 35(7) -5(7) 16(6) 3(7) 

C(39) 38(9) 64(11) 63(11) -16(8) 29(8) -6(8) 

C(40) 44(8) 48(9) 48(9) -7(7) 31(7) -11(7) 

C(41) 31(7) 25(7) 37(7) -7(5) 10(6) 0(5) 

C(42) 17(6) 28(7) 29(7) -7(5) 9(5) 3(5) 

C(43) 62(10) 46(9) 45(9) 2(7) 9(8) -22(8) 

C(44) 79(12) 35(9) 71(11) 0(8) 34(10) 9(8) 

C(45) 29(8) 58(10) 40(9) 8(7) -13(6) -9(7) 
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C(46) 62(12) 59(11) 73(13) 22(9) -4(9) -3(9) 

C(47) 55(12) 99(17) 116(18) 49(14) 20(12) -14(12) 

C(48) 78(17) 110(20) 190(30) 35(19) 2(17) -73(16) 

C(49) 72(15) 66(14) 160(20) 43(14) 1(14) -37(11) 

C(50) 32(8) 57(10) 54(10) 3(8) -4(7) -22(7) 

C(51) 141(19) 75(12) 1(6) -21(7) -10(8) -27(13) 

C(52) 55(9) 33(8) 16(6) -6(5) -3(6) 16(7) 

C(53) 122(16) 43(9) 16(7) -2(6) 1(8) 9(10) 

C(54) 99(15) 55(11) 45(10) 6(8) 11(10) 58(11) 

C(55) 106(15) 61(12) 27(8) 2(8) 1(9) 44(11) 

C(56) 54(9) 53(9) 26(7) -8(6) -8(6) 35(8) 

C(57) 52(9) 29(8) 24(7) -16(6) -3(6) 7(7) 

C(58) 30(7) 40(9) 27(7) -10(6) 0(5) 3(6) 

C(59) 19(6) 36(7) 34(7) -2(5) 7(5) 1(5) 

C(60) 34(7) 47(8) 28(7) -13(6) 8(6) -2(6) 

C(61) 46(8) 68(10) 24(7) -2(6) 16(6) -10(7) 

C(62) 46(8) 37(8) 25(6) 2(6) 6(6) 4(6) 

C(63) 47(8) 35(8) 29(6) -13(6) 2(6) 8(7) 

C(64) 33(7) 23(6) 11(5) -4(5) 2(5) -5(5) 

C(65) 170(20) 61(13) 92(16) 27(12) 50(16) 68(15) 

C(66) 130(20) 107(18) 109(18) 26(14) 56(16) 82(16) 

C(67) 52(9) 41(8) 53(9) -33(7) 30(8) -31(7) 

C(68) 27(7) 48(9) 55(9) -16(7) 16(6) -17(6) 

C(69) 43(8) 65(10) 44(8) -23(7) 33(7) -19(7) 

C(70) 52(9) 66(10) 46(8) -2(9) 23(7) -19(10) 

C(71) 47(9) 54(9) 27(7) -9(6) 12(6) -14(7) 

C(72) 17(6) 32(7) 29(6) -1(5) -1(5) -6(5) 

C(73) 30(7) 42(8) 30(7) 13(6) -5(6) -10(6) 
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C(74) 23(6) 35(7) 15(6) -5(5) -5(5) 0(5) 

C(75) 45(7) 29(6) 18(5) 13(6) -7(5) -7(7) 

C(76) 22(6) 21(6) 43(8) 5(5) -1(6) -1(5) 

C(77) 16(6) 35(7) 40(8) -1(6) -4(5) -4(5) 

C(78) 26(7) 38(8) 27(7) -10(6) -1(5) -7(6) 

C(79) 22(6) 28(7) 22(6) 6(5) -3(5) -5(5) 

C(80) 20(6) 36(8) 23(6) -11(5) 6(5) 3(5) 

C(81) 21(6) 29(7) 26(6) 0(5) 5(5) 3(5) 

C(82) 27(7) 47(8) 26(7) 2(6) 10(5) 7(6) 

C(83) 30(7) 32(7) 49(8) -2(6) 20(6) -3(6) 

C(84) 46(8) 31(7) 34(7) 10(6) 9(6) -13(6) 

C(85) 39(8) 28(7) 42(8) 7(6) 4(6) -3(6) 

C(86) 23(7) 36(8) 26(7) -10(6) 1(5) -2(6) 

C(87) 41(8) 29(7) 40(8) 14(6) 5(6) -3(6) 

C(88) 40(8) 37(8) 47(8) 5(6) 14(6) -1(6) 

C(89) 24(7) 44(8) 27(7) -2(6) 9(6) -14(6) 

C(90) 33(7) 40(8) 43(8) -15(6) 14(6) -12(6) 

C(91) 36(8) 65(11) 65(11) -22(9) 25(8) -19(8) 

C(92) 50(10) 81(12) 50(10) -15(9) 31(8) -21(9) 

C(93) 69(11) 47(10) 42(9) 2(7) 6(8) -26(8) 

C(94) 37(7) 49(8) 36(7) 16(7) 9(6) -15(7) 

C(95) 19(6) 37(7) 34(7) 6(6) 2(5) -14(5) 

C(96) 28(7) 22(7) 72(11) 13(7) -3(7) -3(6) 

C(97) 50(9) 44(9) 45(9) 7(7) -11(7) -1(7) 

C(98) 24(7) 32(8) 80(12) 7(7) -5(7) -8(6) 

C(99) 25(7) 33(8) 88(13) 3(8) 1(8) 10(6) 

C(100) 23(7) 38(8) 61(9) 6(7) 0(6) -1(6) 

C(101) 17(6) 41(8) 46(8) 9(6) -9(6) 0(6) 
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C(102) 31(7) 38(7) 29(7) 1(6) 4(6) 5(6) 

C(103) 25(7) 42(7) 28(7) -7(6) 5(5) -5(6) 

C(104) 37(8) 68(11) 42(9) 2(7) 18(7) 2(7) 

C(105) 45(9) 81(12) 45(9) 8(8) 24(7) -13(8) 

C(106) 36(7) 45(8) 42(7) -3(7) 6(6) -8(7) 

C(107) 23(6) 44(9) 21(6) 6(5) 3(5) -2(5) 

C(108) 19(6) 39(8) 31(7) -8(6) 3(5) 0(6) 

C(109) 71(12) 54(10) 79(13) 41(10) 5(10) 15(9) 

C(110) 34(9) 39(9) 120(16) -4(9) 16(9) 19(7) 

C(111) 16(6) 44(8) 24(7) -4(6) 4(5) 0(6) 

C(112) 25(6) 48(9) 42(8) -5(6) 2(5) 0(6) 

C(113) 28(6) 41(7) 36(7) 2(7) 10(5) 6(7) 

C(114) 31(7) 56(9) 43(8) -11(7) 23(6) 13(6) 

C(115) 41(8) 41(8) 49(9) 3(6) 30(7) 11(6) 

C(116) 34(7) 32(7) 25(7) -1(5) 9(6) -5(6) 

C(117) 27(7) 42(8) 24(6) 0(5) 6(5) -8(5) 

C(118) 22(7) 29(7) 40(8) 4(6) -7(6) -9(6) 

C(119) 31(8) 49(9) 43(8) 16(7) 2(6) -12(6) 

C(120) 38(9) 62(11) 54(10) 36(8) -12(7) -19(8) 

C(121) 27(8) 55(10) 78(12) 49(9) -16(8) -8(7) 

C(122) 21(7) 41(9) 78(12) 12(8) -9(7) 1(6) 

C(123) 23(7) 27(7) 48(8) 20(6) -7(6) -10(5) 

C(124) 3(6) 48(9) 74(11) 1(8) -9(6) 3(5) 

C(125) 32(8) 57(10) 43(9) -13(7) -3(6) 11(7) 

C(126) 69(12) 55(11) 75(13) -14(9) 17(10) 16(9) 

C(127) 117(18) 140(20) 37(10) -15(12) 19(11) 65(16) 

C(128) 116(17) 85(15) 40(10) 13(9) 17(10) 69(13) 

C(129) 74(12) 78(12) 34(9) -5(8) 18(8) 25(10) 
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C(130) 30(7) 48(9) 27(7) 0(6) -11(6) 25(6) 

C(131) 48(10) 100(15) 102(16) 48(13) 11(10) -11(10) 

C(132) 84(15) 55(12) 150(20) 36(12) 42(14) -8(10) 
 

Table AA.5. Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2 × 103) for 

Nd2(DMSal)3·MeOH. 

 x y z U(eq) 

H(2A) -499 10128 1580 43 

H(3A) -1366 10464 2369 50 

H(4A) -1472 9972 3493 53 

H(5A) -838 9126 3693 37 

H(7A) 30 8409 3402 32 

H(9A) -29 7546 3315 33 

H(12A) 2943 7077 3023 45 

H(14A) 3711 7887 3012 32 

H(16A) 5182 8115 2786 44 

H(17A) 6149 8570 2169 47 

H(18A) 5448 9219 1230 54 

H(19A) 3781 9356 885 50 

H(21A) -186 6740 3926 61 

H(21B) 821 6477 4421 61 

H(21C) 264 6247 3571 61 

H(22A) 2910 6232 3530 48 

H(22B) 1829 6000 3370 48 

H(22C) 2388 6231 4218 48 

H(24A) -1427 8528 922 38 

H(25A) -2850 8502 1313 54 

H(26A) -3316 7686 1771 63 
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H(27A) -2275 6950 1974 47 

H(29A) -722 6579 2044 44 

H(31A) -356 5760 1892 44 

H(34A) 2834 5830 1686 45 

H(36A) 3163 6634 1557 36 

H(38A) 4366 6928 929 48 

H(39A) 4970 7559 202 62 

H(40A) 3971 8253 -381 52 

H(41A) 2449 8386 -216 37 

H(43A) -129 4919 2455 78 

H(43B) 942 4786 3003 78 

H(43C) 578 4540 2136 78 

H(44A) 3199 5003 2226 89 

H(44B) 2314 4586 2040 89 

H(44C) 2680 4858 2889 89 

H(46A) -3045 6981 -261 83 

H(47A) -4128 6260 -305 109 

H(48A) -3674 5355 -585 163 

H(49A) -2076 5224 -533 127 

H(51A) -533 5505 -454 94 

H(53A) 1040 5211 143 77 

H(56A) 2911 6375 -824 58 

H(58A) 1785 6846 -1721 41 

H(60A) 1911 7497 -2555 44 

H(61A) 1628 8344 -3101 54 

H(62A) 568 8921 -2705 44 

H(63A) -195 8635 -1763 47 

H(65A) 3358 4693 154 158 
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H(65B) 2263 4473 -59 158 

H(65C) 2748 4738 782 158 

H(66A) 4003 5116 -141 167 

H(66B) 4355 5723 14 167 

H(66C) 3975 5502 -866 167 

H(68A) 5015 9284 8019 51 

H(69A) 5022 9089 9310 55 

H(70A) 6042 8417 10030 63 

H(71A) 7106 7987 9514 51 

H(73A) 7818 7778 8497 44 

H(75A) 8063 7046 7960 40 

H(78A) 9324 7559 5911 38 

H(80A) 9408 8434 6031 32 

H(82A) 10016 9173 5563 40 

H(83A) 9925 10049 5087 43 

H(84A) 8465 10530 4932 45 

H(85A) 7145 10169 5263 46 

H(87A) 9610 6054 7372 58 

H(87B) 8574 6029 7551 58 

H(87C) 9504 6263 8196 58 

H(88A) 10141 6766 5918 61 

H(88B) 9587 6261 6141 61 

H(88C) 10540 6492 6763 61 

H(90A) 4145 8263 6813 46 

H(91A) 3572 8075 7874 64 

H(92A) 4078 7312 8632 69 

H(93A) 5126 6720 8253 65 

H(95A) 6292 6517 7563 37 
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H(97A) 6511 5707 7201 62 

H(10A) 7788 5864 5063 51 

H(10B) 7966 6707 4908 40 

H(10C) 8334 7217 3884 57 

H(10D) 8422 8040 3302 66 

H(10E) 7521 8747 3510 50 

H(10F) 6497 8658 4332 36 

H(10G) 7198 4890 7539 107 

H(10H) 8183 4767 7311 107 

H(10I) 7167 4533 6783 107 

H(11A) 8445 5003 5251 98 

H(11B) 7896 4584 5659 98 

H(11C) 8880 4865 6164 98 

H(11D) 2725 8626 4336 48 

H(11E) 1234 8817 4597 42 

H(11F) 489 8211 5225 49 

H(11G) 1223 7402 5656 48 

H(11H) 2389 6772 5775 37 

H(11I) 3264 6254 6750 51 

H(12B) 4998 5212 5439 62 

H(12C) 4698 5530 4298 55 

H(12D) 4966 5308 3132 81 

H(12E) 5415 5550 1983 117 

H(12F) 5732 6454 1764 98 

H(12G) 5569 7101 2628 74 

H(13A) 4001 4962 7581 128 

H(13B) 3043 5324 7424 128 

H(13C) 4073 5556 7928 128 
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H(13D) 5139 4499 6362 139 

H(13E) 4232 4448 6718 139 

H(13F) 5232 4708 7232 139 
 

 

Figure AA.1. Molecular structure of Nd2(DMSal)3. All atoms represented by thermal ellipsoids drawn at 

the 30% probability level. All hydrogen atoms were omitted for clarity. 
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Figure AA.2. Unit cell structure of Nd2(DMSal)3 

 

Table AA.6. Crystal data and structure refinement for Et3NH[Nd(TBDMSal)2]. 

Identification code hu0414s 

Empirical formula C50 H43 Br8 N5 Nd O4 

Formula weight 1561.41 

Temperature 273(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group P2(1)/n 

Unit cell dimensions a = 8.2612(3) Å α = 90°. 

 b = 14.1640(5) Å β = 93.2130(10)°. 

 c = 46.8454(18) Å γ = 90°. 
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Volume 5472.8(3) Å3 

Z 4 

Density (calculated) 1.895 Mg/m3 

Absorption coefficient 6.836 mm-1 

F(000) 3000 

Crystal size 0.35 × 0.08 × 0.08 mm3 

Theta range for data collection 1.50 to 25.00°. 

Index ranges -9 ≤ h ≤ 9, -16 ≤ k ≤ 16, -55 ≤ l ≤ 55 

Reflections collected 43476 

Independent reflections 9639 [R(int) = 0.1284] 

Completeness to theta = 25.00° 100.0 % 

Absorption correction None 

Max. and min. transmission 0.6108 and 0.1982 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9639 / 0 / 613 

Goodness-of-fit on F2 0.854 

Final R indices [I>2sigma(I)] R1 = 0.0634, wR2 = 0.1314 

R indices (all data) R1 = 0.1359, wR2 = 0.1585 

Largest diff. peak and hole 0.927 and -0.795 e.Å-3 
 

Table AA.7. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 × 103) for 

Et3NH[Nd(TBDMSal)2]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

Nd 6845(1) 7663(1) 1176(1) 41(1) 

Br(1) 8195(2) 10913(1) 776(1) 84(1) 

Br(2) 10628(2) 12471(1) 1818(1) 128(1) 

Br(3) 11810(2) 3167(1) 651(1) 99(1) 

Br(4) 8867(2) 6493(1) 225(1) 81(1) 
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Br(5) 6550(2) 9205(1) 236(1) 80(1) 

Br(6) 3417(2) 6261(1) -390(1) 99(1) 

Br(7) 1962(2) 9129(1) 2545(1) 110(1) 

Br(8) 4866(2) 10708(1) 1596(1) 79(1) 

O(1) 8150(8) 9108(4) 1135(1) 50(2) 

O(2) 8491(8) 6862(5) 861(1) 53(2) 

O(3) 5462(8) 8050(4) 736(1) 48(2) 

O(4) 5133(8) 8646(4) 1426(1) 50(2) 

N(1) 8450(9) 8098(6) 1659(2) 48(2) 

N(2) 8701(10) 6356(6) 1445(2) 49(2) 

N(3) 5075(9) 6208(5) 969(2) 41(2) 

N(4) 4940(10) 6710(5) 1523(2) 46(2) 

N(5) 2498(12) 9110(7) 704(2) 74(3) 

C(1) 8640(12) 9821(7) 1292(2) 55(3) 

C(2) 8801(12) 10735(7) 1166(3) 64(3) 

C(3) 9376(14) 11487(8) 1322(3) 74(4) 

C(4) 9822(14) 11414(8) 1600(4) 79(4) 

C(5) 9672(14) 10565(9) 1738(3) 76(4) 

C(6) 9127(12) 9747(7) 1586(2) 55(3) 

C(7) 9042(12) 8890(7) 1747(2) 58(3) 

C(8) 8407(12) 7328(8) 1857(2) 53(3) 

C(9) 8153(15) 7436(9) 2143(2) 75(4) 

C(10) 8079(16) 6650(10) 2321(2) 79(4) 

C(11) 8308(13) 5756(8) 2212(2) 61(3) 

C(12) 8529(13) 5654(7) 1924(2) 59(3) 

C(13) 8604(12) 6437(8) 1744(2) 54(3) 

C(14) 9565(14) 5703(8) 1346(2) 60(3) 

C(15) 9769(12) 5467(7) 1048(2) 54(3) 
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C(16) 10581(13) 4632(8) 992(2) 63(3) 

C(17) 10818(13) 4340(8) 721(3) 63(3) 

C(18) 10310(13) 4912(8) 496(2) 63(3) 

C(19) 9571(12) 5755(7) 542(2) 53(3) 

C(20) 9224(11) 6071(7) 822(2) 46(2) 

C(21) 8163(17) 4866(9) 2395(2) 92(4) 

C(22) 7690(20) 6784(10) 2636(2) 134(7) 

C(23) 5183(11) 7594(7) 497(2) 48(3) 

C(24) 5490(13) 8032(8) 234(2) 58(3) 

C(25) 5002(13) 7648(8) -33(2) 62(3) 

C(26) 4238(13) 6774(9) -37(2) 65(3) 

C(27) 4041(13) 6290(8) 211(2) 59(3) 

C(28) 4542(11) 6676(7) 472(2) 47(2) 

C(29) 4423(12) 6076(7) 719(2) 49(3) 

C(30) 5035(11) 5477(6) 1176(2) 38(2) 

C(31) 5180(12) 4531(7) 1104(2) 54(3) 

C(32) 5240(12) 3839(6) 1311(2) 53(3) 

C(33) 5153(12) 4076(7) 1596(2) 51(3) 

C(34) 5009(12) 5021(7) 1667(2) 51(3) 

C(35) 4967(11) 5725(6) 1465(2) 42(2) 

C(36) 4105(12) 6995(7) 1731(2) 53(3) 

C(37) 3933(12) 7948(7) 1828(2) 48(3) 

C(38) 3176(13) 8076(8) 2088(2) 65(3) 

C(39) 2977(14) 8960(9) 2192(2) 63(3) 

C(40) 3466(14) 9734(8) 2049(2) 66(3) 

C(41) 4189(11) 9638(7) 1792(2) 49(3) 

C(42) 4475(11) 8736(7) 1672(2) 45(2) 

C(43) 5404(18) 2802(7) 1220(2) 89(4) 
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C(44) 5329(14) 3328(7) 1828(2) 66(3) 

C(45) 1650(30) 9230(20) 452(5) 310(30) 

C(46) 1338(19) 8810(13) 205(4) 136(6) 

C(47) 1500(30) 8590(20) 870(8) 400(30) 

C(48) 1786(13) 8012(8) 1091(3) 80(4) 

C(49) 2860(30) 9921(16) 820(8) 340(30) 

C(50) 3660(30) 10663(14) 783(4) 184(10) 
 

Table AA.8. Bond lengths [Å] and angles [°] for Et3NH[Nd(TBDMSal)2]. 

Nd-O(1) 2.327(6) 

Nd-O(4) 2.345(6) 

Nd-O(2) 2.353(6) 

Nd-O(3) 2.367(6) 

Nd-N(1) 2.629(7) 

Nd-N(2) 2.672(8) 

Nd-N(3) 2.678(7) 

Nd-N(4) 2.689(8) 

Br(1)-C(2) 1.881(13) 

Br(2)-C(4) 1.911(11) 

Br(3)-C(17) 1.890(10) 

Br(4)-C(19) 1.880(10) 

Br(5)-C(24) 1.878(10) 

Br(6)-C(26) 1.897(11) 

Br(7)-C(39) 1.910(10) 

Br(8)-C(41) 1.874(10) 

O(1)-C(1) 1.300(11) 

O(2)-C(20) 1.291(11) 

O(3)-C(23) 1.300(11) 

O(4)-C(42) 1.307(10) 

N(1)-C(7) 1.284(12) 

N(1)-C(8) 1.432(12) 

N(2)-C(14) 1.271(12) 

N(2)-C(13) 1.415(12) 

N(3)-C(29) 1.275(11) 

N(3)-C(30) 1.422(10) 

N(4)-C(36) 1.291(11) 

N(4)-C(35) 1.420(11) 

N(5)-C(49) 1.299(19) 

N(5)-C(45) 1.35(2) 

N(5)-C(47) 1.38(2) 

C(1)-C(6) 1.419(14) 

C(1)-C(2) 1.432(14) 

C(2)-C(3) 1.364(15) 

C(3)-C(4) 1.338(17) 

C(3)-H(3A) 0.9300 

C(4)-C(5) 1.373(16) 

C(5)-C(6) 1.419(14) 
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C(5)-H(5A) 0.9300 

C(6)-C(7) 1.431(14) 

C(7)-H(7A) 0.9300 

C(8)-C(9) 1.380(14) 

C(8)-C(13) 1.381(13) 

C(9)-C(10) 1.393(16) 

C(9)-H(9A) 0.9300 

C(10)-C(11) 1.384(16) 

C(10)-C(22) 1.537(15) 

C(11)-C(12) 1.377(13) 

C(11)-C(21) 1.534(15) 

C(12)-C(13) 1.396(14) 

C(12)-H(12A) 0.9300 

C(14)-C(15) 1.457(14) 

C(14)-H(14A) 0.9300 

C(15)-C(16) 1.392(14) 

C(15)-C(20) 1.414(13) 

C(16)-C(17) 1.359(14) 

C(16)-H(16A) 0.9300 

C(17)-C(18) 1.376(15) 

C(18)-C(19) 1.363(13) 

C(18)-H(18A) 0.9300 

C(19)-C(20) 1.432(13) 

C(21)-H(21A) 0.9600 

C(21)-H(21B) 0.9600 

C(21)-H(21C) 0.9600 

C(22)-H(22A) 0.9600 

C(22)-H(22B) 0.9600 

C(22)-H(22C) 0.9600 

C(23)-C(28) 1.406(13) 

C(23)-C(24) 1.416(13) 

C(24)-C(25) 1.399(14) 

C(25)-C(26) 1.389(15) 

C(25)-H(25A) 0.9300 

C(26)-C(27) 1.369(14) 

C(27)-C(28) 1.380(13) 

C(27)-H(27A) 0.9300 

C(28)-C(29) 1.443(13) 

C(29)-H(29A) 0.9300 

C(30)-C(31) 1.388(12) 

C(30)-C(35) 1.403(11) 

C(31)-C(32) 1.377(13) 

C(31)-H(31A) 0.9300 

C(32)-C(33) 1.382(13) 

C(32)-C(43) 1.537(13) 

C(33)-C(34) 1.386(13) 

C(33)-C(44) 1.518(12) 

C(34)-C(35) 1.373(12) 

C(34)-H(34A) 0.9300 

C(36)-C(37) 1.433(13) 

C(36)-H(36A) 0.9300 

C(37)-C(38) 1.412(13) 

C(37)-C(42) 1.419(13) 

C(38)-C(39) 1.357(14) 

C(38)-H(38A) 0.9300 

C(39)-C(40) 1.357(14) 
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C(40)-C(41) 1.380(13) 

C(40)-H(40A) 0.9300 

C(41)-C(42) 1.422(13) 

C(43)-H(43A) 0.9600 

C(43)-H(43B) 0.9600 

C(43)-H(43C) 0.9600 

C(44)-H(44A) 0.9600 

C(44)-H(44B) 0.9600 

C(44)-H(44C) 0.9600 

C(45)-C(46) 1.32(2) 

C(45)-H(45A) 0.9700 

C(45)-H(45B) 0.9700 

C(46)-H(46A) 0.9600 

C(46)-H(46B) 0.9600 

C(46)-H(46C) 0.9600 

C(47)-C(48) 1.33(2) 

C(47)-H(47A) 0.9700 

C(47)-H(47B) 0.9700 

C(48)-H(48A) 0.9600 

C(48)-H(48B) 0.9600 

C(48)-H(48C) 0.9600 

C(49)-C(50) 1.26(3) 

C(49)-H(49A) 0.9700 

C(49)-H(49B) 0.9700 

C(50)-H(50A) 0.9600 

C(50)-H(50B) 0.9600 

C(50)-H(50C) 0.9600 

  

O(1)-Nd-O(4) 79.3(2) 

O(1)-Nd-O(2) 94.9(2) 

O(4)-Nd-O(2) 170.2(2) 

O(1)-Nd-O(3) 85.8(2) 

O(4)-Nd-O(3) 91.3(2) 

O(2)-Nd-O(3) 80.4(2) 

O(1)-Nd-N(1) 69.6(2) 

O(4)-Nd-N(1) 73.8(2) 

O(2)-Nd-N(1) 111.8(2) 

O(3)-Nd-N(1) 153.0(2) 

O(1)-Nd-N(2) 113.1(2) 

O(4)-Nd-N(2) 121.5(2) 

O(2)-Nd-N(2) 68.0(2) 

O(3)-Nd-N(2) 143.8(2) 

N(1)-Nd-N(2) 60.6(2) 

O(1)-Nd-N(3) 153.2(2) 

O(4)-Nd-N(3) 107.8(2) 

O(2)-Nd-N(3) 74.0(2) 

O(3)-Nd-N(3) 68.6(2) 

N(1)-Nd-N(3) 137.0(2) 

N(2)-Nd-N(3) 85.7(2) 

O(1)-Nd-N(4) 141.4(2) 

O(4)-Nd-N(4) 66.8(2) 

O(2)-Nd-N(4) 121.0(2) 

O(3)-Nd-N(4) 111.9(2) 

N(1)-Nd-N(4) 83.2(2) 

N(2)-Nd-N(4) 73.0(2) 

N(3)-Nd-N(4) 60.4(2) 
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C(1)-O(1)-Nd 140.1(6) 

C(20)-O(2)-Nd 143.0(6) 

C(23)-O(3)-Nd 133.5(6) 

C(42)-O(4)-Nd 142.3(6) 

C(7)-N(1)-C(8) 118.7(8) 

C(7)-N(1)-Nd 130.2(7) 

C(8)-N(1)-Nd 110.4(6) 

C(14)-N(2)-C(13) 118.8(9) 

C(14)-N(2)-Nd 130.8(7) 

C(13)-N(2)-Nd 110.4(6) 

C(29)-N(3)-C(30) 119.8(8) 

C(29)-N(3)-Nd 129.8(6) 

C(30)-N(3)-Nd 110.2(5) 

C(36)-N(4)-C(35) 117.8(8) 

C(36)-N(4)-Nd 130.9(6) 

C(35)-N(4)-Nd 111.2(6) 

C(49)-N(5)-C(45) 110(2) 

C(49)-N(5)-C(47) 111(2) 

C(45)-N(5)-C(47) 105(2) 

O(1)-C(1)-C(6) 123.7(9) 

O(1)-C(1)-C(2) 120.2(10) 

C(6)-C(1)-C(2) 116.0(10) 

C(3)-C(2)-C(1) 121.5(12) 

C(3)-C(2)-Br(1) 118.8(10) 

C(1)-C(2)-Br(1) 119.7(8) 

C(4)-C(3)-C(2) 122.1(12) 

C(4)-C(3)-H(3A) 118.9 

C(2)-C(3)-H(3A) 118.9 

C(3)-C(4)-C(5) 119.8(11) 

C(3)-C(4)-Br(2) 121.9(11) 

C(5)-C(4)-Br(2) 118.3(12) 

C(4)-C(5)-C(6) 121.0(12) 

C(4)-C(5)-H(5A) 119.5 

C(6)-C(5)-H(5A) 119.5 

C(5)-C(6)-C(1) 119.4(11) 

C(5)-C(6)-C(7) 116.9(11) 

C(1)-C(6)-C(7) 123.6(9) 

N(1)-C(7)-C(6) 127.0(10) 

N(1)-C(7)-H(7A) 116.5 

C(6)-C(7)-H(7A) 116.5 

C(9)-C(8)-C(13) 120.0(10) 

C(9)-C(8)-N(1) 123.9(10) 

C(13)-C(8)-N(1) 116.2(9) 

C(8)-C(9)-C(10) 120.6(11) 

C(8)-C(9)-H(9A) 119.7 

C(10)-C(9)-H(9A) 119.7 

C(11)-C(10)-C(9) 119.8(10) 

C(11)-C(10)-C(22) 120.6(12) 

C(9)-C(10)-C(22) 119.6(12) 

C(12)-C(11)-C(10) 119.2(11) 

C(12)-C(11)-C(21) 118.8(11) 

C(10)-C(11)-C(21) 121.8(10) 

C(11)-C(12)-C(13) 121.3(10) 

C(11)-C(12)-H(12A) 119.3 

C(13)-C(12)-H(12A) 119.3 

C(8)-C(13)-C(12) 119.0(9) 
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C(8)-C(13)-N(2) 117.8(9) 

C(12)-C(13)-N(2) 122.8(9) 

N(2)-C(14)-C(15) 127.7(10) 

N(2)-C(14)-H(14A) 116.1 

C(15)-C(14)-H(14A) 116.1 

C(16)-C(15)-C(20) 120.7(10) 

C(16)-C(15)-C(14) 117.3(10) 

C(20)-C(15)-C(14) 122.0(9) 

C(17)-C(16)-C(15) 122.0(11) 

C(17)-C(16)-H(16A) 119.0 

C(15)-C(16)-H(16A) 119.0 

C(16)-C(17)-C(18) 118.9(10) 

C(16)-C(17)-Br(3) 121.1(10) 

C(18)-C(17)-Br(3) 120.1(8) 

C(19)-C(18)-C(17) 121.0(10) 

C(19)-C(18)-H(18A) 119.5 

C(17)-C(18)-H(18A) 119.5 

C(18)-C(19)-C(20) 122.2(10) 

C(18)-C(19)-Br(4) 119.0(8) 

C(20)-C(19)-Br(4) 118.7(8) 

O(2)-C(20)-C(15) 123.5(9) 

O(2)-C(20)-C(19) 121.4(9) 

C(15)-C(20)-C(19) 115.1(9) 

C(11)-C(21)-H(21A) 109.5 

C(11)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21B) 109.5 

C(11)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21C) 109.5 

H(21B)-C(21)-H(21C) 109.5 

C(10)-C(22)-H(22A) 109.5 

C(10)-C(22)-H(22B) 109.5 

H(22A)-C(22)-H(22B) 109.5 

C(10)-C(22)-H(22C) 109.5 

H(22A)-C(22)-H(22C) 109.5 

H(22B)-C(22)-H(22C) 109.5 

O(3)-C(23)-C(28) 125.4(9) 

O(3)-C(23)-C(24) 120.0(9) 

C(28)-C(23)-C(24) 114.7(10) 

C(25)-C(24)-C(23) 123.3(10) 

C(25)-C(24)-Br(5) 117.4(8) 

C(23)-C(24)-Br(5) 119.2(8) 

C(26)-C(25)-C(24) 117.9(10) 

C(26)-C(25)-H(25A) 121.0 

C(24)-C(25)-H(25A) 121.0 

C(27)-C(26)-C(25) 120.5(10) 

C(27)-C(26)-Br(6) 119.8(9) 

C(25)-C(26)-Br(6) 119.7(9) 

C(26)-C(27)-C(28) 120.7(10) 

C(26)-C(27)-H(27A) 119.7 

C(28)-C(27)-H(27A) 119.7 

C(27)-C(28)-C(23) 122.2(9) 

C(27)-C(28)-C(29) 116.4(9) 

C(23)-C(28)-C(29) 121.4(9) 

N(3)-C(29)-C(28) 127.2(9) 

N(3)-C(29)-H(29A) 116.4 

C(28)-C(29)-H(29A) 116.4 
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C(31)-C(30)-C(35) 119.0(8) 

C(31)-C(30)-N(3) 122.1(8) 

C(35)-C(30)-N(3) 118.7(8) 

C(32)-C(31)-C(30) 121.1(9) 

C(32)-C(31)-H(31A) 119.5 

C(30)-C(31)-H(31A) 119.5 

C(31)-C(32)-C(33) 120.3(9) 

C(31)-C(32)-C(43) 119.1(10) 

C(33)-C(32)-C(43) 120.6(9) 

C(34)-C(33)-C(32) 118.5(9) 

C(34)-C(33)-C(44) 120.6(9) 

C(32)-C(33)-C(44) 120.8(9) 

C(35)-C(34)-C(33) 122.3(9) 

C(35)-C(34)-H(34A) 118.8 

C(33)-C(34)-H(34A) 118.8 

C(34)-C(35)-C(30) 118.8(8) 

C(34)-C(35)-N(4) 125.5(8) 

C(30)-C(35)-N(4) 115.6(8) 

N(4)-C(36)-C(37) 126.9(9) 

N(4)-C(36)-H(36A) 116.6 

C(37)-C(36)-H(36A) 116.6 

C(38)-C(37)-C(42) 120.7(9) 

C(38)-C(37)-C(36) 116.7(9) 

C(42)-C(37)-C(36) 122.6(8) 

C(39)-C(38)-C(37) 119.8(10) 

C(39)-C(38)-H(38A) 120.1 

C(37)-C(38)-H(38A) 120.1 

C(38)-C(39)-C(40) 121.5(10) 

C(38)-C(39)-Br(7) 119.6(9) 

C(40)-C(39)-Br(7) 118.8(9) 

C(39)-C(40)-C(41) 120.4(10) 

C(39)-C(40)-H(40A) 119.8 

C(41)-C(40)-H(40A) 119.8 

C(40)-C(41)-C(42) 121.6(9) 

C(40)-C(41)-Br(8) 120.3(8) 

C(42)-C(41)-Br(8) 118.1(7) 

O(4)-C(42)-C(41) 121.6(9) 

O(4)-C(42)-C(37) 122.4(8) 

C(41)-C(42)-C(37) 116.0(9) 

C(32)-C(43)-H(43A) 109.5 

C(32)-C(43)-H(43B) 109.5 

H(43A)-C(43)-H(43B) 109.5 

C(32)-C(43)-H(43C) 109.5 

H(43A)-C(43)-H(43C) 109.5 

H(43B)-C(43)-H(43C) 109.5 

C(33)-C(44)-H(44A) 109.5 

C(33)-C(44)-H(44B) 109.5 

H(44A)-C(44)-H(44B) 109.5 

C(33)-C(44)-H(44C) 109.5 

H(44A)-C(44)-H(44C) 109.5 

H(44B)-C(44)-H(44C) 109.5 

C(46)-C(45)-N(5) 141(2) 

C(46)-C(45)-H(45A) 101.8 

N(5)-C(45)-H(45A) 101.8 

C(46)-C(45)-H(45B) 101.8 

N(5)-C(45)-H(45B) 101.8 
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H(45A)-C(45)-H(45B) 104.7 

C(45)-C(46)-H(46A) 109.5 

C(45)-C(46)-H(46B) 109.5 

H(46A)-C(46)-H(46B) 109.5 

C(45)-C(46)-H(46C) 109.5 

H(46A)-C(46)-H(46C) 109.5 

H(46B)-C(46)-H(46C) 109.5 

C(48)-C(47)-N(5) 133(2) 

C(48)-C(47)-H(47A) 104.0 

N(5)-C(47)-H(47A) 104.0 

C(48)-C(47)-H(47B) 104.0 

N(5)-C(47)-H(47B) 104.0 

H(47A)-C(47)-H(47B) 105.4 

C(47)-C(48)-H(48A) 109.5 

C(47)-C(48)-H(48B) 109.5 

H(48A)-C(48)-H(48B) 109.5 

C(47)-C(48)-H(48C) 109.5 

H(48A)-C(48)-H(48C) 109.5 

H(48B)-C(48)-H(48C) 109.5 

C(50)-C(49)-N(5) 142(4) 

C(50)-C(49)-H(49A) 101.4 

N(5)-C(49)-H(49A) 101.4 

C(50)-C(49)-H(49B) 101.4 

N(5)-C(49)-H(49B) 101.4 

H(49A)-C(49)-H(49B) 104.6 

C(49)-C(50)-H(50A) 109.5 

C(49)-C(50)-H(50B) 109.5 

H(50A)-C(50)-H(50B) 109.5 

C(49)-C(50)-H(50C) 109.5 

H(50A)-C(50)-H(50C) 109.5 

H(50B)-C(50)-H(50C) 109.5 

 

Table AA.9. Anisotropic displacement parameters (Å2 × 103) Et3NH[Nd(TBDMSal)2]. The anisotropic 

displacement factor exponent takes the form: -2p2[ h2 a*2U11 + ... + 2 h k a* b* U12] 

 U11 U22 U33 U23 U13 U12 

Nd 50(1) 36(1) 37(1) -1(1) 6(1) -2(1) 

Br(1) 94(1) 59(1) 101(1) 14(1) 13(1) 1(1) 

Br(2) 133(1) 78(1) 173(2) -58(1) 24(1) -43(1) 

Br(3) 117(1) 70(1) 110(1) -24(1) 11(1) 34(1) 

Br(4) 106(1) 89(1) 49(1) -3(1) 10(1) 30(1) 

Br(5) 96(1) 75(1) 70(1) 24(1) 9(1) -21(1) 

Br(6) 117(1) 136(1) 44(1) -12(1) -9(1) -22(1) 

Br(7) 151(2) 112(1) 72(1) -18(1) 56(1) 13(1) 

Br(8) 111(1) 40(1) 88(1) -2(1) 27(1) 2(1) 
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O(1) 53(4) 39(4) 59(4) -8(3) 11(3) -12(3) 

O(2) 58(4) 53(4) 49(4) 0(3) 16(3) 6(4) 

O(3) 71(5) 39(4) 35(4) 1(3) 1(3) -5(3) 

O(4) 62(4) 42(4) 47(4) 0(3) 12(4) 3(3) 

N(1) 58(6) 46(5) 37(5) 0(4) -7(4) -1(4) 

N(2) 59(6) 41(5) 46(5) -6(4) 6(4) 2(4) 

N(3) 38(5) 42(5) 44(5) 1(4) 11(4) -7(4) 

N(4) 64(6) 37(5) 37(5) -7(4) 3(4) -8(4) 

N(5) 74(7) 61(7) 87(8) 13(6) 9(6) -10(5) 

C(1) 46(7) 47(7) 74(8) -3(6) 9(6) -8(5) 

C(2) 47(7) 49(7) 97(9) -20(7) 22(6) -6(5) 

C(3) 64(8) 58(8) 102(11) -13(8) 7(8) -14(6) 

C(4) 62(8) 46(7) 128(13) -38(8) 15(9) -26(6) 

C(5) 71(8) 75(9) 83(9) -20(7) 20(7) -16(7) 

C(6) 56(7) 44(6) 64(8) -19(6) 7(6) 6(5) 

C(7) 59(7) 55(7) 58(7) -2(6) 2(6) -2(6) 

C(8) 62(7) 62(7) 35(6) 0(6) -7(5) 2(6) 

C(9) 111(11) 70(8) 44(7) -12(6) -3(7) -13(7) 

C(10) 107(11) 105(11) 26(6) -19(7) 2(6) -20(8) 

C(11) 67(8) 79(8) 34(6) -2(6) -18(6) 3(6) 

C(12) 81(8) 51(7) 42(6) -5(5) -8(6) 5(6) 

C(13) 61(7) 64(7) 36(6) -12(6) 3(5) 5(6) 

C(14) 76(8) 57(7) 47(7) -1(6) -5(6) -1(6) 

C(15) 63(7) 45(6) 55(7) -14(5) 8(6) 4(5) 

C(16) 73(8) 55(7) 61(8) 2(6) 3(6) 0(6) 

C(17) 67(8) 51(7) 73(8) -22(6) 20(7) 13(6) 

C(18) 58(7) 65(8) 66(8) -17(7) 14(6) 8(6) 

C(19) 41(6) 64(7) 53(7) -8(6) 2(5) 0(5) 

C(20) 39(6) 58(7) 42(6) -1(5) 9(5) 0(5) 

C(21) 129(12) 92(10) 51(8) 21(7) -25(8) -17(8) 

C(22) 260(20) 105(12) 40(8) -18(8) 8(10) -25(13) 

C(23) 44(6) 54(7) 48(6) 20(5) 11(5) 11(5) 

C(24) 56(7) 62(7) 56(7) 13(6) 5(6) -10(5) 
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C(25) 63(7) 80(8) 43(7) 17(6) 8(6) 1(7) 

C(26) 61(8) 98(10) 37(6) -7(7) 4(6) 2(7) 

C(27) 65(7) 78(8) 32(6) -9(6) -9(5) -13(6) 

C(28) 44(6) 42(6) 53(7) 9(5) -3(5) -5(5) 

C(29) 60(7) 40(6) 45(6) -12(5) -6(5) -3(5) 

C(30) 55(6) 26(5) 32(5) 7(4) -2(5) -3(4) 

C(31) 77(8) 41(6) 43(6) 0(5) -5(6) 2(5) 

C(32) 70(8) 31(6) 58(7) 4(5) 7(6) 4(5) 

C(33) 67(7) 41(6) 45(6) 9(5) 11(5) -1(5) 

C(34) 78(8) 46(6) 28(5) 12(5) 4(5) -1(5) 

C(35) 59(6) 39(6) 28(5) -9(4) 9(5) -7(5) 

C(36) 70(7) 48(6) 43(6) -3(5) 20(5) 3(5) 

C(37) 59(7) 48(6) 40(6) -2(5) 16(5) -6(5) 

C(38) 80(8) 69(8) 47(7) -3(6) 25(6) -7(6) 

C(39) 78(8) 70(8) 44(7) -14(6) 19(6) 2(6) 

C(40) 83(9) 51(7) 63(8) -19(6) 10(7) 4(6) 

C(41) 49(6) 41(6) 58(7) -2(5) 6(5) 3(5) 

C(42) 49(6) 46(6) 41(6) -6(5) 7(5) 6(5) 

C(43) 164(14) 42(7) 62(8) -9(6) 16(8) 13(7) 

C(44) 109(10) 55(7) 33(6) 9(5) 6(6) -6(6) 

C(45) 310(40) 450(50) 160(20) -200(30) -120(30) 230(40) 

C(46) 109(13) 166(18) 136(16) 33(14) 33(12) -1(12) 

C(47) 240(30) 450(50) 530(60) 400(50) 300(40) 230(30) 

C(48) 66(8) 67(8) 108(11) 24(8) 22(8) -19(6) 

C(49) 260(30) 110(20) 630(70) -180(30) -150(40) -20(20) 

C(50) 270(30) 158(19) 134(16) 0(14) 71(17) -123(19) 
 

Table AA.10. Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2 × 10 3) for 

Et3NH[Nd(TBDMSal)2]. 

 x y z U(eq) 

H(3A) 9462 12070 1233 89 

H(5A) 9932 10525 1933 91 



 192 

 

H(7A) 9461 8910 1935 69 

H(9A) 8031 8037 2219 90 

H(12A) 8631 5051 1848 70 

H(14A) 10136 5331 1481 72 

H(16A) 10972 4262 1144 76 

H(18A) 10472 4720 310 75 

H(21A) 8356 4318 2282 138 

H(21B) 7093 4833 2465 138 

H(21C) 8948 4892 2554 138 

H(22A) 7686 6181 2729 200 

H(22B) 6645 7074 2645 200 

H(22C) 8499 7181 2729 200 

H(25A) 5184 7967 -201 74 

H(27A) 3563 5695 205 71 

H(29A) 3802 5532 692 58 

H(31A) 5237 4362 913 65 

H(34A) 4939 5184 1858 61 

H(36A) 3557 6534 1829 63 

H(38A) 2815 7556 2187 77 

H(40A) 3312 10332 2125 79 

H(43A) 5451 2767 1016 133 

H(43B) 4484 2451 1279 133 

H(43C) 6377 2540 1310 133 

H(44A) 5411 2717 1741 98 

H(44B) 4398 3343 1941 98 

H(44C) 6288 3450 1947 98 

H(45A) 564 9350 514 376 

H(45B) 2029 9846 392 376 
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H(46A) 669 9211 82 204 

H(46B) 783 8226 235 204 

H(46C) 2338 8685 117 204 

H(47A) 755 9054 940 476 

H(47B) 860 8212 733 476 

H(48A) 778 7766 1151 120 

H(48B) 2324 8353 1246 120 

H(48C) 2462 7500 1035 120 

H(49A) 1786 10178 847 410 

H(49B) 3257 9732 1010 410 

H(50A) 3501 11095 937 277 

H(50B) 3307 10950 605 277 

H(50C) 4792 10508 780 277 
 

 

Figure AA.3. Molecular structure of Et3NH[Nd(TBDMSal)2]. All atoms represented by thermal ellipsoids drawn at 

the 30% probability level. All hydrogen atoms were omitted for clarity. 
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Figure AA.4. Unit cell structure of Et3NH[Nd(TBDMSal)2] 

 

Table AA.11. Crystal data and structure refinement for Et3NH[Yb(3BDMSal)2]. 

Identification code  hyu531s 

Empirical formula  C50 H46 Br4 N5 O4 Yb 

Formula weight  1273.60 

Temperature  200(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 14.0444(7) Å α= 71.8530(10)°. 

 b = 19.0529(10) Å β= 74.1520(10)°. 

 c = 23.0176(12) Å γ = 68.7990(10)°. 

Volume 5366.5(5) Å3 

Z 4 

Density (calculated) 1.576 Mg/m3 
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Absorption coefficient 4.765 mm-1 

F(000) 2492 

Crystal size 0.27 × 0.26 × 0.17 mm3 

Theta range for data collection 1.58 to 27.50°. 

Index ranges -18 ≤ h ≤ 18, -24 ≤ k ≤ 24, -29 ≤ l ≤ 29 

Reflections collected 52525 

Independent reflections 24537 [R(int) = 0.0645] 

Completeness to theta = 27.50° 99.6 %  

Absorption correction None 

Max. and min. transmission 0.4980 and 0.3594 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 24537 / 0 / 1153 

Goodness-of-fit on F2 0.937 

Final R indices [I>2sigma(I)] R1 = 0.0587, wR2 = 0.1445 

R indices (all data) R1 = 0.1250, wR2 = 0.1632 

Largest diff. peak and hole 1.635 and -1.044 e.Å-3 

 

Table AA.12. Atomic coordinates ( × 104) and equivalent isotropic displacement parameters (Å2 × 103) for 

Et3NH[Yb(3BDMSal)2]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

Yb(1) 7471(1) 1057(1) 3348(1) 35(1) 

Br(1) 5846(1) 1366(1) 5460(1) 58(1) 

O(1) 7398(4) 830(3) 4358(2) 40(1) 

N(1) 9289(5) 672(4) 3518(3) 38(2) 

C(1) 7834(6) 1014(5) 4683(4) 39(2) 

N(2) 8760(5) 1155(4) 2368(3) 37(2) 

C(2) 7291(7) 1265(5) 5232(4) 48(2) 

Br(2) 4552(1) 1971(1) 2160(1) 86(1) 
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O(2) 6636(4) 1396(4) 2560(3) 53(2) 

Yb(2) 17093(1) -3115(1) 1153(1) 35(1) 

Br(3) 9585(1) 2690(1) 3159(1) 82(1) 

O(3) 7749(4) 2171(3) 3226(3) 45(1) 

N(3) 5785(5) 2002(4) 3704(3) 37(2) 

C(3) 7734(8) 1476(6) 5595(4) 63(3) 

Br(4) 10042(1) -1474(1) 3222(1) 58(1) 

O(4) 8009(4) -198(3) 3299(2) 42(1) 

N(4) 6013(5) 496(4) 3858(3) 39(2) 

C(4) 8768(8) 1404(7) 5442(5) 74(3) 

C(5) 9350(7) 1146(6) 4911(4) 62(3) 

N(5) 18545(5) -4344(4) 1056(3) 37(2) 

O(5) 16418(4) -4024(3) 1123(2) 34(1) 

Br(5) 14535(1) -3953(1) 689(1) 50(1) 

C(6) 8902(6) 967(5) 4535(4) 40(2) 

Br(6) 15561(1) -326(1) 754(1) 72(1) 

O(6) 16979(4) -1933(3) 1174(3) 47(2) 

N(6) 18882(5) -3106(4) 1167(3) 43(2) 

C(7) 9556(6) 762(5) 3970(4) 41(2) 

N(7) 15714(5) -2304(4) 499(3) 37(2) 

O(7) 17883(4) -2915(3) 186(3) 40(1) 

Br(7) 19954(1) -3187(1) -644(1) 65(1) 

C(8) 10094(6) 485(5) 3005(4) 38(2) 

Br(8) 18656(1) -4627(1) 3046(1) 72(1) 

O(8) 17207(4) -3680(3) 2140(3) 46(1) 

N(8) 15344(5) -2643(4) 1774(3) 43(2) 

C(9) 11117(6) 43(5) 3076(4) 46(2) 

N(9) 7490(7) -638(6) 2383(4) 70(2) 
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C(10) 11877(6) -131(5) 2560(5) 54(2) 

N(10) 16082(5) -5140(4) 2158(3) 47(2) 

C(11) 11616(6) 90(5) 1967(4) 49(2) 

C(12) 10587(7) 525(5) 1910(4) 48(2) 

C(13) 9816(6) 720(5) 2423(4) 40(2) 

C(14) 8573(6) 1652(5) 1846(4) 44(2) 

C(15) 7588(7) 2040(5) 1662(4) 47(2) 

C(16) 7576(8) 2557(6) 1092(4) 63(3) 

C(17) 6696(9) 2907(6) 844(5) 78(3) 

C(18) 5804(8) 2708(6) 1169(5) 67(3) 

C(19) 5788(7) 2212(6) 1728(4) 55(3) 

C(20) 6670(6) 1860(5) 2014(4) 44(2) 

C(21) 12995(7) -602(7) 2665(5) 79(3) 

C(22) 12420(7) -103(6) 1399(5) 70(3) 

C(23) 7490(6) 2649(5) 3571(4) 40(2) 

C(24) 8219(8) 2972(6) 3600(5) 61(3) 

C(25) 7972(10) 3509(7) 3930(6) 83(4) 

C(26) 6975(12) 3760(7) 4258(6) 92(4) 

C(27) 6247(9) 3414(6) 4250(5) 71(3) 

C(28) 6493(7) 2870(5) 3921(4) 45(2) 

C(29) 5684(6) 2559(5) 3947(4) 47(2) 

C(30) 4881(6) 1807(5) 3753(4) 42(2) 

C(31) 3912(6) 2341(5) 3684(4) 47(2) 

C(32) 3061(6) 2121(6) 3700(4) 57(3) 

C(33) 3177(7) 1337(6) 3800(5) 60(3) 

C(34) 4130(6) 806(5) 3867(4) 51(2) 

C(35) 4994(6) 1030(5) 3831(4) 40(2) 

C(36) 6088(6) -180(5) 4224(4) 45(2) 
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C(37) 7061(7) -826(5) 4246(4) 46(2) 

C(38) 7047(9) -1487(6) 4705(5) 74(3) 

C(39) 7915(9) -2135(6) 4733(5) 83(4) 

C(40) 8801(9) -2128(6) 4320(5) 74(3) 

C(41) 8831(7) -1483(5) 3848(4) 49(2) 

C(42) 7984(6) -797(5) 3777(4) 42(2) 

C(43) 2040(7) 2747(6) 3578(5) 81(4) 

C(44) 2302(8) 1060(7) 3806(6) 99(4) 

C(45) 16686(6) -4350(4) 658(4) 34(2) 

C(46) 15961(6) -4399(5) 369(4) 41(2) 

C(47) 16224(7) -4736(5) -116(4) 49(2) 

C(48) 17253(7) -5080(6) -345(5) 62(3) 

C(49) 18021(7) -5066(5) -71(4) 53(2) 

C(50) 17771(6) -4705(4) 409(4) 36(2) 

C(51) 18618(6) -4732(5) 669(4) 38(2) 

C(52) 19437(6) -4481(5) 1299(4) 40(2) 

C(53) 20124(6) -5204(5) 1467(4) 46(2) 

C(54) 20985(6) -5309(5) 1713(5) 56(3) 

C(55) 21136(6) -4669(6) 1800(4) 57(3) 

C(56) 20476(6) -3955(5) 1614(4) 52(2) 

C(57) 19623(6) -3845(5) 1360(4) 43(2) 

C(58) 19240(7) -2529(5) 872(4) 50(2) 

C(59) 18639(7) -1739(5) 642(5) 52(2) 

C(60) 19147(8) -1214(6) 264(5) 70(3) 

C(61) 18651(9) -454(6) 40(5) 74(3) 

C(62) 17562(9) -192(6) 192(5) 68(3) 

C(63) 17020(8) -674(5) 553(5) 55(2) 

C(64) 17516(8) -1475(5) 809(4) 53(2) 
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C(65) 21704(8) -6100(6) 1892(5) 78(3) 

C(66) 22041(7) -4741(6) 2061(5) 75(3) 

C(67) 17794(6) -2527(5) -362(4) 38(2) 

C(68) 18662(6) -2551(5) -850(4) 41(2) 

C(69) 18564(8) -2161(6) -1448(5) 61(3) 

C(70) 16745(7) -1607(5) -1149(4) 53(2) 

C(70') 17601(8) -1675(6) -1616(4) 60(3) 

C(71) 16813(6) -2010(5) -530(4) 42(2) 

C(72) 15855(6) -1934(5) -77(4) 44(2) 

C(74) 14670(5) -2195(4) 817(4) 38(2) 

C(75) 13846(6) -2002(5) 511(4) 47(2) 

C(76) 12853(6) -1968(5) 840(5) 52(2) 

C(77) 12649(6) -2115(5) 1491(5) 54(2) 

C(78) 13472(7) -2317(5) 1770(5) 53(2) 

C(79) 14494(6) -2359(5) 1453(4) 41(2) 

C(80) 15175(7) -2544(5) 2332(5) 53(2) 

C(81) 15872(8) -2893(6) 2779(5) 58(3) 

C(82) 15526(9) -2694(7) 3323(5) 88(4) 

C(83) 16126(12) -3047(9) 3795(6) 113(5) 

C(84) 17025(11) -3629(8) 3713(5) 103(4) 

C(85) 17384(7) -3848(6) 3167(4) 61(3) 

C(86) 16843(7) -3476(5) 2662(4) 50(2) 

C(87) 12002(7) -1788(6) 476(5) 67(3) 

C(88) 11594(7) -2124(7) 1859(6) 91(4) 

C(89) 7971(15) -1445(9) 2263(7) 131(7) 

C(90) 8049(18) -2051(13) 2714(11) 215(12) 

C(91) 6351(12) -422(11) 2691(7) 145(7) 

C(92) 5588(14) -459(12) 2428(9) 186(9) 
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C(93) 7640(11) -55(8) 1810(6) 98(4) 

C(94) 8788(11) -129(9) 1525(6) 115(5) 

C(95) 15394(7) -4761(6) 2666(5) 61(3) 

C(96) 14310(9) -4270(7) 2518(6) 92(4) 

C(97) 17143(7) -5600(5) 2365(5) 59(3) 

C(98) 17851(7) -6116(6) 1943(5) 68(3) 

C(99) 15603(7) -5624(5) 1977(4) 52(2) 

C(100) 15360(8) -6282(6) 2511(5) 67(3) 
 

Table AA.13. Bond lengths [Å] and angles [°] for Et3NH[Yb(3BDMSal)2]. 

Yb(1)-O(1) 2.208(5) 

Yb(1)-O(3) 2.216(5) 

Yb(1)-O(2) 2.228(5) 

Yb(1)-O(4) 2.261(6) 

Yb(1)-N(2) 2.480(6) 

Yb(1)-N(4) 2.491(6) 

Yb(1)-N(1) 2.495(6) 

Yb(1)-N(3) 2.509(6) 

Br(1)-C(2) 1.906(9) 

O(1)-C(1) 1.276(9) 

N(1)-C(7) 1.274(9) 

N(1)-C(8) 1.428(10) 

C(1)-C(2) 1.412(11) 

C(1)-C(6) 1.421(11) 

N(2)-C(14) 1.300(10) 

N(2)-C(13) 1.432(10) 

C(2)-C(3) 1.384(12) 

Br(2)-C(19) 1.887(10) 

O(2)-C(20) 1.292(9) 

Yb(2)-O(7) 2.181(5) 

Yb(2)-O(8) 2.213(6) 

Yb(2)-O(6) 2.215(5) 

Yb(2)-O(5) 2.280(5) 

Yb(2)-N(8) 2.484(7) 

Yb(2)-N(5) 2.514(6) 

Yb(2)-N(7) 2.525(6) 

Yb(2)-N(6) 2.529(6) 

Yb(2)-C(45) 3.187(8) 

Yb(2)-C(64) 3.208(9) 

Br(3)-C(24) 1.878(11) 

O(3)-C(23) 1.283(9) 

N(3)-C(29) 1.294(10) 

N(3)-C(30) 1.415(9) 

C(3)-C(4) 1.363(13) 

C(3)-H(3A) 0.9500 

Br(4)-C(41) 1.907(9) 
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O(4)-C(42) 1.320(10) 

N(4)-C(36) 1.286(10) 

N(4)-C(35) 1.429(10) 

C(4)-C(5) 1.393(13) 

C(4)-H(4A) 0.9500 

C(5)-C(6) 1.377(11) 

C(5)-H(5A) 0.9500 

N(5)-C(51) 1.285(9) 

N(5)-C(52) 1.417(9) 

O(5)-C(45) 1.302(9) 

Br(5)-C(46) 1.904(8) 

C(6)-C(7) 1.447(11) 

Br(6)-C(63) 1.882(10) 

O(6)-C(64) 1.308(10) 

N(6)-C(58) 1.291(10) 

N(6)-C(57) 1.437(10) 

C(7)-H(7A) 0.9500 

N(7)-C(72) 1.293(10) 

N(7)-C(74) 1.421(9) 

O(7)-C(67) 1.261(9) 

Br(7)-C(68) 1.873(8) 

C(8)-C(13) 1.392(11) 

C(8)-C(9) 1.403(10) 

Br(8)-C(85) 1.881(10) 

O(8)-C(86) 1.291(10) 

N(8)-C(80) 1.303(11) 

N(8)-C(79) 1.423(10) 

C(9)-C(10) 1.399(12) 

C(9)-H(9A) 0.9500 

N(9)-C(93) 1.456(14) 

N(9)-C(89) 1.520(18) 

N(9)-C(91) 1.522(17) 

C(10)-C(11) 1.407(13) 

C(10)-C(21) 1.543(12) 

N(10)-C(95) 1.492(11) 

N(10)-C(99) 1.521(10) 

N(10)-C(97) 1.549(11) 

C(11)-C(12) 1.401(12) 

C(11)-C(22) 1.521(12) 

C(12)-C(13) 1.409(11) 

C(12)-H(12A) 0.9500 

C(14)-C(15) 1.423(11) 

C(14)-H(14A) 0.9500 

C(15)-C(16) 1.372(12) 

C(15)-C(20) 1.419(11) 

C(16)-C(17) 1.361(13) 

C(16)-H(16A) 0.9500 

C(17)-C(18) 1.389(14) 

C(17)-H(17A) 0.9500 

C(18)-C(19) 1.340(13) 

C(18)-H(18A) 0.9500 

C(19)-C(20) 1.409(11) 

C(21)-H(21A) 0.9800 

C(21)-H(21B) 0.9800 

C(21)-H(21C) 0.9800 

C(22)-H(22A) 0.9800 
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C(22)-H(22B) 0.9800 

C(22)-H(22C) 0.9800 

C(23)-C(24) 1.396(11) 

C(23)-C(28) 1.398(12) 

C(24)-C(25) 1.352(15) 

C(25)-C(26) 1.387(16) 

C(25)-H(25A) 0.9500 

C(26)-C(27) 1.409(14) 

C(26)-H(26A) 0.9500 

C(27)-C(28) 1.362(12) 

C(27)-H(27A) 0.9500 

C(28)-C(29) 1.440(11) 

C(29)-H(29A) 0.9500 

C(30)-C(31) 1.388(11) 

C(30)-C(35) 1.388(11) 

C(31)-C(32) 1.392(11) 

C(31)-H(31A) 0.9500 

C(32)-C(33) 1.394(13) 

C(32)-C(43) 1.527(12) 

C(33)-C(34) 1.369(12) 

C(33)-C(44) 1.497(12) 

C(34)-C(35) 1.399(10) 

C(34)-H(34A) 0.9500 

C(36)-C(37) 1.472(11) 

C(36)-H(36A) 0.9500 

C(37)-C(38) 1.372(12) 

C(37)-C(42) 1.449(11) 

C(38)-C(39) 1.385(14) 

C(38)-H(38A) 0.9500 

C(39)-C(40) 1.345(14) 

C(39)-H(39A) 0.9500 

C(40)-C(41) 1.369(13) 

C(40)-H(40A) 0.9500 

C(41)-C(42) 1.413(12) 

C(43)-H(43A) 0.9800 

C(43)-H(43B) 0.9800 

C(43)-H(43C) 0.9800 

C(44)-H(44A) 0.9800 

C(44)-H(44B) 0.9800 

C(44)-H(44C) 0.9800 

C(45)-C(46) 1.402(10) 

C(45)-C(50) 1.459(10) 

C(46)-C(47) 1.358(11) 

C(47)-C(48) 1.383(12) 

C(47)-H(47A) 0.9500 

C(48)-C(49) 1.401(12) 

C(48)-H(48A) 0.9500 

C(49)-C(50) 1.379(11) 

C(49)-H(49A) 0.9500 

C(50)-C(51) 1.451(10) 

C(51)-H(51A) 0.9500 

C(52)-C(53) 1.375(11) 

C(52)-C(57) 1.382(11) 

C(53)-C(54) 1.396(11) 

C(53)-H(53A) 0.9500 

C(54)-C(55) 1.391(13) 
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C(54)-C(65) 1.484(12) 

C(55)-C(56) 1.354(12) 

C(55)-C(66) 1.496(12) 

C(56)-C(57) 1.396(11) 

C(56)-H(56A) 0.9500 

C(58)-C(59) 1.445(12) 

C(58)-H(58A) 0.9500 

C(59)-C(60) 1.380(12) 

C(59)-C(64) 1.449(12) 

C(60)-C(61) 1.360(14) 

C(60)-H(60A) 0.9500 

C(61)-C(62) 1.405(14) 

C(61)-H(61A) 0.9500 

C(62)-C(63) 1.341(13) 

C(62)-H(62A) 0.9500 

C(63)-C(64) 1.434(12) 

C(65)-H(65A) 0.9800 

C(65)-H(65B) 0.9800 

C(65)-H(65C) 0.9800 

C(66)-H(66A) 0.9800 

C(66)-H(66B) 0.9800 

C(66)-H(66C) 0.9800 

C(67)-C(68) 1.413(11) 

C(67)-C(71) 1.446(11) 

C(68)-C(69) 1.362(12) 

C(69)-C(70') 1.412(13) 

C(69)-H(69A) 0.9500 

C(70)-C(70') 1.374(12) 

C(70)-C(71) 1.404(12) 

C(70)-H(70A) 0.9500 

C(70')-H(70B) 0.9500 

C(71)-C(72) 1.450(11) 

C(72)-H(72A) 0.9500 

C(74)-C(79) 1.370(11) 

C(74)-C(75) 1.394(11) 

C(75)-C(76) 1.382(11) 

C(75)-H(75A) 0.9500 

C(76)-C(77) 1.403(13) 

C(76)-C(87) 1.522(12) 

C(77)-C(78) 1.351(12) 

C(77)-C(88) 1.496(12) 

C(78)-C(79) 1.407(11) 

C(78)-H(78A) 0.9500 

C(80)-C(81) 1.453(13) 

C(80)-H(80A) 0.9500 

C(81)-C(82) 1.333(12) 

C(81)-C(86) 1.434(12) 

C(82)-C(83) 1.406(16) 

C(82)-H(82A) 0.9500 

C(83)-C(84) 1.359(16) 

C(83)-H(83A) 0.9500 

C(84)-C(85) 1.356(14) 

C(84)-H(84A) 0.9500 

C(85)-C(86) 1.418(12) 

C(87)-H(87A) 0.9800 

C(87)-H(87B) 0.9800 
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C(87)-H(87C) 0.9800 

C(88)-H(88A) 0.9800 

C(88)-H(88B) 0.9800 

C(88)-H(88C) 0.9800 

C(89)-C(90) 1.28(2) 

C(89)-H(89A) 0.9500 

C(90)-H(90A) 0.9800 

C(90)-H(90B) 0.9800 

C(90)-H(90C) 0.9800 

C(91)-C(92) 1.399(18) 

C(91)-H(91A) 0.9500 

C(92)-H(92A) 0.9800 

C(92)-H(92B) 0.9800 

C(92)-H(92C) 0.9800 

C(93)-C(94) 1.538(16) 

C(93)-H(93A) 0.9900 

C(93)-H(93B) 0.9900 

C(94)-H(94A) 0.9800 

C(94)-H(94B) 0.9800 

C(94)-H(94C) 0.9800 

C(95)-C(96) 1.537(14) 

C(95)-H(95A) 0.9900 

C(95)-H(95B) 0.9900 

C(96)-H(96A) 0.9800 

C(96)-H(96B) 0.9800 

C(96)-H(96C) 0.9800 

C(97)-C(98) 1.504(13) 

C(97)-H(97A) 0.9900 

C(97)-H(97B) 0.9900 

C(98)-H(98A) 0.9800 

C(98)-H(98B) 0.9800 

C(98)-H(98C) 0.9800 

C(99)-C(100) 1.524(12) 

C(99)-H(99A) 0.9900 

C(99)-H(99B) 0.9900 

C(100)-H(10A) 0.9800 

C(100)-H(10B) 0.9800 

C(100)-H(10C) 0.9800 

  

O(1)-Yb(1)-O(3) 89.1(2) 

O(1)-Yb(1)-O(2) 148.5(2) 

O(3)-Yb(1)-O(2) 98.6(2) 

O(1)-Yb(1)-O(4) 96.6(2) 

O(3)-Yb(1)-O(4) 152.50(19) 

O(2)-Yb(1)-O(4) 90.5(2) 

O(1)-Yb(1)-N(2) 139.25(19) 

O(3)-Yb(1)-N(2) 76.7(2) 

O(2)-Yb(1)-N(2) 72.1(2) 

O(4)-Yb(1)-N(2) 81.7(2) 

O(1)-Yb(1)-N(4) 74.2(2) 

O(3)-Yb(1)-N(4) 136.0(2) 

O(2)-Yb(1)-N(4) 79.3(2) 

O(4)-Yb(1)-N(4) 71.1(2) 

N(2)-Yb(1)-N(4) 140.0(2) 

O(1)-Yb(1)-N(1) 72.9(2) 

O(3)-Yb(1)-N(1) 75.8(2) 
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O(2)-Yb(1)-N(1) 138.6(2) 

O(4)-Yb(1)-N(1) 80.1(2) 

N(2)-Yb(1)-N(1) 66.7(2) 

N(4)-Yb(1)-N(1) 132.9(2) 

O(1)-Yb(1)-N(3) 76.0(2) 

O(3)-Yb(1)-N(3) 71.5(2) 

O(2)-Yb(1)-N(3) 77.7(2) 

O(4)-Yb(1)-N(3) 135.93(19) 

N(2)-Yb(1)-N(3) 131.6(2) 

N(4)-Yb(1)-N(3) 65.0(2) 

N(1)-Yb(1)-N(3) 134.7(2) 

C(1)-O(1)-Yb(1) 133.5(5) 

C(7)-N(1)-C(8) 116.9(7) 

C(7)-N(1)-Yb(1) 125.5(6) 

C(8)-N(1)-Yb(1) 116.3(5) 

O(1)-C(1)-C(2) 122.3(7) 

O(1)-C(1)-C(6) 123.3(7) 

C(2)-C(1)-C(6) 114.4(7) 

C(14)-N(2)-C(13) 118.5(6) 

C(14)-N(2)-Yb(1) 124.9(5) 

C(13)-N(2)-Yb(1) 115.7(5) 

C(3)-C(2)-C(1) 124.0(8) 

C(3)-C(2)-Br(1) 118.5(7) 

C(1)-C(2)-Br(1) 117.5(6) 

C(20)-O(2)-Yb(1) 135.7(5) 

O(7)-Yb(2)-O(8) 147.92(19) 

O(7)-Yb(2)-O(6) 89.9(2) 

O(8)-Yb(2)-O(6) 97.8(2) 

O(7)-Yb(2)-O(5) 97.37(19) 

O(8)-Yb(2)-O(5) 89.64(19) 

O(6)-Yb(2)-O(5) 153.23(18) 

O(7)-Yb(2)-N(8) 138.7(2) 

O(8)-Yb(2)-N(8) 73.2(2) 

O(6)-Yb(2)-N(8) 75.7(2) 

O(5)-Yb(2)-N(8) 82.00(19) 

O(7)-Yb(2)-N(5) 74.1(2) 

O(8)-Yb(2)-N(5) 78.7(2) 

O(6)-Yb(2)-N(5) 135.52(19) 

O(5)-Yb(2)-N(5) 71.12(18) 

N(8)-Yb(2)-N(5) 141.0(2) 

O(7)-Yb(2)-N(7) 73.0(2) 

O(8)-Yb(2)-N(7) 139.0(2) 

O(6)-Yb(2)-N(7) 79.1(2) 

O(5)-Yb(2)-N(7) 78.46(18) 

N(8)-Yb(2)-N(7) 66.4(2) 

N(5)-Yb(2)-N(7) 131.2(2) 

O(7)-Yb(2)-N(6) 73.6(2) 

O(8)-Yb(2)-N(6) 79.3(2) 

O(6)-Yb(2)-N(6) 71.9(2) 

O(5)-Yb(2)-N(6) 134.87(19) 

N(8)-Yb(2)-N(6) 133.6(2) 

N(5)-Yb(2)-N(6) 63.8(2) 

N(7)-Yb(2)-N(6) 135.3(2) 

O(7)-Yb(2)-C(45) 77.74(19) 

O(8)-Yb(2)-C(45) 104.3(2) 

O(6)-Yb(2)-C(45) 154.8(2) 
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O(5)-Yb(2)-C(45) 19.97(18) 

N(8)-Yb(2)-C(45) 99.2(2) 

N(5)-Yb(2)-C(45) 62.2(2) 

N(7)-Yb(2)-C(45) 76.30(19) 

N(6)-Yb(2)-C(45) 123.7(2) 

O(7)-Yb(2)-C(64) 72.6(2) 

O(8)-Yb(2)-C(64) 109.0(2) 

O(6)-Yb(2)-C(64) 18.4(2) 

O(5)-Yb(2)-C(64) 158.6(2) 

N(8)-Yb(2)-C(64) 93.1(2) 

N(5)-Yb(2)-C(64) 121.8(2) 

N(7)-Yb(2)-C(64) 80.5(2) 

N(6)-Yb(2)-C(64) 61.6(2) 

C(45)-Yb(2)-C(64) 146.6(2) 

C(23)-O(3)-Yb(1) 134.0(5) 

C(29)-N(3)-C(30) 117.5(7) 

C(29)-N(3)-Yb(1) 125.7(5) 

C(30)-N(3)-Yb(1) 115.6(5) 

C(4)-C(3)-C(2) 119.4(9) 

C(4)-C(3)-H(3A) 120.3 

C(2)-C(3)-H(3A) 120.3 

C(42)-O(4)-Yb(1) 125.8(5) 

C(36)-N(4)-C(35) 117.5(6) 

C(36)-N(4)-Yb(1) 125.8(5) 

C(35)-N(4)-Yb(1) 115.6(5) 

C(3)-C(4)-C(5) 119.3(9) 

C(3)-C(4)-H(4A) 120.4 

C(5)-C(4)-H(4A) 120.4 

C(6)-C(5)-C(4) 121.4(9) 

C(6)-C(5)-H(5A) 119.3 

C(4)-C(5)-H(5A) 119.3 

C(51)-N(5)-C(52) 118.5(7) 

C(51)-N(5)-Yb(2) 121.8(5) 

C(52)-N(5)-Yb(2) 117.3(5) 

C(45)-O(5)-Yb(2) 123.3(4) 

C(5)-C(6)-C(1) 121.4(8) 

C(5)-C(6)-C(7) 117.1(8) 

C(1)-C(6)-C(7) 121.5(7) 

C(64)-O(6)-Yb(2) 129.4(5) 

C(58)-N(6)-C(57) 117.3(7) 

C(58)-N(6)-Yb(2) 123.6(5) 

C(57)-N(6)-Yb(2) 116.7(5) 

N(1)-C(7)-C(6) 128.2(7) 

N(1)-C(7)-H(7A) 115.9 

C(6)-C(7)-H(7A) 115.9 

C(72)-N(7)-C(74) 116.8(7) 

C(72)-N(7)-Yb(2) 127.1(5) 

C(74)-N(7)-Yb(2) 115.9(5) 

C(67)-O(7)-Yb(2) 145.2(5) 

C(13)-C(8)-C(9) 119.9(8) 

C(13)-C(8)-N(1) 117.3(7) 

C(9)-C(8)-N(1) 122.6(7) 

C(86)-O(8)-Yb(2) 136.1(6) 

C(80)-N(8)-C(79) 118.6(7) 

C(80)-N(8)-Yb(2) 124.5(6) 

C(79)-N(8)-Yb(2) 116.1(5) 
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C(10)-C(9)-C(8) 120.6(8) 

C(10)-C(9)-H(9A) 119.7 

C(8)-C(9)-H(9A) 119.7 

C(93)-N(9)-C(89) 110.4(10) 

C(93)-N(9)-C(91) 109.3(11) 

C(89)-N(9)-C(91) 116.8(11) 

C(9)-C(10)-C(11) 120.6(8) 

C(9)-C(10)-C(21) 118.3(9) 

C(11)-C(10)-C(21) 121.1(9) 

C(95)-N(10)-C(99) 113.1(7) 

C(95)-N(10)-C(97) 107.2(7) 

C(99)-N(10)-C(97) 114.0(7) 

C(12)-C(11)-C(10) 117.6(8) 

C(12)-C(11)-C(22) 120.5(9) 

C(10)-C(11)-C(22) 121.9(8) 

C(11)-C(12)-C(13) 122.5(8) 

C(11)-C(12)-H(12A) 118.8 

C(13)-C(12)-H(12A) 118.8 

C(8)-C(13)-C(12) 118.7(8) 

C(8)-C(13)-N(2) 118.7(7) 

C(12)-C(13)-N(2) 122.7(7) 

N(2)-C(14)-C(15) 126.9(7) 

N(2)-C(14)-H(14A) 116.5 

C(15)-C(14)-H(14A) 116.5 

C(16)-C(15)-C(20) 120.5(8) 

C(16)-C(15)-C(14) 116.7(8) 

C(20)-C(15)-C(14) 122.6(8) 

C(17)-C(16)-C(15) 121.7(9) 

C(17)-C(16)-H(16A) 119.1 

C(15)-C(16)-H(16A) 119.1 

C(16)-C(17)-C(18) 118.4(9) 

C(16)-C(17)-H(17A) 120.8 

C(18)-C(17)-H(17A) 120.8 

C(19)-C(18)-C(17) 121.3(9) 

C(19)-C(18)-H(18A) 119.4 

C(17)-C(18)-H(18A) 119.4 

C(18)-C(19)-C(20) 122.1(9) 

C(18)-C(19)-Br(2) 119.8(7) 

C(20)-C(19)-Br(2) 118.1(7) 

O(2)-C(20)-C(19) 121.4(8) 

O(2)-C(20)-C(15) 122.7(8) 

C(19)-C(20)-C(15) 115.9(8) 

C(10)-C(21)-H(21A) 109.5 

C(10)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21B) 109.5 

C(10)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21C) 109.5 

H(21B)-C(21)-H(21C) 109.5 

C(11)-C(22)-H(22A) 109.5 

C(11)-C(22)-H(22B) 109.5 

H(22A)-C(22)-H(22B) 109.5 

C(11)-C(22)-H(22C) 109.5 

H(22A)-C(22)-H(22C) 109.5 

H(22B)-C(22)-H(22C) 109.5 

O(3)-C(23)-C(24) 119.5(8) 

O(3)-C(23)-C(28) 122.5(7) 
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C(24)-C(23)-C(28) 118.0(9) 

C(25)-C(24)-C(23) 121.9(10) 

C(25)-C(24)-Br(3) 117.3(8) 

C(23)-C(24)-Br(3) 120.8(8) 

C(24)-C(25)-C(26) 120.9(10) 

C(24)-C(25)-H(25A) 119.6 

C(26)-C(25)-H(25A) 119.6 

C(25)-C(26)-C(27) 117.4(11) 

C(25)-C(26)-H(26A) 121.3 

C(27)-C(26)-H(26A) 121.3 

C(28)-C(27)-C(26) 121.9(11) 

C(28)-C(27)-H(27A) 119.0 

C(26)-C(27)-H(27A) 119.0 

C(27)-C(28)-C(23) 119.8(9) 

C(27)-C(28)-C(29) 116.9(9) 

C(23)-C(28)-C(29) 123.2(8) 

N(3)-C(29)-C(28) 126.1(8) 

N(3)-C(29)-H(29A) 116.9 

C(28)-C(29)-H(29A) 116.9 

C(31)-C(30)-C(35) 118.1(7) 

C(31)-C(30)-N(3) 124.6(8) 

C(35)-C(30)-N(3) 117.1(7) 

C(30)-C(31)-C(32) 122.2(9) 

C(30)-C(31)-H(31A) 118.9 

C(32)-C(31)-H(31A) 118.9 

C(31)-C(32)-C(33) 119.0(8) 

C(31)-C(32)-C(43) 119.1(9) 

C(33)-C(32)-C(43) 121.8(9) 

C(34)-C(33)-C(32) 119.1(8) 

C(34)-C(33)-C(44) 119.0(10) 

C(32)-C(33)-C(44) 121.9(9) 

C(33)-C(34)-C(35) 121.9(9) 

C(33)-C(34)-H(34A) 119.1 

C(35)-C(34)-H(34A) 119.1 

C(30)-C(35)-C(34) 119.6(8) 

C(30)-C(35)-N(4) 117.3(7) 

C(34)-C(35)-N(4) 123.1(8) 

N(4)-C(36)-C(37) 124.1(7) 

N(4)-C(36)-H(36A) 118.0 

C(37)-C(36)-H(36A) 118.0 

C(38)-C(37)-C(42) 120.4(9) 

C(38)-C(37)-C(36) 117.5(8) 

C(42)-C(37)-C(36) 122.0(8) 

C(37)-C(38)-C(39) 120.7(10) 

C(37)-C(38)-H(38A) 119.6 

C(39)-C(38)-H(38A) 119.6 

C(40)-C(39)-C(38) 121.1(10) 

C(40)-C(39)-H(39A) 119.4 

C(38)-C(39)-H(39A) 119.4 

C(39)-C(40)-C(41) 119.4(10) 

C(39)-C(40)-H(40A) 120.3 

C(41)-C(40)-H(40A) 120.3 

C(40)-C(41)-C(42) 123.6(9) 

C(40)-C(41)-Br(4) 120.8(7) 

C(42)-C(41)-Br(4) 115.6(7) 

O(4)-C(42)-C(41) 122.6(7) 
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O(4)-C(42)-C(37) 122.6(8) 

C(41)-C(42)-C(37) 114.7(8) 

C(32)-C(43)-H(43A) 109.5 

C(32)-C(43)-H(43B) 109.5 

H(43A)-C(43)-H(43B) 109.5 

C(32)-C(43)-H(43C) 109.5 

H(43A)-C(43)-H(43C) 109.5 

H(43B)-C(43)-H(43C) 109.5 

C(33)-C(44)-H(44A) 109.5 

C(33)-C(44)-H(44B) 109.5 

H(44A)-C(44)-H(44B) 109.5 

C(33)-C(44)-H(44C) 109.5 

H(44A)-C(44)-H(44C) 109.5 

H(44B)-C(44)-H(44C) 109.5 

O(5)-C(45)-C(46) 122.9(7) 

O(5)-C(45)-C(50) 122.0(7) 

C(46)-C(45)-C(50) 115.1(7) 

O(5)-C(45)-Yb(2) 36.7(3) 

C(46)-C(45)-Yb(2) 139.3(5) 

C(50)-C(45)-Yb(2) 96.1(4) 

C(47)-C(46)-C(45) 123.8(8) 

C(47)-C(46)-Br(5) 119.8(6) 

C(45)-C(46)-Br(5) 116.4(6) 

C(46)-C(47)-C(48) 120.8(8) 

C(46)-C(47)-H(47A) 119.6 

C(48)-C(47)-H(47A) 119.6 

C(47)-C(48)-C(49) 118.6(9) 

C(47)-C(48)-H(48A) 120.7 

C(49)-C(48)-H(48A) 120.7 

C(50)-C(49)-C(48) 121.5(8) 

C(50)-C(49)-H(49A) 119.3 

C(48)-C(49)-H(49A) 119.3 

C(49)-C(50)-C(51) 117.5(7) 

C(49)-C(50)-C(45) 120.2(7) 

C(51)-C(50)-C(45) 122.2(7) 

N(5)-C(51)-C(50) 125.8(7) 

N(5)-C(51)-H(51A) 117.1 

C(50)-C(51)-H(51A) 117.1 

C(53)-C(52)-C(57) 119.0(8) 

C(53)-C(52)-N(5) 123.5(8) 

C(57)-C(52)-N(5) 117.4(7) 

C(52)-C(53)-C(54) 121.3(8) 

C(52)-C(53)-H(53A) 119.3 

C(54)-C(53)-H(53A) 119.3 

C(55)-C(54)-C(53) 119.1(8) 

C(55)-C(54)-C(65) 121.2(9) 

C(53)-C(54)-C(65) 119.6(9) 

C(56)-C(55)-C(54) 119.2(8) 

C(56)-C(55)-C(66) 118.9(9) 

C(54)-C(55)-C(66) 121.8(9) 

C(55)-C(56)-C(57) 121.9(9) 

C(55)-C(56)-H(56A) 119.1 

C(57)-C(56)-H(56A) 119.1 

C(52)-C(57)-C(56) 119.3(8) 

C(52)-C(57)-N(6) 116.1(7) 

C(56)-C(57)-N(6) 124.6(8) 
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N(6)-C(58)-C(59) 126.6(8) 

N(6)-C(58)-H(58A) 116.7 

C(59)-C(58)-H(58A) 116.7 

C(60)-C(59)-C(58) 119.2(9) 

C(60)-C(59)-C(64) 118.8(9) 

C(58)-C(59)-C(64) 122.0(8) 

C(61)-C(60)-C(59) 123.4(10) 

C(61)-C(60)-H(60A) 118.3 

C(59)-C(60)-H(60A) 118.3 

C(60)-C(61)-C(62) 118.3(9) 

C(60)-C(61)-H(61A) 120.8 

C(62)-C(61)-H(61A) 120.8 

C(63)-C(62)-C(61) 121.3(9) 

C(63)-C(62)-H(62A) 119.4 

C(61)-C(62)-H(62A) 119.4 

C(62)-C(63)-C(64) 122.0(10) 

C(62)-C(63)-Br(6) 121.3(8) 

C(64)-C(63)-Br(6) 116.7(7) 

O(6)-C(64)-C(63) 121.3(9) 

O(6)-C(64)-C(59) 122.5(8) 

C(63)-C(64)-C(59) 116.1(8) 

O(6)-C(64)-Yb(2) 32.2(4) 

C(63)-C(64)-Yb(2) 138.9(6) 

C(59)-C(64)-Yb(2) 98.5(5) 

C(54)-C(65)-H(65A) 109.5 

C(54)-C(65)-H(65B) 109.5 

H(65A)-C(65)-H(65B) 109.5 

C(54)-C(65)-H(65C) 109.5 

H(65A)-C(65)-H(65C) 109.5 

H(65B)-C(65)-H(65C) 109.5 

C(55)-C(66)-H(66A) 109.5 

C(55)-C(66)-H(66B) 109.5 

H(66A)-C(66)-H(66B) 109.5 

C(55)-C(66)-H(66C) 109.5 

H(66A)-C(66)-H(66C) 109.5 

H(66B)-C(66)-H(66C) 109.5 

O(7)-C(67)-C(68) 121.8(8) 

O(7)-C(67)-C(71) 122.8(7) 

C(68)-C(67)-C(71) 115.4(8) 

C(69)-C(68)-C(67) 122.0(8) 

C(69)-C(68)-Br(7) 121.3(7) 

C(67)-C(68)-Br(7) 116.7(6) 

C(68)-C(69)-C(70') 122.5(9) 

C(68)-C(69)-H(69A) 118.7 

C(70')-C(69)-H(69A) 118.7 

C(70')-C(70)-C(71) 121.8(9) 

C(70')-C(70)-H(70A) 119.1 

C(71)-C(70)-H(70A) 119.1 

C(70)-C(70')-C(69) 117.2(9) 

C(70)-C(70')-H(70B) 121.4 

C(69)-C(70')-H(70B) 121.4 

C(70)-C(71)-C(67) 120.8(8) 

C(70)-C(71)-C(72) 117.6(8) 

C(67)-C(71)-C(72) 121.4(8) 

N(7)-C(72)-C(71) 128.5(7) 

N(7)-C(72)-H(72A) 115.8 
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C(71)-C(72)-H(72A) 115.8 

C(79)-C(74)-C(75) 119.5(7) 

C(79)-C(74)-N(7) 117.6(7) 

C(75)-C(74)-N(7) 122.5(8) 

C(76)-C(75)-C(74) 121.1(9) 

C(76)-C(75)-H(75A) 119.5 

C(74)-C(75)-H(75A) 119.5 

C(75)-C(76)-C(77) 120.4(8) 

C(75)-C(76)-C(87) 118.1(9) 

C(77)-C(76)-C(87) 121.4(8) 

C(78)-C(77)-C(76) 116.6(8) 

C(78)-C(77)-C(88) 121.7(10) 

C(76)-C(77)-C(88) 121.5(9) 

C(77)-C(78)-C(79) 124.7(9) 

C(77)-C(78)-H(78A) 117.6 

C(79)-C(78)-H(78A) 117.6 

C(74)-C(79)-C(78) 117.6(8) 

C(74)-C(79)-N(8) 120.1(7) 

C(78)-C(79)-N(8) 122.0(8) 

N(8)-C(80)-C(81) 127.8(8) 

N(8)-C(80)-H(80A) 116.1 

C(81)-C(80)-H(80A) 116.1 

C(82)-C(81)-C(86) 121.6(10) 

C(82)-C(81)-C(80) 116.7(9) 

C(86)-C(81)-C(80) 121.4(9) 

C(81)-C(82)-C(83) 120.1(11) 

C(81)-C(82)-H(82A) 120.0 

C(83)-C(82)-H(82A) 120.0 

C(84)-C(83)-C(82) 120.0(11) 

C(84)-C(83)-H(83A) 120.0 

C(82)-C(83)-H(83A) 120.0 

C(85)-C(84)-C(83) 120.8(11) 

C(85)-C(84)-H(84A) 119.6 

C(83)-C(84)-H(84A) 119.6 

C(84)-C(85)-C(86) 121.3(10) 

C(84)-C(85)-Br(8) 120.5(8) 

C(86)-C(85)-Br(8) 118.1(7) 

O(8)-C(86)-C(85) 120.6(8) 

O(8)-C(86)-C(81) 123.4(8) 

C(85)-C(86)-C(81) 115.9(8) 

C(76)-C(87)-H(87A) 109.5 

C(76)-C(87)-H(87B) 109.5 

H(87A)-C(87)-H(87B) 109.5 

C(76)-C(87)-H(87C) 109.5 

H(87A)-C(87)-H(87C) 109.5 

H(87B)-C(87)-H(87C) 109.5 

C(77)-C(88)-H(88A) 109.5 

C(77)-C(88)-H(88B) 109.5 

H(88A)-C(88)-H(88B) 109.5 

C(77)-C(88)-H(88C) 109.5 

H(88A)-C(88)-H(88C) 109.5 

H(88B)-C(88)-H(88C) 109.5 

C(90)-C(89)-N(9) 121.1(17) 

C(90)-C(89)-H(89A) 119.4 

N(9)-C(89)-H(89A) 119.4 

C(89)-C(90)-H(90A) 109.5 
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C(89)-C(90)-H(90B) 109.5 

H(90A)-C(90)-H(90B) 109.5 

C(89)-C(90)-H(90C) 109.5 

H(90A)-C(90)-H(90C) 109.5 

H(90B)-C(90)-H(90C) 109.5 

C(92)-C(91)-N(9) 121.1(14) 

C(92)-C(91)-H(91A) 119.5 

N(9)-C(91)-H(91A) 119.5 

C(91)-C(92)-H(92A) 109.5 

C(91)-C(92)-H(92B) 109.5 

H(92A)-C(92)-H(92B) 109.5 

C(91)-C(92)-H(92C) 109.5 

H(92A)-C(92)-H(92C) 109.5 

H(92B)-C(92)-H(92C) 109.5 

N(9)-C(93)-C(94) 113.6(11) 

N(9)-C(93)-H(93A) 108.8 

C(94)-C(93)-H(93A) 108.8 

N(9)-C(93)-H(93B) 108.8 

C(94)-C(93)-H(93B) 108.8 

H(93A)-C(93)-H(93B) 107.7 

C(93)-C(94)-H(94A) 109.5 

C(93)-C(94)-H(94B) 109.5 

H(94A)-C(94)-H(94B) 109.5 

C(93)-C(94)-H(94C) 109.5 

H(94A)-C(94)-H(94C) 109.5 

H(94B)-C(94)-H(94C) 109.5 

N(10)-C(95)-C(96) 112.9(8) 

N(10)-C(95)-H(95A) 109.0 

C(96)-C(95)-H(95A) 109.0 

N(10)-C(95)-H(95B) 109.0 

C(96)-C(95)-H(95B) 109.0 

H(95A)-C(95)-H(95B) 107.8 

C(95)-C(96)-H(96A) 109.5 

C(95)-C(96)-H(96B) 109.5 

H(96A)-C(96)-H(96B) 109.5 

C(95)-C(96)-H(96C) 109.5 

H(96A)-C(96)-H(96C) 109.5 

H(96B)-C(96)-H(96C) 109.5 

C(98)-C(97)-N(10) 112.5(8) 

C(98)-C(97)-H(97A) 109.1 

N(10)-C(97)-H(97A) 109.1 

C(98)-C(97)-H(97B) 109.1 

N(10)-C(97)-H(97B) 109.1 

H(97A)-C(97)-H(97B) 107.8 

C(97)-C(98)-H(98A) 109.5 

C(97)-C(98)-H(98B) 109.5 

H(98A)-C(98)-H(98B) 109.5 

C(97)-C(98)-H(98C) 109.5 

H(98A)-C(98)-H(98C) 109.5 

H(98B)-C(98)-H(98C) 109.5 

N(10)-C(99)-C(100) 113.3(7) 

N(10)-C(99)-H(99A) 108.9 

C(100)-C(99)-H(99A) 108.9 

N(10)-C(99)-H(99B) 108.9 

C(100)-C(99)-H(99B) 108.9 

H(99A)-C(99)-H(99B) 107.7 
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C(99)-C(100)-H(10A) 109.5 

C(99)-C(100)-H(10B) 109.5 

H(10A)-C(100)-H(10B) 109.5 

C(99)-C(100)-H(10C) 109.5 

H(10A)-C(100)-H(10C) 109.5 

H(10B)-C(100)-H(10C) 109.5 
 

 
Table AA.14. Anisotropic displacement parameters (Å2 × 103) for Et3NH[Yb(3BDMSal)2]. The anisotropic 

displacement factor exponent takes the form: -2p2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]. 

 U11 U22 U33 U23 U13 U12 

Yb(1) 28(1) 46(1) 34(1) -7(1) -7(1) -16(1) 

Br(1) 53(1) 74(1) 48(1) -19(1) 7(1) -28(1) 

O(1) 38(3) 54(4) 34(3) -12(3) -6(2) -19(3) 

N(1) 32(4) 47(4) 41(4) -3(3) -14(3) -18(3) 

C(1) 43(5) 43(5) 31(5) -3(4) -13(4) -13(4) 

N(2) 29(3) 56(4) 27(4) -5(3) -4(3) -18(3) 

C(2) 52(5) 52(6) 43(5) -6(4) -5(4) -24(4) 

Br(2) 48(1) 149(1) 70(1) -16(1) -26(1) -39(1) 

O(2) 39(3) 81(5) 43(4) 2(3) -22(3) -27(3) 

Yb(2) 28(1) 37(1) 44(1) -9(1) -10(1) -10(1) 

Br(3) 54(1) 87(1) 112(1) 10(1) -36(1) -43(1) 

O(3) 40(3) 49(4) 51(4) -1(3) -8(3) -27(3) 

N(3) 32(4) 42(4) 37(4) -4(3) -7(3) -15(3) 

C(3) 75(7) 90(8) 40(6) -25(5) -2(5) -42(6) 

Br(4) 43(1) 67(1) 65(1) -27(1) -7(1) -9(1) 

O(4) 39(3) 55(4) 34(3) -12(3) 1(2) -20(3) 

N(4) 30(4) 46(4) 44(4) -13(4) -5(3) -15(3) 

C(4) 67(7) 125(10) 48(6) -20(6) -19(5) -47(7) 

C(5) 52(6) 99(8) 48(6) -7(6) -21(5) -38(6) 

N(5) 26(3) 39(4) 45(4) -3(3) -9(3) -11(3) 
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O(5) 30(3) 35(3) 37(3) -6(3) -8(2) -11(2) 

Br(5) 35(1) 53(1) 69(1) -22(1) -20(1) -8(1) 

C(6) 42(5) 52(5) 27(4) -4(4) -11(4) -14(4) 

Br(6) 70(1) 53(1) 85(1) -20(1) -28(1) 5(1) 

O(6) 39(3) 40(3) 67(4) -15(3) -18(3) -10(3) 

N(6) 37(4) 40(4) 56(5) -8(4) -17(3) -12(3) 

C(7) 30(4) 57(6) 42(5) -9(4) -9(4) -19(4) 

N(7) 32(4) 36(4) 47(4) -10(3) -11(3) -14(3) 

O(7) 30(3) 43(3) 42(3) -3(3) -9(2) -7(2) 

Br(7) 35(1) 65(1) 80(1) -14(1) 3(1) -10(1) 

C(8) 31(4) 49(5) 41(5) -8(4) -5(4) -23(4) 

Br(8) 68(1) 84(1) 63(1) -9(1) -32(1) -14(1) 

O(8) 40(3) 50(4) 46(4) -5(3) -10(3) -14(3) 

N(8) 43(4) 36(4) 50(5) -10(4) -7(3) -14(3) 

C(9) 24(4) 53(5) 62(6) -19(5) -9(4) -8(4) 

N(9) 80(6) 97(7) 53(6) -24(5) -9(5) -46(6) 

C(10) 33(5) 53(6) 81(7) -16(5) -14(5) -19(4) 

N(10) 46(4) 52(5) 43(4) -14(4) -4(3) -15(4) 

C(11) 37(5) 56(6) 61(6) -24(5) 4(4) -21(4) 

C(12) 49(5) 53(6) 46(5) -10(5) -6(4) -23(4) 

C(13) 35(4) 48(5) 44(5) -10(4) -6(4) -23(4) 

C(14) 42(5) 58(6) 37(5) -12(4) -3(4) -24(4) 

C(15) 51(5) 58(6) 32(5) -2(4) -12(4) -21(5) 

C(16) 69(7) 82(8) 39(6) 5(5) -22(5) -33(6) 

C(17) 92(9) 80(8) 43(6) 18(6) -30(6) -21(7) 

C(18) 51(6) 83(8) 63(7) -18(6) -25(5) -4(5) 

C(19) 43(5) 81(7) 41(5) -17(5) -22(4) -6(5) 

C(20) 44(5) 62(6) 31(5) -10(4) -6(4) -22(4) 
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C(21) 35(5) 102(9) 86(8) -39(7) 2(5) 1(5) 

C(22) 56(6) 86(8) 70(7) -32(6) 7(5) -26(6) 

C(23) 43(5) 43(5) 39(5) 4(4) -20(4) -21(4) 

C(24) 69(7) 61(6) 71(7) 3(6) -41(6) -33(5) 

C(25) 81(9) 84(9) 105(10) -13(8) -34(8) -44(7) 

C(26) 130(12) 78(9) 107(11) -37(8) -48(9) -42(8) 

C(27) 76(8) 64(7) 80(8) -18(6) -17(6) -27(6) 

C(28) 57(6) 38(5) 45(5) -7(4) -19(4) -16(4) 

C(29) 38(5) 49(6) 47(5) -2(5) -10(4) -13(4) 

C(30) 22(4) 53(5) 41(5) 1(4) -4(3) -12(4) 

C(31) 35(5) 46(5) 50(6) 0(4) -7(4) -11(4) 

C(32) 27(4) 82(7) 53(6) 1(5) -5(4) -21(5) 

C(33) 45(6) 75(7) 65(7) -5(6) -11(5) -35(5) 

C(34) 33(5) 58(6) 67(6) -15(5) -5(4) -21(4) 

C(35) 34(4) 51(5) 37(5) -1(4) -5(4) -22(4) 

C(36) 36(5) 54(6) 45(5) -16(5) 6(4) -22(4) 

C(37) 52(5) 44(5) 38(5) -4(4) -7(4) -17(4) 

C(38) 86(8) 53(7) 55(7) 5(5) 9(6) -21(6) 

C(39) 95(9) 55(7) 69(8) 5(6) 3(7) -17(6) 

C(40) 78(8) 70(8) 54(7) -7(6) -10(6) -7(6) 

C(41) 60(6) 51(6) 29(5) -11(4) -11(4) -7(5) 

C(42) 42(5) 58(6) 37(5) -26(5) -2(4) -18(4) 

C(43) 35(5) 96(9) 101(9) -5(7) -19(6) -17(5) 

C(44) 54(7) 103(10) 146(12) 1(9) -36(7) -43(7) 

C(45) 39(4) 32(4) 32(4) -1(4) -9(4) -14(4) 

C(46) 42(5) 34(5) 44(5) -3(4) -16(4) -9(4) 

C(47) 42(5) 68(6) 49(6) -21(5) -16(4) -18(4) 

C(48) 55(6) 83(8) 67(7) -46(6) -2(5) -26(5) 
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C(49) 44(5) 63(6) 56(6) -26(5) -2(4) -18(4) 

C(50) 35(4) 35(4) 38(5) -9(4) -5(4) -11(3) 

C(51) 26(4) 40(5) 46(5) -12(4) -4(4) -9(3) 

C(52) 27(4) 49(5) 42(5) -5(4) -12(4) -10(4) 

C(53) 35(5) 48(5) 50(6) -2(4) -12(4) -8(4) 

C(54) 31(5) 48(6) 78(7) -6(5) -16(5) -2(4) 

C(55) 33(5) 74(7) 56(6) 5(5) -23(4) -15(5) 

C(56) 39(5) 56(6) 65(6) -8(5) -17(5) -17(4) 

C(57) 31(4) 54(6) 46(5) -10(4) -9(4) -15(4) 

C(58) 43(5) 54(6) 64(6) -11(5) -23(4) -19(4) 

C(59) 50(5) 45(5) 67(6) -5(5) -23(5) -20(4) 

C(60) 71(7) 62(7) 83(8) 8(6) -36(6) -33(6) 

C(61) 90(9) 64(7) 73(8) 18(6) -31(6) -47(7) 

C(62) 94(9) 40(6) 71(7) -4(5) -30(6) -20(6) 

C(63) 73(7) 41(6) 59(6) -14(5) -28(5) -12(5) 

C(64) 69(6) 50(6) 60(6) -19(5) -27(5) -26(5) 

C(65) 64(7) 75(8) 97(9) -5(7) -46(6) -15(6) 

C(66) 54(6) 94(8) 79(8) -12(7) -43(6) -9(6) 

C(67) 41(5) 38(5) 40(5) -10(4) -4(4) -20(4) 

C(68) 36(5) 45(5) 44(5) -13(4) 0(4) -20(4) 

C(69) 53(6) 74(7) 59(7) -26(6) 13(5) -33(5) 

C(70) 49(6) 51(6) 59(6) -6(5) -16(5) -17(4) 

C(70') 76(7) 69(7) 43(6) -10(5) -9(5) -37(6) 

C(71) 39(5) 44(5) 46(5) -5(4) -13(4) -18(4) 

C(72) 27(4) 45(5) 58(6) -15(5) -17(4) -2(4) 

C(74) 19(4) 36(5) 54(6) -12(4) -6(4) -2(3) 

C(75) 37(5) 42(5) 62(6) -14(5) -14(4) -8(4) 

C(76) 24(4) 43(5) 93(8) -23(5) -17(5) -3(4) 
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C(77) 26(5) 58(6) 72(7) -18(5) 3(4) -10(4) 

C(78) 39(5) 57(6) 64(6) -29(5) -1(5) -10(4) 

C(79) 29(4) 38(5) 60(6) -14(4) -13(4) -9(4) 

C(80) 44(5) 45(6) 69(7) -24(5) 1(5) -12(4) 

C(81) 67(7) 60(6) 49(6) -21(5) -16(5) -12(5) 

C(82) 79(8) 123(11) 62(8) -63(8) -7(6) -1(7) 

C(83) 127(12) 140(13) 73(9) -69(9) -37(9) 10(10) 

C(84) 124(12) 131(12) 51(8) -31(8) -37(7) -13(10) 

C(85) 60(6) 80(7) 46(6) -19(5) -20(5) -13(5) 

C(86) 49(5) 59(6) 47(6) -23(5) -2(4) -21(5) 

C(87) 39(5) 61(6) 109(9) -22(6) -26(5) -13(5) 

C(88) 31(5) 128(11) 118(10) -56(9) 1(6) -15(6) 

C(89) 220(20) 83(11) 70(10) 3(9) -26(11) -45(12) 

C(90) 270(30) 200(20) 270(30) -100(20) -170(20) -60(20) 

C(91) 120(13) 280(20) 101(12) -77(13) -9(10) -118(15) 

C(92) 165(18) 280(30) 190(20) -59(18) -67(15) -118(18) 

C(93) 137(13) 120(11) 72(9) -38(9) -39(8) -52(10) 

C(94) 119(12) 163(14) 111(11) -79(11) 23(9) -90(11) 

C(95) 69(7) 60(7) 63(7) -13(5) -10(5) -31(5) 

C(96) 86(9) 89(9) 89(9) -26(8) 7(7) -25(7) 

C(97) 52(6) 54(6) 71(7) 4(5) -25(5) -21(5) 

C(98) 56(6) 53(6) 80(8) -6(6) -13(6) -6(5) 

C(99) 63(6) 54(6) 49(6) -13(5) -13(5) -25(5) 

C(100) 84(8) 63(7) 66(7) -9(6) -5(6) -49(6) 
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Table AA.15. Hydrogen coordinates ( × 104) and isotropic displacement parameters (Å2 × 10 3) for 

Et3NH[Yb(3BDMSal)2]. 

 x y z U(eq) 

H(3A) 7322 1669 5946 75 

H(4A) 9088 1528 5695 88 

H(5A) 10072 1093 4806 74 

H(7A) 10276 686 3930 50 

H(9A) 11295 -141 3478 55 

H(12A) 10401 696 1511 58 

H(14A) 9155 1769 1558 52 

H(16A) 8198 2673 866 75 

H(17A) 6692 3280 457 93 

H(18A) 5194 2928 991 80 

H(21A) 13028 -702 3104 119 

H(21B) 13472 -307 2408 119 

H(21C) 13195 -1096 2548 119 

H(22A) 12086 102 1033 105 

H(22B) 12723 -666 1465 105 

H(22C) 12968 133 1333 105 

H(25A) 8488 3717 3937 100 

H(26A) 6790 4150 4479 111 

H(27A) 5564 3565 4481 85 

H(29A) 5013 2783 4163 56 

H(31A) 3828 2875 3623 56 

H(34A) 4208 272 3939 62 

H(36A) 5478 -267 4498 54 

H(38A) 6435 -1501 5008 88 

H(39A) 7883 -2591 5048 100 
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H(40A) 9401 -2568 4357 89 

H(43A) 1519 2503 3603 122 

H(43B) 2150 3085 3162 122 

H(43C) 1796 3055 3890 122 

H(44A) 2537 493 3885 149 

H(44B) 2075 1283 3403 149 

H(44C) 1721 1222 4135 149 

H(47A) 15694 -4735 -300 59 

H(48A) 17436 -5321 -681 75 

H(49A) 18730 -5311 -220 63 

H(51A) 19286 -5065 543 45 

H(53A) 20011 -5641 1415 56 

H(56A) 20598 -3516 1658 63 

H(58A) 19971 -2635 799 60 

H(60A) 19883 -1392 155 83 

H(61A) 19031 -109 -214 88 

H(62A) 17204 336 37 81 

H(65A) 22267 -6073 2050 116 

H(65B) 21996 -6323 1527 116 

H(65C) 21325 -6426 2215 116 

H(66A) 22003 -4230 2092 112 

H(66B) 22688 -4946 1787 112 

H(66C) 22025 -5094 2475 112 

H(69A) 19167 -2218 -1763 73 

H(70A) 16089 -1279 -1248 63 

H(70B) 17548 -1407 -2036 72 

H(72A) 15253 -1565 -224 53 

H(75A) 13970 -1893 70 56 
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H(78A) 13351 -2438 2211 64 

H(80A) 14517 -2203 2463 64 

H(82A) 14874 -2314 3392 105 

H(83A) 15904 -2878 4171 136 

H(84A) 17407 -3885 4042 123 

H(87A) 12294 -1708 31 101 

H(87B) 11450 -1318 557 101 

H(87C) 11715 -2223 607 101 

H(88A) 11604 -2232 2303 137 

H(88B) 11399 -2527 1782 137 

H(88C) 11088 -1618 1733 137 

H(89A) 8219 -1502 1848 157 

H(90A) 8383 -2515 2548 323 

H(90B) 7355 -2058 2950 323 

H(90C) 8469 -2042 2988 323 

H(91A) 6156 -259 3068 175 

H(92A) 4908 -304 2692 279 

H(92B) 5741 -990 2394 279 

H(92C) 5582 -108 2013 279 

H(93A) 7291 466 1895 118 

H(93B) 7302 -97 1502 118 

H(94A) 8834 279 1143 173 

H(94B) 9135 -637 1428 173 

H(94C) 9126 -76 1823 173 

H(95A) 15726 -4425 2738 74 

H(95B) 15319 -5165 3054 74 

H(96A) 13892 -4035 2865 138 

H(96B) 13970 -4601 2454 138 
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H(96C) 14377 -3861 2139 138 

H(97A) 17485 -5230 2371 71 

H(97B) 17026 -5920 2793 71 

H(98A) 18513 -6389 2089 103 

H(98B) 17976 -5802 1519 103 

H(98C) 17527 -6495 1946 103 

H(99A) 16088 -5844 1631 63 

H(99B) 14954 -5282 1825 63 

H(10A) 15060 -6574 2365 100 

H(10B) 14863 -6068 2851 100 

H(10C) 16001 -6628 2660 100 
 

 

Figure AA.5. Molecular structure of Et3NH[Yb(3BDMSal)2]. All atoms represented by thermal ellipsoids drawn at 

the 30% probability level. All hydrogen atoms were omitted for clarity. 
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Figure AA.6. Unit cell structure of Et3NH[Yb(3BDMSal)2] 
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