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The hepatitis C virus (HCV) affects an estimated 3% of the world’s population making it 

a major threat to human health.  Currently, the most common treatment for those infected with 

the virus includes a combination of pegylated interferon (IFN-α) with ribavirin.  This treatment is 

effective only 40-80% of the time and causes severe side effects leading to low patient 

compliance.  In 2011, two anti-HCV drugs, telaprevir and boceprevir, were put on the market.  

Both of these drugs are viral protease inhibitors, and are expected to face drug resistance in the 

future due to the development of viral quasispecies.  Due to the uncertainty and problems the 

current HCV treatments face, there is an urgent need to develop more effective anti-HCV 

therapies.  The blocking of HCV entry into human hepatocytes has promise.  Our lab has already 

developed a novel anti-HCV peptide called human apolipoprotein E peptide (hEP) which was 

shown to potently block HCV entry into Huh7.5.1 cells at very low concentrations, as well as 

lower plasma cholesterol levels and suppress inflammation in mice.  At the same time, this 

peptide was non-toxic to cells.  Th e combination of potently blocking viral entry, as well as 

maintaining the integrity of the cells treated makes hEP a promising anti-HCV therapeutic.  In 

order to increase the stability of hEP, we believed that fusing it to human serum albumin would 

increase its pharmacokinetics, shelf life, as well as lower the necessary dosage needed to elicit 

anti-viral effects.  This rationale was based on the findings of another group which showed that 

the fusion of IFN-α to human serum albumin increased its half-life.  The methylotropic yeast 
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strain X-33 Pichia pastoris was used to produce the hEP and human serum albumin recombinant 

fusion protein.  After successfully producing the recombinant proteins of interest, we saw viral 

inhibition among one of our  hEP fusion proteins, demonstrating its efficacy and public health 

significance.  
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1.0  INTRODUCTION 

1.1 DESCRIPTION OF THE PROBLEM 

In 2011, the World Health Organization estimated that 170 million people worldwide 

were infected with the hepatitis C virus (HCV).  HCV leads to cirrhosis of  the liver, 

hepatocellular carcinoma, and potentially liver failure if the person does not seek treatment (47, 

85).  I t is primarily spread through the sharing of needles, but can also be spread via blood 

transfusion as well as through sexual intercourse.  There is currently no prophylactic vaccine for 

HCV and the current treatment of pegylated interferon (IFN-α) and ribavirin if effective only 40-

80% of the time, and causes severe side effects leading to low patient compliance (33).  The 

release of the protease inhibitors boceprevir and telaprevir in 2011 looked to be promising 

therapeutics for infected individuals, but it is believed that the rise of future viral quasispecies 

will lead to viral resistance to these drugs (92).  This is why new novel anti-viral therapeutics are 

urgently needed.        

1.2 HEPATITIS C VIRUS 

HCV is an enveloped  positive ssRNA virus which belongs to the family Flaviviridae and 

genus Hepacivirus.  There are seven viral genotypes, and more than 90 s ubtypes which are 
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present in different geographical locations (75).  The virus’s genetic material is surrounded by an 

icosahedral shell of the structural protein core (C), and a lipid membrane derived from a host cell 

as well as two viral-encoded glycoproteins, E1 and E2.  The average diameter of an HCV viral 

particle is around 60 nm and the genome of the virus is 9.6 kilobases with non-translated regions 

(NTR) within the 5’ and 3’ ends (Fig. 2).  T he 5’ NCR contains an internal ribosome entry site 

(IRES) which allows translation of a viral polypeptide in a cap independent fashion (24, 96, 

100).  When HCV comes into contact with a susceptible cell, it will enter via clathrin-mediated 

endocytosis into an early endosome (18, 25, 65).  This endosome consists of the virus particle 

 

 

 

 

 

 

 

 

 

 

 

 

surrounded by the host cell membrane.  As the endosome moves further into the cell, it will 

develop into a late endosome where it is believed that a lowering in pH causes fusion between 

the viral membrane and surrounding cellular membrane releasing the viral RNA (65, 95).  This 

 
Figure 1. Hepatitis C virus lifecycle                                                                   Designed by Jana Jacobs 
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assumption is based on fi ndings from another Flavivirus, dengue, and the Alphavirus, Semliki 

Forest virus, in which low pH causes membrane fusion (39, 68).  Since the HCV RNA genome is 

positive stranded, it can be translated right away.  Once it is translated, the individual proteins 

associate into the endoplasmic reticulum membrane and form replication vesicles (41).  It is 

within these replication vesicles where genome replication takes place as well as particle 

assembly.  Once particle assembly is complete, the virus will utilize the VLDL pathway and be 

secreted outside the cell where it can infect other hepatocytes (Fig. 1) (48).    

1.2.1 Hepatitis C Virus Proteins and Functions 

The viral polypeptide which is produced by host ribosomes is 3,000 amino acids long, 

and is cleaved into ten separate proteins by both viral and host proteases (Fig. 2).  These proteins 

include core, E1, E2, p7 ion channel, NS2, NS3, NS4A, NS4B, NS5A, and NS5B.   The three 

structural proteins, core, E1, and E2 are cleaved by endogenous proteases whereas the non-

structural proteins are cleaved by the viral proteases NS2-3 autoprotease and NS3-4A serine 

protease (42, 46).  The individual proteins will then attach to the ER membrane, and viral 

replication will ensue.  E1 and E2 glycoproteins form non-covalent heterodimers stabilized by 

disulfide bonds, and are vital for viral entry (77, 97).  These glycoproteins are glycosylated on 

their N-terminal ectodomain which is necessary for correct protein folding, attachment to proper 

receptors during viral entry, as well as masking the virus from an immune response which could 

stimulate neutralizing antibody production (40, 44).  Core  is a protein with dual domains (19).  

Core D1 is a hydrophilic domain which may bind RNA during virion production, and core D2 is 

what binds the ER outer membrane (90).  Core D2 also allows the protein to associate with lipid 

droplets, which is believed to be a factor during viral assembly (9, 63, 72).      
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The two HCV proteins which are not utilized for genomic replication, but are necessary 

for infectious virus are the p7 ion channel and NS2 non-structural protein.  The p7 ion channel is 

a protein with two transmembrane domains, and is classified as a viroporin.  Both cell culture 

and in vivo models have shown that p7 is involved in assembly and release of viral particles (52, 

89, 91).  Studies showed that p7 is not involved in viral entry, but during the late phase of viral 

assembly.  NS2 recently has also been reported to be involved in viral assembly.  It is thought 

that in addition to having autoprotease activity, it may also connect the structural and non-

structural proteins during viral assembly (84).     

  The rest of the non-structural proteins are involved in the viral genomic replication 

complex.  In addition to being a serine protease in conjunction with NS4A, NS3 also acts as a 

helicase which is necessary for replication (60).  The helicase activity is required during an early 

step of viral particle formation.  NS4B stimulates formation of the membranous web needed for 

viral replication (41, 79).  The membranous web was first shown to harbor RNA replication 

while studying the viral lifecycle in Huh7 cells.  NS4B is also needed in viral assembly.  One 

group showed that when NS4B was mutated, membranous web formation ceased to occur along 

with viral particle formation (53).  However when the replicons were reconstituted with intact 

NS4B, particle formation ensued.  The NS5A protein is involved in both RNA replication and 

viral particle formation (8, 93).  This protein contains three domains which each have different 

functions.  Domains I and II are involved in replication, whereas III is involved in assembly (8).  

The last protein, NS5B, is an RNA-dependent RNA polymerase (22).  NS5B’s C-terminal end is 

embedded in the ER membrane, while the N terminal side performs the RdRp reaction along 

with certain host factors (71).     
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1.2.2 Apolipoprotein E and Hepatitis C Virus 

Apolipoprotein E (ApoE) is a 299 a mino acid long polypeptide synthesized in hepatic 

parenchymal cells and normally functions in the transport of lipids within the body (62). It can 

associate with cholymicrons, VLDL, and HDL.  Apo E has multiple receptors including low 

density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), 

apolipoprotein E receptor 2 (apoER2), and heparan sulfate proteoglycan (HSPG) (20, 45).  ApoE 

contains a LDLR binding region in the N terminal domain.  This binding region resides within a 

four-helix-bundle between amino acids 136-150.  Within the C terminal domain is the major 

lipid-binding region between amino acids 245-266. When ApoE is bound to a phospholipid, it 

will adopt an α-helical hairpin like structure based on EPR, FRET, and X-ray diffraction studies 

(31, 43, 76).        

 

 

 Figure 2. Hepatitis C virus genome and proteins. The 9,600 base pair genome is translated into a 3,000 
amino acid long polypeptide, which gets cleaved into 10 viral proteins.  H ost ER signal peptidases will 
cleave the structural proteins (black diamonds), and the non-structural proteins will be cleaved by a 
combination of the viral NS2-3 protease (white arrow), and the NS3-4A protease (blue arrows). 
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It has been shown that HCV is in association with lipoproteins apoE and apoB (6, 7, 21).  

Scientists were puzzled for many years as to why patient-isolated HCV had different densities 

and sedimentation rates, and the answer was because the virus associates with host derived very 

low-density lipoproteins (VLDL) containing apo E and apo B (37, 87).  HCV production is 

closely tied to VLDL production.   In a cell culture model, apoE-specific monoclonal antibodies 

neutralized HCV infectivity in a dose dependent manner (21).  At the same time, siRNA 

knockdowns of apoE expression in cells reduced intracellular as well as secreted HCV.  These 

findings demonstrated that apoE is necessary for both HCV entry and exit.  The fact that HCV 

uses hepatocytes for infection and assembly makes sense since they are the primary producers of 

lipoproteins in the body, as well as the organ where cholesterols get transported for degradation 

(62).  W hen analyzing how HCV interacts with apo E, it was shown that the NS5A protein 

interacts with the C-terminal alpha helix of apo E (16, 30).  Without the ability of NS5A to 

interact with apo E, HCV would not be infectious.     

In addition to apo E and apo B, mass spectrometry analysis has recently shown that HCV 

is in association with the lipids cholesterol, cholesterol esters, phosphatidylcholine, and 

sphingomyelin (66).  Cholesterol and sphingomyelin were first shown to be important in viral 

infectivity after a group demonstrated that HCVcc became less infectious after removing these 

two lipids (3).  HCVcc was first treated with methyl- β-cyclodextrin (B-CD) which can remove 

cholesterol from membranes (82).  When treated in a dose-dependent manner with increasing 

concentrations of B-CD, the virus became less infectious (3).  5 m g/mL of B-CD reduced core 

protein levels in Huh-7 by 98% c ompared to untreated virus.  Infectivity of  the virus was 

restored after removal of the B-CD and reconstitution of cholesterol.  At the same time, removal 

of sphingomyelin with increasing concentrations of the enzyme SMase lead to dose-dependent 
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viral infectivity loss (3).  1 U/mL of SMase led to 90% reduction in infectivity compared to the 

untreated.      

1.2.3 Hepatitis C Virus Entry into Human Hepatocytes 

There are two particular viruses that are used to study hepatitis C entry and its lifecycle.  

These are the hepatitis C pseudoparticle (HCVpp), and hepatitis C cell culture (HCVcc).  HCVpp 

is lentiviral based and is used to study viral entry (12).  It contains the lentiviral gag and pol in its 

genome as well as a reporter gene.  The envelope is studded with the hepatitis C glycoproteins 

E1 and E2.  H CVpp can only be used to study viral entry.  In 2005, t he first infectious cell 

culture based hepatitis C virus was introduced.  HCVcc was derived from JFH-1 subtype 2a, and 

was the first hepatitis C virus to complete its lifecycle in vitro (56, 99) (Fig. 3).  When a full  

 

 

 

 

 

 

 

 

 

length JFH-1 RNA strand was transfected into Huh7 cells, it resulted in the secretion of 

infectious HCVcc particles.  Later on, a reporter gene was added.  This infectious clone was a 

 

 Figure 3.  HCVcc design. HCVcc contains the full length viral genome, with a luciferase gene 
inserted in between the NS5A and NS5B genes.  It is an authentic HCV particle that is able to 
complete its lifecycle in cell culture.  
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breakthrough in the field as researchers could better observe how and where the virus enters, 

replicates, and exits.    

Much work has been done in order to elucidate how HCV enters hepatocytes, and what 

host factors are needed.  The glycosaminoglycan heparan sulfate (HSPG) was recognized as an 

initial binding factor needed to attach the virus to the cell surface of hepatocytes (10, 11).  The 

E2 glycoprotein was shown to be involved in attachment to HSPG.  Once the virus binds heparan 

sulfate, it will then attach to the other necessary receptors.  W hen HCVcc and HCVpp were 

pretreated with heparin, a homologue of heparan sulfate, viral infection was inhibited (14).  

However, if the virus was added before the addition of heparin, there were no inhibitory effects 

on viral infectivity.   A recent publication has shown strong evidence that apo E also is involved 

in attaching the virus to HSPG (51).  Even when an E2 specific monoclonal antibody was added, 

HCV attachment still occurred.  These studies demonstrate that heparan sulfate is needed for 

early binding by HCV, but not during the late stage of viral entry.     

The low-density lipoprotein receptor (LDLR) is now considered an HCV entry receptor.  

This was first proposed after HCV was shown to be in association with LDL and VLDL (2).  

Later, one group showed that when COS-7 cells were transfected with a vector allowing them to 

express LDLR, HCV positive sera tested on these cells resulted in binding of viral particles in 7 

out of 12 patient samples (70).  The same group showed that the addition of >200 µg/ml of pure 

low density lipoproteins to human fibroblasts expressing LDLR inhibited HCV binding.  They 

proposed that the LDL added was in competition with HCV for binding to the LDLR.  It was 

also shown that monoclonal antibodies which targeted the LDLR as well as apoE and apoB 

inhibited infection of p rimary human hepatocytes (2, 38).  When the LDLR monoclonal 

antibodies were added at the same time as the virus, infection was inhibited.  When the antibody 
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was added at later time points following the addition of the virus to cells, it was not effective in 

blocking infection.  Therefore, the conclusions are that LDLR is involved in an early step in viral 

entry (69).  Together both heparan sulfate and LDLR are binding factors which are used by HCV 

for initial attachment.    

CD81 is a receptor which is part of the tetraspanin family of proteins.  I t was the first 

discovered entry factor for HCV (5, 13, 34, 81).  This protein spans the membrane four times, 

forming two extracellular loops: a long extracellular loop (LEL) and a short extracellular loop. 

The long extracellular loop (LEL) is what interacts with the E2 glycoprotein allowing viral entry 

(34).  Previous studies showed that soluble E2 could bind to CD81, and that four cysteines in the 

LEL are needed for  efficient binding (80).  Once HCVpp and HCVcc were developed, 

experiments were done in which these viruses were pretreated with the LEL of CD81.  This 

inhibited viral infectivity of Huh7 cells (4, 17, 73).  Antibodies against CD81 also inhibited viral 

entry into Huh7 cells when added prior to the addition of HCVcc, or after the binding step at 4° 

C (28, 54).  HepG2 cells, which is a human heptoma cell line lacking CD81, is naturally resistant 

to hepatitis C infection. Once these cells were transfected with DNA encoding CD81, they 

became susceptible to infection by HCVpp, but not to the same magnitude as Huh7 cells (34). 

A highly expressed protein on the liver which has also been shown to be necessary for 

HCV infection is the scavenger receptor class B, member 1 (SRB1).  This protein crosses the 

plasma membrane twice forming an extracellular loop.  I ts primarily function is as an HDL 

receptor and is important in cholesterol transport (1, 27, 49).  In regards to HCV, SRB1 was 

shown to be an entry factor when expressed in 293T cells.  293T cells which were overexpressed 

with SRB1 had a 10 fold increase in viral infection with HCVpp compared to cells which did not 

express SRB1 (13).  Also, anti-serum against SRB1 reduced infectivity in Huh7 cells 
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significantly.  An interesting finding in regards to SRB1 is that HDL uptake increased HCVpp 

infectivity.  When HDL was added to cells after the binding of HCVpp, there was a 5 -fold 

increase in infectivity compared to when HDL was added with the virus at the same time (98).  

These results led to the speculation that HDL aids HCVpp infection at a post binding step.  

One of the entry factors that was discovered to be involved during the later stage of 

hepatitis C virus entry was claudin-1.  This is a tetraspan transmembrane protein involved in 

forming tight junctions creating a paracellular seal (35, 74).  Paracellular sealing is important for 

epithelial and endothelial cells so they can maintain polarity as well as control the passage of 

solutes and ions through the space between cells.  Altogether, claudin-1 forms two extracellular 

loops, and one intracellular loop (35, 36).  Claudin-1 is highly expressed on t he liver, and on 

many endothelial cells.  It was first discovered as a r eceptor for HCV when a cD NA library 

derived from a permissive cell line was expressed in 293T cells which contained CD81 and 

SRB1 (32).  This expression caused the cells to become susceptible to hepatitis C virus entry.  

Further evidence showed that when siRNA was used to knockdown claudin-1 in permissive 

cells, HCVcc and HCVpp had decreased infectivity (32, 64).  It was next determined that the N-

terminal 1/3 of extracellular loop 1 (ECL1) was necessary for viral infection, demonstrated by 

changing two residues in the ECL1 of  claudin-7 to that of claudin-1.  The ECL1 change in 

claudin-7 allowed 293T cells to become susceptible to HCVpp infection (30).  Investigators who 

were studying claudin-1, showed that it acts in a post-binding step, and believed that CD81 

binding by HCV needed to occur before the virus could bind to claudin-1 (32, 64).  Antibody 

inhibition studies demonstrated the function of CD 81 in HCV infection.  When an anti-CD81 

antibody was added to 293T cells prior to the addition of HCVpp, infection of t he virus was 
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inhibited.  Also, when Hep-G2 (CD81 deficient) cells were overexpressed with claudin-1, 

HCVpp infection still did not occur.   

The most recently identified receptor which has been recognized in HCV entry is 

occludin (15).  Occludin is a four transmembrane protein which is also involved in tight junction 

formation.  Our lab was the first to show that when siRNA was used to knockdown occludin in 

susceptible cells, it inhibited viral infection of H CVcc and HCVpp (59).  In  analyzing when 

occludin comes into play during HCV entry, it was determined to be involved at a post-binding 

step after co-immunoprecipitation studies showed interaction between HCV E2 glycoprotein and 

occludin (15).  Specifically, the second extracellular loop was shown to be important in viral  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Hepatitis C virus entry into human hepatocytes. HCV will utilize the known binding 
factors/receptors to gain entry into hepatocytes: LDLR, HSPG, SR-B1, CD81, claudin-1, and occludin. 
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entry, as its removal inhibited HCVpp infectivity (57).  Occludin was also shown to be important 

in species specificity. The addition of human CD81 and occludin made mouse cells susceptible 

to HCV infection (83).  Another finding in our lab was that dynamin II interacts with the second  

extracellular loop of occludin and is important for HCVpp and HCVcc entry into cells (57).  

Dynamin II is a GTPase which has been shown to be necessary for internalization of clathrin-

coated vesicles, and since HCV enters cells via clathrin-mediated endocytosis, dynamin II may 

be necessary for HCV entry (86).  With these findings, our lab concluded that the binding of 

HCV to the second extracellular loop of occludin, may dictate HCV dynamin-dependent 

endocytosis into cells. 

1.2.4 Human Apolipoprotein E Peptide 

The anti-HCV effects of the human apolipoprotein E peptide were a major finding by our 

lab.  This peptide was designed based on the rationale that by combining the lipid binding and 

receptor binding regions of apo E (Fig. 5A), a peptide would be created which could outcompete 

HCV associated apo E for binding to cellular receptors (58).  When tested in cell culture on 

Huh7.5.1 cells, hEP had an IC50 of 0.67 µM (Fig. 5B), and showed no signs of cytotoxicity even 

when 14 µ M was tested (Fig. 5C).  As a comparison, mouse apolipoprotein E peptide was 

created.  This peptide did not express the same inhibitory effects as hEP.  Another benefit of hEP 

is that it is a stable peptide, as it was able to retain its anti-HCV effects in cell culture for up to 

24 hours.  However, its anti-HCV effects were shown to diminish at 48 hours.   

In addition to being a potent inhibitor of HCVcc, hEP was also shown to bind lipids in 

vitro and lower plasma cholesterol levels in mice (58).  In a cell culture model, 

dimyristoylphosphatidylcholine (DMPC) liposome vesicles were added in the presence of hEP or 
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mEP, and it was discovered that the peptides were able to bind to the DMPC particles as well as 

to the LDLR.  When injected into mice, both hEP and mEP were able to lower plasma 

cholesterol levels to the same degree.  This finding showed that hEP has dual functions, as it can 

inhibit HCV entry into cells as well as bind lipids.   

The intact LDLR region of hEP is crucial for blocking HCV entry.  Twelve different hEP 

molecules were synthesized, but only hEP 1 and hEP 2 had intact LDLR regions (58).  hEP 1 

contained both the LDLR and lipid binding regions, whereas hEP 2 only had the LDLR region 

with a cysteine residue added on the N terminal side to give the peptide greater stability and the 

ability to dimerize.  The added cysteine proved to be important for the function of hEP 2, as hEP 

2/∆Cys resulted in failure to inhibit HCV infection.  hEP 3 contained only the lipid binding 

region with a cysteine residue added at the N terminal side, and it failed to inhibit infection as 

well.  The rest of the hEP molecules (hEP 4-12) were either truncated versions of the LDLR, the 

lipid binding region, or a combination of both.  None of these peptides inhibited HCV infection 

to the same degree as hEP 1 or 2.  hEP 2 was shown to be the ideal sequence for inhibiting HCV 

infection.  

Further analysis of hEP showed that it specifically blocked HCV binding to cells (58).  

During a time-of-addition experiment, hEP was added to Huh7.5.1 cells together with HCVcc at 

4°C attachment step, or added during the transfer of the cells and virus to 37°C.  When added 

after the temperature shift, hEP exhibited little inhibition demonstrating that it inhibits viral entry 

during the attachment stage.  hEP does not decrease the levels of potential HCV receptors on 

cells.  This was determined after treating cells with hEP, and using flow cytometry to analyze if 

all the necessary receptors were still present.  Even though hEP was able to block HCVcc entry, 

it was not able to block HCVpp entry.  293T cells are used to produce HCVpp, and these cells do 
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not produce apo E.  Therefore the virus does not associate with apo E and is not needed for entry 

into susceptible cells.  hEP did however block patient serum-derived HCV viral entry into 

primary human hepatocytes (PHH).  The overall conclusion on hEP is that it blocks HCV at the 

initial binding step.  It is not known whether it individually binds both LDLR and HSPG, or even 

both together.  Regardless, initial binding is blocked and this peptide outcompetes virion 

associated apo E for the binding to its receptors.      
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2.0  STATEMENT OF THE PROJECT 

The effects of the hEP peptide showed that it could not only inhibit HCV entry in cell 

culture at sub-micromolar concentrations, but it could also lower plasma cholesterol levels as 

well as suppress inflammation in mice (58).  This is why hEP looks to be a promising 

therapeutic.  After the production of hEP, we realized that it is a very expensive peptide to 

produce because it is synthetically made.  Also, it is a peptide with a short half-life, as its anti-

viral effects were diminished after 48 h ours.  Therefore we sought to develop an hEP which 

would have a longer half-life in addition to being cheaper to produce.  We felt the best way to 

increase the half-life of hEP was to fuse it to human serum albumin (HSA).  HSA is the most 

abundant protein in the body, and has a long natural half-life which allows it to maintain oncotic 

pressure (26).  The rationale for fusing hEP to HSA was based on the findings of another group 

which fused IFN-α to HSA: termed Albuferon.  Albuferon was shown to have increased 

pharmacokinetics, a l onger half-life, and a   slower rate of clearance over standard IFN-α (78).  

We predicted that the same would be true for hEP by fusing it to HSA.  In order to produce this 

fusion protein, we used the methylotropic yeast strain X-33 Pichia pastoris because it is a 

eukaryotic system which can secrete heterologous recombinant protein with the appropriate post-

translation modifications in large quantities (29).  If we are able to produce the hEP and HSA 

fusion protein in large quantities using X-33 Pichia pastoris and show that hEP has the same 
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effects with a longer half-life, then this will be a cheaper method to produce a more effective 

therapeutic.  To test this hypothesis, our objectives were:    

Aim 1: To construct human apolipoprotein E peptide and human serum albumin fusion 

plasmids as well as X-33 Pichia pastoris clones 

Aim 2: Produce the recombinant proteins of interest, and test the anti-HCV effects in cell 

culture using Huh7.5.1 cells and HCVcc-luciferase 
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3.0  MATERIALS AND METHODS 

3.1 CONSTRUCTION OF HUMAN APOLIPOPROTEIN E PEPTIDE AND HUMAN 

SERUM ALBUMIN FUSION PLASMIDS AS WELL AS X-33 PICHIA PASTORIS 

CLONES 

3.1.1 Subcloning into pPICZαA 

The plasmid pPICZαA was purchased from Invitrogen and expanded in DH5α E. coli 

cells.  Sequence specific primers for human serum albumin, hEP, and mEP were designed with 

specific restriction enzyme recognition sites (Table 1). The plasmid already contained a coding 

region for a 6X histidine tag (Fig. 5A)  After the appropriate PCR materials were added (Table 

2), the insert DNA was amplified by PCR using a Bio-Rad MJ thermocycler (Table 3), and then 

purified using a PureLink PCR purification kit from Invitrogen.  O nce the DNA had been 

amplified and purified, it was then double digested with the appropriate restriction enzymes 

(Table 4).  The digested DNA was purified by running it on a  0.8% agarose gel and extracted 

using an Omega gel extraction kit.  The inserts were ligated into pPICZαA using T4 DNA ligase 

purchased from New England Biolabs (Table 5).  The ligation took place for 2 hours at room 

temperature.  The ligated plasmid was transformed into Top 10 E. Coli cells.  Plasmid DNA was 

isolated using an Omega midi prep kit.  1 µg of the extracted DNA was double digested for 1 
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hour with EcoR1 and Kpn1 for c onfirmation that the inserts had ligated into the vector.  T he 

double digest was run on a  0.8% agarose gel, and if the two bands of the appropriate size were 

present, then the plasmid was sent for Sanger sequencing.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primers 
 

Sequence 

Human Serum Albumin: Forward      GCGCGAATTCATGAAGTGGGTAACCTTTATTTCC             
 Reverse       CGCGGGTACCTAAGCCTAAGGCAGCTTGACTTGCA 
  
Human Serum Albumin (N): Forward      GCGCGAATTCATGAAGTGGGTAACCTTTATTTCC 
 Reverse       CGCGACTAGTTAAGCCTAAGGCAGCTTGACTTGCA  
  
Human Serum Albumin (C): Forward      AGACTAGT GGCGGCGGCGGCGGCGGCAAGTGGGTAACCTTTATTTC 
 Reverse       CGCGGGTACCTAAGCCTAAGGCAGCTTGACTTGCA 
  
hEP (N): Forward      AGGAATTCGAAGAACTGCGTGTTCGTCT 
 Reverse       AGACTAGTCATGTCTTCAACCAGAGGCT 
  
hEP (C): Forward      AGACTAGTGGCGGCGGCGGCGGCGGCGAAGAACTGCGTGTTCGTCT 
 Reverse       GAGGTACCCACATGTCTTCAACCAGAGGCT 
  
mEP (N): Forward      AGGAATTCGAAGAAATCCGTGCGCGTCT 
 Reverse       AGACTAGTCATGTCTTCAACGATCGGTT 
  
mEP (C):  Forward      AGACTAGTGGCGGCGGCGGCGGCGGCGAAGAAATCCGTGCGCGTCT 
 Reverse       GAGGTACCCACATGTCTTCAACGATCGGTT 
  

 

Table 1. Sequence specific primers.  

 

PCR Reaction Mixture 
 

                     Amount 

 5X Phusion buffer 10.0 µL 
10 mM dNTP 1.0 µL 
10 mM forward primer 2.5 µL 

10 mM reverse primer 2.5 µL 
Template DNA 1.0 µL 
Phusion polymerase 0.5 µL 
Water 32.5 µL 
Total                      50.0 µL 

 

Table 2. PCR reaction mixture contents 
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Cycle Step 
 

Temperature                 Time 

Initial Denaturation      98° C             30 seconds 

Denaturation 
Annealing 
Extension 

     98° C 
     55° C 
     72° C 

           10 seconds 
           30 seconds              35 cycle 
           30 seconds 

Final Extension      72° C             10 minutes 

Forever      4° C  

 

Table 3. PCR conditions 

 

        

pPICZαA 
 

 
 
 
Amount 

Human Serum 
Albumin only 

 
 
 
Amount 

N terminal 
inserts 

 
 
 
Amount 

C terminal 
inserts 

 
 
 
Amount 

DNA  1 µL DNA 5 µL DNA 10 µL DNA 10 µL 
EcoR1 1 µL EcoR1 1 µL EcoR1 1 µL Spe1 1 µL 

Kpn1 1 µL Kpn1 1 µL Spe1 1 µL Kpn1 1 µL 
EcoR1 buffer 5 µL EcoR1 buffer 5 µL NEB buffer 1 5 µL NEB buffer 1 5 µL 
BSA 0.5 µL BSA 0.5 µL BSA 0.5 µL BSA 0.5 µL 

Water 41.5 µL Water 37.5 µL Water 32.5 µL Water 32.5 µL 
Total 50.0 µL Total 50.0 µL Total 50.0 µL Total 50.0 µL 

 

Table 4. Double digestion reactions 

 

Human Serum Albumin 
only 
 

 
 
 
 
Amount 

N terminal and C terminal 
insert 

 
 
 
 
Amount 

pPICZαA 1 µL pPICZαA 1 µL 
HSA insert 10 µL N terminal insert 3 µL 
T4 DNA Ligase buffer 2 µL C terminal insert 3 µL 
T4 DNA ligase 1 µL T4 DNA buffer 2 µL 
Water 5 µL T4 DNA ligase 1 µL 
Total 20 µL Water 10 µL 
  Total  20 µL 

 

Table 5. Ligation reactions 
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3.1.2 Propagation, Electroporation, and Purification of X-33 Pichia Pastoris 

X-33 Pichia pastoris was purchased from Invitrogen, and streaked on a  yeast, peptone, 

dextrose (YPD) plate and incubated at 30º C for 2  days.  Two days prior to electroporation, a 

yeast colony was picked and used to inoculate 5 mL of YPD media, and shaken overnight at 30º 

C, 300 rpm.  The following day, the 5 mL culture was used to inoculate 250 mL of YPD in a 

1,000 mL flask and shaken overnight at 30º C, 300 rpm.  Once the OD600 reached 1.3, the cells 

were spun down, and initially resuspended in 250 mL of water, and then in 1 M sorbitol to a final 

volume of 1.5 m L.  10 µg of linearized plasmid DNA containing the appropriate insert was 

linearized and mixed with 80 µL of cells in a 0.3 mm ice cold BioRad electroporation cuvette.  A 

Bio-Rad Gene Pulser was used to electroporate the yeast cells on the settings: 1,500 V, 25 µF 

capacitance, 200 Ω resistance.  Immediately after electroporation, 1 mL of 1 M sorbitol was 

added to the cuvette and the contents were transferred to a 15 mL tube and incubated at 30º C for 

2 hours.  Different volumes (25 µL, 50 µL, 100 µL, 200 µL) of electroporated cells were then 

spread on 100 µ g/mL yeast, peptone, dextrose, sorbitol (YPDS) zeocin plates and incubated at 

30º C for 3 days.  Once colonies grew, 6-10 were picked and streaked on 100 µg/mL YPDS 

zeocin plates for purification.  The streaked colonies were further purified by being streaked on 

500 µg/mL YPDS zeocin plates. 

3.1.3 Pichia pastoris Colony PCR     

Pichia pastoris colonies which were streaked on 500 µg/mL zeocin YPDS plates were 

tested to determine whether or not they contained the linearized electroporated plasmid DNA 

within their genome.  All streaked colonies had a small portion picked with a pipette tip and 
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added to a PCR tube containing 2 µ L of water.  The integrated plasmid contains two AOX1 

primer regions which are used for detecting the subcloned fragment.  These regions are referred 

to as the AOX1 forward (F) region, and the AOX1 reverse (R) region.  Depending on the 

construct being tested, either an AOX1 F primer or AOX1 R primer was used along with a 

sequence specific primer for hEP, mEP, or HSA.  Each individual PCR tube contained 16.875 

µL of deionized water, 5µL of 5X Go Taq Buffer, 0.5 µL of 10 mM dNTP’s, 0.25 µL of 100 mM 

forward primer, 0.25 µL of 100 mM reverse primer, 0.125 µL of Go Taq polymerase.    

 

3.2 PRODUCTION OF RECOMBINANT PROTIENS OF INTEREST AND TESTING 

OF ANTI-HCV EFFECTS IN CELL CULTURE 

3.2.1 Recombinant Protein Production 

Individual colonies electroporated with a different plasmid construct were picked and 

used to inoculate 25 m L of buffe red complex medium containing glycerol (BMGY: 1% yeast 

extract, 2% peptone, 100 mM potassium phosphate: pH 6.0, 1.34% Y NB, 4x10-5 biotin, 1% 

glycerol) in a 250 mL flask, shaking at 30º C, 300 rpm .  These flasks were shaken for 26-28 

hours until the OD600 was 2 or higher.  700 µL of the culture was removed and mixed with 300 

µL of 50% glycerol in a cryogenic tube.  These tubes were stored at -80º C for long term storage.  

The rest of the cultures were then spun down at 1,500 rpm for 5 minutes, and the supernatant was 

poured out.  The pellet was then washed with 20 mL of buffered complex media containing 

methanol (BMMY: 1% yeast extract, 2% peptone, 100 mM potassium phosphate: pH 6.0, 1.34% 
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YNB, 4x10-5 biotin, 0.5% methanol) in order to remove any leftover glycerol.  The cells were 

then spun down again and resuspended in 200 mL BMMY.  The transfer of the cells from 

BMGY to BMMY is what induced recombinant protein production, as methanol being the sole 

carbon source stimulated translation from the AOX1 promoter located in the integrated plasmid.  

The cultures were shaken at 30º C, 300 rpm.  Every twelve hours, methanol was added to the 

cultures to a final concentration of 3%.  After 48 hours , the cultures were spun down and the 

supernatant was separated from the pellets, and both were stored at -80º C.         

3.2.2 Lysis of Pichia pastoris Pellets 

Pellets were collected from -80°C and thawed on ice.  15 mL of breaking buffer (BB: 50 

mM sodium phosphate pH 7.4, 1mM PMSF, 1 mM EDTA, 5% glycerol) along with a volume 5 

mL of 0.35 µm acid washed beads were added.  The pellets were then vortexed for 1 minute, and 

then put on ice for 1 minute for eight total cycles.  The lysate was then spun at 4,700 rpm for 10 

minutes at room temperature.  The supernatant was then collected and analyzed for recombinant 

protein presence by Western blot.    

3.2.3 Western Blot Assay 

Cell lysates were separated by gel electrophoresis in 8% sodium dodecyl sulfate (SDS)-

polyacrylamide gel and proteins were transferred to a nitrocellulose membrane using the Mini 

Trans-Blot electrophoretic transfer cell (Bio-Rad) in transfer buffer (15.6 mM Tris base, 120 mM 

glycine).  The membrane was then blocked with 10% skim milk in wash buffer for 45 minutes at 

room temperature.  The membranes were then incubated overnight at 4º C or for two hours at 
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room temperature with a rabbit anti-histidine polyclonal antibody in 5% milk in wash buffer at a 

1:5000 dilution.  The membranes incubated with this primary polyclonal antibody were 

incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG in 5% milk in wash buffer 

at a 1:1000 dilution for 1 hour at room temperature.  The signal was visualized by 

chemiluminesence by the addition of ECL substrate solution.  Films were exposed for either 1, 5, 

or 30 seconds. 

3.2.4 Recombinant Protein Isolation 

Batch purification was performed on all the cell lysates.  5 mL of lysate was mixed with 5 

mL of PBS and mixed with 150 µL of PerfectPro Ni-NTA agarose beads in a 15 mL tube.  Prior 

to the addition of the lysate mixture to the beads, the beads were washed with 5 mL of breaking 

buffer.  After the wash, the lysate mixture and beads were rotated at 4° C for  two hours.  The 

lysate was then removed and the beads were rinsed with 5 mL of P BS to remove background 

proteins.  The beads were then mixed with 1 mL of 200 m M imidazole in order to elute the 

bound recombinant protein.  After the imidazole was collected, the beads were then boiled in 2X 

sample buffer to elute off  any remaining protein.  This was performed to see whether the 

imidazole had eluted off the bound protein 

3.2.5 Protein Quantification 

A BCA assay protein quantification kit was purchased from Thermo Fisher, and used to 

quantify the total protein in each cell lysate.    Recombinant protein quantification was performed 

by loading different amounts of a His-tagged protein with a known concentration on an 8% SDS 
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gel, and then comparing the intensity of the recombinant protein bands to the known protein 

standard.  From there, a concentration of recombinant protein could be calculated.      

3.2.6 Protein Concentration 

Lysates were concentrated by adding 5 mL to an Amicon Ultra-15, PLTK Ultracel-PL 

Membrane, 30 kDa centrifugal device, and then spinning at 3,000 rpm until the lysate level was 

at 500 µL.  The 500 µL of lysate was then diluted in 10 mL of PBS and then spun down again to 

a volume of 500 µL.  This was performed in order to remove the salts in the breaking buffer, and 

make the lysates as isotonic as possible.  All recombinant proteins of interest were greater than 

30 kDa in size. 

3.2.7 Cell Lines and Reagents 

The Huh7.5.1 line was provided by Dr. Francis Chisari (Scripps Research Institute).  This 

cell line was maintained in DMEM supplemented with 5% Penicillin and streptomycin, 1% 

NEAA and 10% fetal bovine serum (FBS) (Gemini Bio-Products). 

3.2.8 Infectivity Assay 

Huh7.5.1 cells (1x104) were plated in a 48 well plate and grown to 80% c onfluency.  

Different volumes of yeast lysates containing the recombinant proteins of interest were added in 

duplicate to the wells, along with 180 µL of HCVcc luciferase and 120 µ L of D MEM.  T he 

lysate and virus incubations occurred for three hours before they were removed.  After the 
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removal, the cells were rinsed with 200 µL of D MEM and then had 300 µL of fre sh DMEM 

added.  After 48 hours, the cells were lysed with 50 µL of 5X passive lysis buffer diluted to 1X 

in PBS.  They were then gently rocked for 15 minutes on an orbital shaker, after which 50 µL of 

the lysate was mixed with 50 µL of luciferase assay reagent II (LARII) in a 96 well luminometer 

plate.  The mixture was quickly added to a Veritas luminometer where a luciferase reading 

ensued. Each experiment contained two wells to serve as a negative control (uninfected and 

untreated cells), and two wells to serve as a positive control (infected and untreated cells).   

3.2.9  Cell Viability Assay 

Huh7.5.1 cells (1x104) were plated in a 48 w ell plate and grown to 80% c onfluency.  

Different volumes of X-33 Pichia pastoris lysate were added in duplicate to the wells.  DMEM 

was then added so that the final volume in each well was 200 µL.  The lysate/DMEM mixture 

was allowed to incubate with the cells for three hours, after which it was removed and replaced 

with fresh DMEM.  After 48 hours, the cells were lysed with 5X passive lysis buffer diluted to 

1X in PBS, and 50 µ L of l ysate was mixed with 50 µ L of c ytopathic effect (CPE) luciferase 

reagent.  This reagent consisted of 1ml of a 5X D-Luciferin Stock Solution (1 mM D-luciferin, 

25 mM Glycylglycine, 10 mM DTT), 1 ml luciferase enzyme (1 mg/ml), 0.5 ml 250 mM 

Glycylglycine and 3.5 ml water in 9 ml Luciferase Assay Buffer (25mM Glycylglycine pH 7.8, 

15 mM Potassium Phosphate pH 7.8, 15mM MgSO4, 4mM EGTA in H2O).  The lysate/CPE 

reagent mixture was added to a  96 well luminometer plate and inserted into a  Veritas 

luminometer to measure luciferase activity.         
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3.2.10 Imnunofluoresence Staining and Confocal Microscopy 

 Huh7.5.1 cells were plated to 90% confluency in a 24 well plate which contained glass 

coverslips.  48 hours after the cells were treated, they were then washed with 1X PBS, and fixed 

with 2% pa raformaldehyde (15 min, RT).  After a second wash with 1X PBS, the cells were 

permeablized with 0.1% Triton X-100 in PBS (15 min, RT).  A wash with 1X PBS and PBB 

(PBS+ 0.5% BSA) followed, and then blocking with 2% BSA for 45 m inutes.  After this time 

period, primary antibodies against core protein and E2 glycoprotein were diluted in PBB and 100 

µL of the mixture were added to the cells and incubated for 1 hour.  Following a wash with PBB, 

the secondary antibodies Alexa Fluor 568 (Red) and Alexa Fluor 488 ( Green) were added.  

Alexa Fluor 568 was against E2 and Alexa Fluor 488 was against core.  The secondary 

antibodies incubated for 1 hour.  The nucleus was stained with Draq5, after which the cells were 

washed with PBB and Hoescht stained for 30 s econds.  After a f inal wash, the coverslips was 

adhered slides using gelvatol. The slides were then taken to the University of Pittsburgh Center 

for Biological Imaging.  Images were captured on a Carl Zeiss Meta LSM 510 confocal 

microscope. 
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4.0  RESULTS 

4.1 SPECIFIC AIM 1 RESULTS 

Aim 1:  To construct human apolipoprotein E peptide and human serum albumin fusion 

plasmids as well as X-33 Pichia pastoris clones 

4.1.1 Subcloning into pPICZαA 

The plasmid pPICZαA was used because it contains an alpha secretion factor derived 

from Saccharomyces cerevisiae, as well as an AOX1 promoter which is activated in the presence 

of methanol (Fig. 5A).  Additionally, it contains a zeocin resistance gene and a c-myc epitope 

along with a (6X) polyhistidine tag.  Within the alpha secretion signal gene is a region harboring 

a Kex2 cleavage site as well as a Ste13 cleavage site.  Once the fusion protein is produced, host 

proteases will cleave the alpha secretion signal off before secretion, leaving only the protein of 

interest and the c-myc/polyhistidine tag.  The first gene which was subcloned into this pPICZαA 

was HSA (Fig. 5B).  It was subcloned in frame with the alpha secretion factor, c-myc epitope, 

and (6X) polyhistidine tag.  This construct, pPICZαA HSA, was used to produce recombinant 

protein which served as a negative control during the cell culture work.  h EP and mEP were 

subcloned into pPICZαA with HSA.  Both hEP and mEP were fused to the C terminal side of 

HSA, creating pPICZαA HSA-hEP, and pPICZαA HSA-mEP (Fig. 6A).  Separating the two 
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inserts was a (6X) glycine polylinker which was engineered to give flexibility to the fusion 

protein once it was produced.  hEP and mEP were also subcloned into the vector on the N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

terminal side of HSA (Fig. 7A).  These inserts also contained a (6X) glycine polylinker, and 

these plasmids were named pPICZαA hEP-HSA, and pPICZαA mEP-HSA.  All the constructs 

which contained mEP served to produce recombinant protein as a negative control, since mEP 

alone was shown to be less potent in blocking HCV entry into Huh7.5.1 cells.  Once diagnostic 

A. 
 

 
 B. 

 
 

Figure 5. The pPICZαA plasmid. (A) pPICZαA is around 3.6 kb long (B) Human serum albumin 
was the first sequence  su bcloned into the plasmid.  T he restriction enzymes EcoR1 and Kpn1 
were used to digest the vector as well as HSA.  H SA was subcloned in frame with the alpha 
secretion signal, c-myc epitope, and poly-histidine tag. 
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double digestions were performed using EcoR1 and Kpn1, and two bands of t he appropriate 

sizes were present (3.6 kb and 2.0 kb), the plasmids were then sent for  Sanger sequencing (Fig 

6B, Fig 7B).  All fragments were successfully subcloned into pPIZαA.   
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B. 

 
 

Figure 6. Subcloning of hEP and mEP C terminally to HSA. (A) Subcloning scheme for pPICZαA 
HSA-hEP and pPICZαA HSA-mEP (B) Diagnostic digestion of pPICZαA HSA-hEP and pPICZαA 
HSA-mEP.  Lane 1 represents successful double digestion of pPICZαA HSA-hEP, and lanes 4, 5, and 6 
represent successful digestions of pPICZαA-HSA-mEP.  The DNA for both constructs was double 
digested with EcoR1 and Kpn1.  
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4.1.2 Electroporation of X-33 Pichia Pastoris 

Once the Sanger sequencing results showed that our plasmids contained the proper 

inserts, 10 µg of each plasmid were linearized using the PmeI restriction enzyme in order to be 

A. 

 
 
B. 

 
 

Figure 7. Subcloning hEP and mEP N terminally to HSA. (A) Subcloning scheme for pPICZαA 
hEP-HSA and pPICZαA mEP-HSA. (B) Lanes 1, 2, and 3 show the successful diagnostic digestions 
of pPICZαA hEP-HSA, and lanes 4, 5, and 6 represent the successful double digestion of pPICZαA 
mEP-HSA.  The DNA for both constructs was double digested with EcoR1 and Kpn1.      
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electroporated into electrocompetant X-33 Pichia pastoris.  During electroporation, the 

linearized plasmids entered the nucleus of the yeast cell and were incorporated into the host 5’ 

AOX1 site (Fig. 8).  After the electroporation, different volumes of cells (25 µL, 50 µL, 100 µL, 

200 µL) were spread on 100 µg/mL zeocin YPDS plates (Fig. 9A).  The plates were  

 

 

 

 

 

 

 

 

 

 

 

incubated at 30º C for t hree days, and 12 c olonies from each electroporated construct were 

picked and streaked on 100 µg/mL zeocin YPDS plates.  This was done to ensure that the 

colonies contained the integrated construct.  If the colony was a false positive, than it should not 

have grown on a zeocin YPDS plate after it was streaked.  Only one false positive was identified 

when streaking an HSA-hEP colony.   The false positive failed to grow on a 100 µg/mL zeocin 

YPDS plate.  The negative control in the experiment was taking X-33 Pichia pastoris that had 

been electroporated without any linearized plasmid DNA and spreading the cells on 100 µg/mL 

 

5’ AOX1

5’ AOX1 TTGOI Zeocin

5’ AOX1 TTGOI Zeocin

Vector

Chromosome

 

 Figure 8. Plasmid integration. During electroporation, the linearized plasmids were incorporated into 
the host chromosome at the 5’ AOX1 region.  The pink arrow represents the AOX1 promoter region in 
the plasmid, GOI represents the gene of interest, TT is the transcription termination region, and the 
green box represents the zeocin resistance gene.  
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B. 

 
 

Figure 9. Plating and purifying of electroporated X-33 Pichia pastoris. (A) After electroporation, 
the  listed volumes of cells were spread on 100 µg/mL zeocin YPDS plates.  For all four plates, each 
construct had these many total colonies: control – 0 colonies, HSA – 58 colonies, hEP-HSA – 14, 
HSA-hEP – 89, mEP-HSA – 49, HSA-mEP – 17 (B) Twelve colonies were picked and purified on 
100 µg/mL zeocin YPDS plates, and then 500 µg/mL zeocin YPDS plates which is shown above.  We 
looked to see which colonies grew robustly on the 500 µg/mL zeocin YPDS plates.  
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zeocin YPDS plates.  There were no colonies on any of the control plates.  To further purify the 

colonies and ensure they contained the integrated plasmid, they were streaked on 500 µg/mL 

zeocin YPDS plates (Fig. 9B).  All robust colonies were further analyzed for the presence of the 

inserted plasmid.   

4.1.3 Colony PCR of Electroporated of X-33 Pichia pastoris 

In order to prove that the linearized plasmid DNA was incorporated into the host genome, 

a colony PCR procedure was performed using primers designed specifically for the AOX1 

regions in the plasmid, as well as primers specific for one of the inserts.  pPICZαA was designed 

with an AOX1 forward and  reverse region where primers could be used to detect the presence of 

the gene of interest.  When performing a colony PCR on e lectroporated X-33 Pichia pastoris 

using the AOX1 forward and reverse primers, two bands should be present once the process is 

finished.  The first band should be 2.2 kb long, and this represents a natural endogenous region.  

The second band should correspond to the gene of interest.  In our case, for all the constructs 

containing mEP or hEP, the band sizes we expected to see were 2.6 kb.  We never saw any bands 

this size.  Next, we tried different combinations of primers.  For the constructs where hEP and 

mEP were N terminal to HSA, the AOX1 forward primer was used along with either the hEP or 

mEP reverse primers.  These bands were 536 base pairs long and were detected for some of the 

colonies (Fig. 10B and D).  For the constructs where hEP and mEP were C terminal to HSA, the 

AOX1 reverse primer was used along with the hEP or mEP forward primers.  These bands were 

381 base pairs long, and were also detected in some of the colonies (Fig. 10A and C).  T he 

colonies containing HSA were detected using AOX1 forward and HSA reverse primer (Fig.  
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A.  HSA-hEP 

 
 

            B. mEP-HSA 

 
C. HSA-mEP                                 D.  hEP-HSA                              E.  HSA 
 

 

Figure 10. Electorporated X-33 colony PCR.  All positive controls were the parent plasmids alone. 
The negative controls were pPICZαA and X-33 Pichia pastoris.  (A) All HSA-hEP colonies analyzed 
were positive for a 381 base pair fragment. (B) Six lanes for mEP-HSA colonies were positive for a 536 
base pair fragment: Lanes 1, 4, 7, 9, 10, 11. (C) Two lanes for HSA-mEP colonies were positive for a 
381 base pair fragment: Lanes 1 and 3. (D) Three lanes for hEP-HSA colonies were positive for a 536 
base pair fragment: Lanes 4, 8, and 9. (E) Four lanes for HSA colonies were positive for a 2,184 base 
pair fragment: Lanes 6, 7, 8, and 9.      
 



 35 

10E), and were 2,184 base pairs long.  For all our electroporated yeast clones, there were positive 

identifications of the integrated plasmids through colony PCR.  The combination of robust 

colony growth on increasing concentraions of zeocin YPDS plates, as well as successful colony 

PCRs gave us confirmations that the electroporated X-33 Pichia pastoris contained the 

sequences needed for recombinant protein production. 

4.2 SPECIFIC AIM 2 RESULTS 

Aim 2:  Produce the recombinant proteins of interest, and test the anti-HCV effects in cell 

culture using Huh7.5.1 cells and HCVcc luciferase 

4.2.1 Recombinant Protein Production 

After it was proven through colony PCR which electroporated yeast colonies contained 

the genes of interest, they were then used for recombinant protein production.  For each 

construct, a single colony was picked and used to inoculate 25 mL of BMGY media.  Once the 

OD600 reached 2, the culture was spun down, and the pellet was resuspended in 200 m L of 

BMMY.  The presence of methanol as the sole carbon source was responsible for recombinant 

protein production, as it induced transcription from the AOX1 promoter.  As shown in (Fig. 11), 

we first wanted to see if there was an optimal time for yeast growth.  In order to determine when 

yeast growth was best, we took OD600 readings every twelve hours post BMMY inoculation for a 

total of 108 hours.  We analyzed the growth of yeast colonies containing hEP-HSA, mEP-HSA, 

and standard X-33 Pichia pastoris.  The 48 hour time point was shown to be optimal not only for 
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yeast growth, but for protein production as well.  While taking yeast time point samples every 24 

hours for five days and analyzing a clone containing HSA, the 48 hour time point showed 

 

 

 

 

 

 

 

 

 

 

 

 

the most prominent protein band when analyzing the lysates via Western blot (Fig. 12A).  

Therefore, after 48 hours of culture growth for a ll clones, they were spun down and the 

supernatants and pellets were both analyzed for the presence of recombinant protein.  The cell 

lysates contained all the proteins of interest when analyzed by Western blot (Fig. 12B).  We 

expected the HSA band to be around 73 kDa, and the bands which contain hEP and mEP to be 

around 79 kD a.  HSA showed the strongest band, and doublets were observed for  all the 

constructs.  We believe that this is because the larger band may still have contained the alpha 

secretion factor, whereas the lower bands had it cleaved.  For the proteins that contained the 

alpha secreation factor, they were 10 kDa longer than the proteins without it. 

 

 
Figure 11. OD600 readings.  OD600 readings were taken every 12 hours for the yeast cultures with clones 
hEP -HSA, mEP-HSA, and X-33 Pichia pastoris.  OD600 of 1 = 5 x 107 cells. 
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4.2.2 Recombinant Protein Purification 

The process of trying to purify our recombinant proteins of interest proved difficult.  We 

used Ni-NTA agarose beads because the Ni resin is able to bind to the 6X histidine tag on the 

recombinant protein.  Since we were only able to isolate secreted recombinant protein at very 

low concentrations, we attempted to isolate our proteins from the yeast cell lysates.  The only 

recombinant protein we were able to purify from the lysates using Ni-NTA agarose beads was 

HSA.  We were not able to successfully isolate any of the others.  We analyzed the cell debris 

from the hEP an mEP pellets via Western blot after lysis and centrifugation, and the protein 

 
A. 

 
 
B.  

 
 
Figure 12. Recombinant protein production. (A) 1 mL time points from an HSA culture were taken 
every 24 hours for 5 days, and the cell pellets were analyzed for recombinant protein production via 
Western blot using a rabbit polycolonal anti-histidine antibody.  A BMGY pellet along with an X-33 
Pichia pastoris pellet served as negative controls. (B) Cell pellets from 200 mL BMMY cultures for all 
the clones were collected after 48 hours and analyzed for the presence of recombinant protein using a 
rabbit polyclonal anti-histidine antibody.  A standard X-33 Pichia pastoris pellet served as a negative 
control.   
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bands observed were very thick (data not shown).  If we spun the lysate at 12,000 rpm for ten 

minutes and then tried to detect protein in the supernatant, there was very little to nothing at all 

that could be detected via Western blot.  Our Coomassie blue staining and Western blot of HSA 

showed that we were able to purify it using 200 mM imidazole (Fig. 13).  Further evidence of 

our isolation was shown by mass spectrometry, which was performed on the cut out 200 mM 

imidazole Coomassie blue stained lane by one of our  lab’s coworkers, Ting Zhao.  The results 

were not only positive for the presence of HSA, but showed HSA was the most abundant protein 

(Fig. 14B and C).  In order to try and remove any insoluble protein from the cell debris from the 

hEP and mEP pellets, we treated the cell debris pellets with 1% Triton X-100.  This however did 

not recover the insoluble recombinant protein.  With these results, we thought it would be best 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Purification of HSA. Prior to the batch purification, part of the input lysate was kept to 
be analyzed.  After the Ni-NTA beads rotated with the lysate, the tube was spun down, and part of 
the flow through was also kept for analysis.  The beads were then treated with 200 mM imidazole 
which was collected, and then the beads were added to 2X sample buffer and boiled to see if there 
was any leftover bound recombinant protein. 
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to test the whole cell lysate in cell culture to see whether or not there was any bioactivity among 

the recombinant proteins.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. 

 
 
B. 
 

 



 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3 Quantification of Protein 

Before testing the cell lysate in cell culture, it was necessary to quantify the total protein 

in each lysate, as well as the individual recombinant proteins.  A BCA assay kit was used in 

order to quantify the total protein in each lysate.  The first step in quantifying the protein was to 

create a standard curve using a known amount of protein.  This protein was provided in the kit, 

and the standard curve created gave us a linear line of best fit.  From there, we were then able to 

quantify the total protein amount in each lysate using the UV spectrophotometer (Table 6).  After 

quantifying the total amount of protein in each lysate, we next set out to determine the total 

amount of recombinant protein.  In order to do this, we created a standard using a His-tag protein 

C.  
 

 
 Figure 14. Mass spectrometry results from Coomassie blue staining containing HSA. Above are two 

representative regions of HSA identified through mass spectrometry of the cut out 200 mM imidazole 
Coomassie blue stained lane. (A) The coverage sequence used in identifying HSA, with the regions in 
red representing analyzed portions. (B) Identified region in HSA with the amino acid sequence 
MPC#AEDYLSVVLNQLCV#LHEK. The m/z was 1352.7 (C) Identified region in HSA with the amino 
acid sequence KVPQVSTPTLVEVSR. The m/z was 706.9. 
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with a known concentration.  The protein we chose for this was Tat Cre which was produced in 

our lab.  We started by loading different amounts (1 µg, 500 ng, 400 ng, 300 ng, 200 ng, 100 ng) 

of Tat Cre on an 8% SDS gel, and then loaded 8 µL of each of our lysates.  Based on the results 

of the Western blot, we were able to determine the amount of recombinant protein in each lysate 

by comparing the band intensity to the Tat Cre protein standard.  The amount of recombinant 

protein was low for all the proteins except HSA.  For HSA-hEP, hEP-HSA, and mEP-HSA, we 

determined the concentration was 12.5 µg/mL (Fig. 15A and B).  HSA-mEP had a concentration 

of 37.5 µg/mL (Fig. 15B), and HSA had a concentration of 125.0 µg/mL.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.                                                                B. 

 
 Figure 15. Recombinant protein concentration. (A) 8 µL of hEP-HSA and HSA-hEP lysate were 

loaded onto an 8% SDS gel and run along a (6X) His -tagged Tat Cre protein standard.  Both proteins had 
a concentration of 12.5 µg/mL (B) 8 µL of mEP-HSA and HSA-mEP were loaded under the same 
conditions.  The concentration of   mEP-HSA was 12.5 µg/mL, and HSA-mEP was 37.5 µg/mL   The 
exposure time on the films shown above was 1 second.  5 second and 30 second exposures were also 
done, and there was linearity in band intensity among the increased exposure times. 
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4.2.4 Concentration of Protein 

In order to increase the concentration of our  recombinant proteins, we decided to 

concentrate our lysates by using a centrifugal device that would retain all proteins greater than 30 

kDa.  We took 5 mL of each of our lysates and concentrated them to 500 µL, after which, we 

then added the concentrated lysate to 10 mL of PBS to dilute the salts in the breaking buffer.  We 

then concentrated the diluted lysate back to 500 µL.   This increased the concentration of our 

recombinant proteins.  Western blot analysis of the concentrated lysates indeed showed that the 

concentration worked, as the intensity of the bands had increased (Fig. 16).  The total protein 

concentration was shown to have increased (Table 7).  We estimated that the concentration of 

HSA increased to 250 µg/mL, and the concentrations of hEP-HSA, mEP-HSA, and HSA-mEP 

increased to 100 µ g/mL (Fig. 16A and B).  HS A-hEP had the lowest concentration of 62.5 

µg/mL (Fig. 17A). 

 

 

 

 

 

 

 

 

Total Protein  
 

                                     Concentration 

X-33 Pichia pastoris                                       21,800 µg/mL 
HSA                                       39,770 µg/mL 
HSA-hEP                                       32,410 µg/mL 
HSA-mEP                                       25,770 µg/mL 
mEP-HSA                                       33,540 µg/mL 
hEP-HSA                                       37,580 µg/mL 
 

 

 

Table 7. Concentration of total protein in concentrated lysates 

 

 
Lysate Protein 

                                                                               
                                       Concentration 

X-33 Pichia pastoris                                          9,787 µg/mL 
HSA                                        12,830 µg/mL 
HSA-hEP                                        13,960 µg/mL 
HSA-mEP                                        13,250 µg/mL 
mEP-HSA                                        17,250 µg/mL 
hEP-HSA                                        24,020 µg/mL 
 

Table 6. Concentration of total protein in cell lysates 
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4.2.5 Infectivity Assay 

We first analyzed the effects of HSA-hEP and HSA-mEP for the ability to inhibit 

HCVcc-luciferase infection.  We tested 5 µg of both recombinant proteins in the concentrated 

lysates by adding them to the cells with the virus at the same time. 5 µg HSA was also tested.  

After a 3 hour incubation, the lysates and the virus were removed and replaced with fresh 

DMEM.  When the luciferase reading was taken 48 hours later, we saw that there was a 

significant difference between all the recombinant proteins in inhibiting HCVcc luciferase 

infection compared to the infected/untreated wells (Fig. 17).  We next wanted to see if hEP-HSA 

and mEP-HSA had an effect on inhibiting viral infectivity.  5  µg of each recombinant protein 

was tested, however there was no significant difference between the infected/untreated cells and 

the cells treated with lysates containing the recombinant proteins (Fig. 18).  After determining 

A.                                                                   B. 

 
 

Figure 16. Concentration of recombinant protein after centrifugal concentration. (A) Here shown is 
concentrated HSA, hEP-HSA, and HSA-hEP.  It was determined that that the HSA concentration was 
250 µg/mL, hEP-HSA was 100 µg/mL, and HSA-hEP was 62.5 µg/mL. (B) The concentrations of mEP-
HSA and HSA-mEP was determined to be 100 µg/mL.  The exposure time on the film was 1 second.       
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that not all of the recombinant proteins inhibited viral infection to a significant degree, we then 

wanted to compare the inhibitory effects of the recombinant proteins containing hEP or mEP  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to that of HSA.  The percent infection was calculated by dividing the relative light unit (RLU) 

value collected for cells treated with the mEP or hEP recombinant proteins by the RLU value for 

the cells treated with the HSA recombinant protein.  The results showed that the cells treated 

with hEP-HSA had the lowest percentage of infection with an average of 57% cells infected 

compared to HSA (Fig. 19).  The cells treated with HSA-mEP had a greater infection average 

than HSA.  hEP-HSA looked to be the most promising recombinant protein in blocking HCVcc 

luciferase infection based on these results. 

 

 Figure 17. Effects of HSA-hEP and HSA-mEP. In order to test 5 µg of each recombinant protein, 
20 µL of concentrated HSA lysate, 80 µL of HSA-hEP concentrated lysate, and 50 µL of HSA-mEP 
concentrated lysate were added in duplicate to wells containing Huh7.5.1 cells at 80% confluency.  
The total amount of protein in each volume of lysate added was 795.4 µg  in the HSA lysate, 2,592.8 
µg in the HSA-hEP lysate, and 1,289  µg in the HSA-mEP lysate.  There was a significant difference 
between the untreated/infected cells and the cells treated with each of the lysates, as p<0.05 in all 
comparisons.  D ata are representative of three independent experiments and are presented as the 
mean ± standard deviation.     
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Figure 19. Percent infection. The average percentage of infected cells treated with the lysates 
containing hEP and mEP recombinant proteins were compared to cells treated with HSA lysate as 
follows: 57% for hEP-HSA, 84% for mEP-HSA, 87% for HSA-hEP, and 111% for HSA-mEP.    

 

 
 
Figure 18. Effects of hEP-HSA and mEP-HSA. In order to test 5 µg of each recombinant protein, 20 
µL of concentrated HSA lysate, and 50 µL of concentrated hEP-HSA and mEP-HSA lysates were 
added in duplicate to wells containing Huh7.5.1 cells at 80% confluency.  The total protein amount in 
each volume of lysate added was 795.4 µg in the HSA lysate, 1,897 µg in the hEP-HSA lysate, and 
1,677 µg in the mEP HSA lysate. There was no significant difference between the untreated/infected 
cells and the cells treated with the lysates, as p>0.05 in all comparisons.  The data is representative of 
three independent experiments and are presented as the mean ± standard deviation.        
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4.2.6 Cell Viability Assay 

In order to determine if the cell lysate added to the Huh7.5.1 caused any cytotoxicity, 

cells were added to a 48 well plate and grown to 80% confluency.  A cell viability assay was 

then performed.  The cells in the wells were lysed, and the lysates was mixed with CPE buffer. 

Cellular ATP drove the oxidation of luciferan resulting in light emission which could be 

quantitated.  We performed the cell viability assay using standard X-33 Pichia pastoris lysate.  

Different amounts of lysate were incubated with the cells for three hours, after which it was 

removed and replaced with fresh media.  The cells were then lysed 48 hours later and a luciferase 

reading was taken to determine cell viability (Fig 20).  Based on the results, we concluded that 

there was cytoxictiy involved when adding Pichia pastoris lysate to Huh7.5.1 cells.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Cell viability. Different volumes of X-33 Pichia pastoris lysate were added to Huh7.5.1 cells 
in duplicate.  The total protein added in each volume was 1,090 µg in 50 µL, 545 µg in 25 µL, 218 µg in 
10 µL, and 109 µg in 5 µL.  There was a significant difference, p<0.05, between the untreated cells and 
the cells treated with the different volumes tested.  T he data is representative of four independent 
experiments.     
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4.2.7 Confocal Microscopy 

In order to visually examine the effects the lysates containing the recombinant proteins 

were having on viral infectivity, we treated Huh7.5.1 cells with lysates containing 2 µg of the 

hEP and mEP recombinant proteins as well as with JFH1-AM2 HCV.  After a three hour 

incubation, the virus and lysates were removed and 48 hours  later the cells were fixed for 

confocal imaging.  Using primary antibodies against HCV core protein and E2 glycoprotein, and 

alexa-fluor conjugated secondary antibodies, we were able to visualize infection of the cells (Fig. 

21).  The positive control were cells treated with only the virus, and the negative controls were 

untreated/uninfected cells as well as cells treated with 2 µM hEP peptide and virus.  There was a 

significant difference in percentage of infected cells between hEP-HSA and both mEP containing 

recombinant proteins. The hEP-HSA recombinant protein lysate showed the lowest average of 

percentage of cells infected (Fig. 22).  
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Figure 21. Immunostaining of Huh7.5.1 cells treated with concentrated lysate. The cells were 
grown between 80-90% confluency in a 24 well plate with coverslips.  Each lysate was added to 
where the final recombinant protein amount was 2 µg.  2 µM of hEP peptide was tested as well.  The 
images are representative of 3 random fields of view taken, and include Draq5 nuclei staining, core 
protein detection, E2 glycoprotein detection, and a merge between the three.   
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Figure 22. Percentage of infected cells. The percentage of infected cells was determined by taking the 
number of infected cells in each field of view (3 total), and dividing that number by the total amount of 
Draq5 stained nuclei.  The percentages of calculated for each field of view was then averaged.  There was 
a significant difference, (p<0.05), between the hEP-HSA average, and the averages between both mEP 
recombinant protein treated cells.  
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5.0  DISCUSSION 

The ability to target HCV entry into human hepatocytes looks to be a promising way to 

develop novel anti-viral therapeutics.  The accepted host factors which are involved in HCV 

entry are heparan sulfate, low-density lipoprotein receptor, CD81, SR-B1, claudin-1 and 

occludin.  In addition to the aforementioned receptors, host derived apolipoprotein E is now 

recognized as a component of the infectious HCV particle.  Apo E is needed for both infectivity 

and viral assembly, and is also able to aid the virus from immune evasion.  Since apo E is a 

protein produced by the host, it does not elicit any kind of immune reaction.  The amount of apo 

E present on the viral particle is also proportional to infectivity (21).  The more apo E present, 

the more infectious the particle will be.  Apo E molecules present on infectious HCV particles 

outnumber the amount of E2 glycoprotein, providing more evidence for its aid in infection (66).     

Based on the structure of apo E, our lab developed the novel peptide, hEP, to outcompete virion 

associated apo E f or the binding of the necessary attachment receptors.  We know that this 

peptide prevents entry at an early stage, because it prevented viral binding to cells either by 

blocking HSPG, LDLR, or a different unknown receptor.  Just this year however, it was reported 

that HCV attachment to susceptible cells is mediated by virion associated apo E binding to 

HSPG (50).  When the LDLR receptor was knocked down using siRNA, viral infectivity 

decreased by 80%, but HCV was still able to bind to Huh7.5 cells with high affinity.  This group 

also performed an experiment where anti-apo E antibodies were added to the cells at the same 
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time as the virus, or after viral binding.  When added after viral binding, there was no inhibition 

of viral entry.  All together, these results give indirect evidence that the hEP peptide may indeed 

bind to HSPG in order to block infection.  Unlike the current drugs boceprevir and telaprevir 

which target viral proteins, hEP targets the host cell, which is a major advantage because there is 

little possibility of the virus gaining resistance.   

When trying to determine whether or not the effects of hEP could be amplified, we 

hypothesized that fusing it to HSA would create a fusion protein with increased 

pharmacokinetics.  When another group fused HSA to IFN-α, they showed that this fusion 

protein named Albuferon required less dosing and was more potent on a molar basis than just 

standard IFN-α (78).  The effects of HSA enabled Albuferon to have an 18-fold longer half-life 

than just standard IFN-α when tested in cynomolgus monkeys.  We predicted that the same 

effects would occur with HSA fused to hEP.  Using the methlylotropic X-33 Pichia pastoris 

yeast strain, we showed that we were able to produce our fus ion proteins of interest.  This 

particular system was designed to secrete out our proteins of interest, however we never 

successfully isolated secreted protein to a suitable concentration.  Even when we used Ni-NTA 

beads to isolate secreted recombinant protein, we barely were able collect any.  We tried many 

methods in troubleshooting to try and induce secreted protein expression, but were unsuccessful.  

We were only able to identify our proteins when we lysed the yeast cells.  From the cell lysates, 

the only recombinant protein we successfully isolated was HSA.  We believe that the lipid 

binding regions of the recombinant proteins which contained mEP or hEP made them insoluble, 

and difficult to isolate.  Standard hEP was shown to be insoluble in water due to the presence of 

the lipid binding region derived from apo E (58).  
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A method that could be performed in the future to determine whether the recombinant 

proteins containing hEP or mEP are insoluble would be to do an immunostaining on 

electroporated X-33 Pichia pastoris cells which contain the genes of interest and had been grown 

in BMMY.  T his would allow us to visualize whether or not  the recombinant proteins were 

insoluble and clumped together within the cells themselves.  The methanol in the media will 

trigger recombinant protein production and using a primary antibody against the (6 X) histidine 

tag, as well as an alexa-fluor conjugated secondary antibody would allow us to visualize the 

location of the recombinant proteins intracellularly.  Perhaps they may be clumped in the 

endoplasmic reticulum, or they may be trapped in between the cell membrane and the cell wall.  

This visual would give insight to where the insoluble recombinant protein may be sticking to in 

the cell debris.      

After testing the lysates containing our recombinant proteins on Huh7.5.1 cells, we did 

see an inhibitory effect caused by 5 µg of hEP-HSA recombinant protein in cell culture as well 

as when immunostaining cells treated with 2 µg of hEP-HSA.  Based on our results, we believe 

that hEP-HSA has more promise in being an effective inhibitor than HSA-hEP.  The fact that 

hEP-HSA has the hEP region exposed at the N-terminal side of the protein may make it more 

effective, unlike HSA-hEP where the hEP portion was between HSA and the C-terminal tag.  

Being in between HSA and the tag may have potentially inhibited its function.     

Even though we diluted the lysates in 1X PBS at a 1:20 ratio, there still was cytotoxicity.  

This all stemmed from the fact that we were never able to successfully isolate all of our 

recombinant proteins, and therefore we decided to test our yeast cell lysates for bioactivity.  

Even when using 1% Trition X-100 to try and remove the insoluble protein from the cell debris 

pellet, we still were not able to isolate our hEP and mEP recombinant proteins.  The cytotoxicity 
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may have been caused by the debris from the lysates.  A detergent like urea could be used to 

remove insoluble proteins from the lysate if we ever attempt to purify the recombinant protein 

from the lysate again.  This detergent however denatures proteins, which means they would have 

to be renatured in order to determine their effectiveness in a cell culture model. 

In the future, we believe that the fusion of hEP-2 to HSA may be a better alternative than 

standard hEP fused to HSA.  This is because hEP-2 only contains the LDLR binding region, and 

not the lipid binding region from apo E.  It has already been shown that hEP-2 is soluble in water 

(58).  At the time when we developed this project, we did not know whether or not hEP-2 would 

be as potent an inhibitor like we do now.  It was still being tested for the ability to inhibit viral 

infectivity.  In addition to using hEP-2, another alternative may be to perform an antibody 

purification rather than using Ni-NTA agarose beads.  Since we were able to prove that HSA was 

produced, doing an HSA purification using a column coated with anti-HSA antibodies may be a 

more effective way of recombinant protein isolation.  The size of HSA is around 70 kDa unlike 

the 6X His tag which is only 6 amino acids long.  Due to the large size of HSA, the ability to 

bind antibodies in a column would be much easier.   

Another alternative to using the standard Pichia pastoris expression system, is to try a 

different yeast secretion system such as PichiaPink.  This system has the advantage of being able 

to easily identify positive electroporated transformants as they will turn white in color.  I n a 

recent publication, the investigators used the PichiaPink system to produce recombinant human 

interleukin 28B (23).  This was a soluble protein, and they were able to optimize recombinant 

secreted protein expression to 200 m g/L.  Since the fusion of H SA to hEP-2 would result in 

soluble protein, we may be able to produce secreted recombinant protein to the same level.           
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If we are able to successfully produce and purify hEP-HSA in the future and demonstrate 

it can elicit the same anti-viral effects with a longer half-life, additionally we would want to test 

its ability to bind lipids and suppress inflammation as well.  We could start by testing hEP-HSA 

in cell culture for the ability to bind DMPC vesicles.  If it is shown that it can bind to the same 

degree as hEP, then we would progress to testing for the ability to lower plasma cholesterol 

levels in mice as well as inflammation.  People who are infected with HCV experience both an 

altered lipid metabolism as well as chronic inflammation which are very painful.  The chronic 

inflammation is caused by the immune system’s increased production of cytokines and 

chemokines which leads to liver fibrosis (55).  Other drugs which have been shown to lower 

cholesterol include ezetimibie, fluvastatin, and Lovastatin.  Ezetimibie not only lowers 

cholesterol, it was also shown to suppress HCV infection by inhibiting viral uptake by the newly 

identified receptor: Niemann-Pick C1-like 1(NPC1L1) (88).  This drug inhibited infection of all 

the major HCV genotypes.  Lovastatin and fluvastatin were also shown to lower viremia in 

infected individuals as well as pro-inflammatory cytokines (67).  If the fusion of hEP to HSA is 

able to increase the pharmacokinetics of hEP, this would be an ideal therapeutic as it could 

inhibit viral infection, bind plasma cholesterol lowering hepatic steatosis, as well as suppress 

inflammation.  The necessary dosage would be lower than standard hEP as well, which could 

lead to better patient compliance.    

 The application after showing in cell culture and in mice that hEP-HSA is effective in 

inhibiting viral entry, lowering plasma cholesterol levels, and suppressing inflammation would 

be to apply it in human trials.  A potentially effective cocktail which could be developed would 

be a combination of hEP-HSA and other HCV drugs which target the virus itself.  This cocktail 

could inhibit viral entry as well as viral replication if a protease inhibitor is present.  The process 
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of analyzing the effects in humans would require many years of testing and studies in order to 

deem it safe and effective.  One thing that must be determined is how the addition of hEP-HSA 

will affect the body’s natural ability to degrade cholesterol and other lipids.  Since apo E’s 

natural function is in cholesterol transport, what kind of effect would hEP binding to the LDLR 

and HSPG have on the body?  The body needs these receptors in order to clear cholesterol.  Both 

the LDLR and HSPG present on the liver aid in the clearance of LDL cholesterol and 

triglycerides from plasma (61, 94).   This must be determined before this fusion protein is 

approved for the market.      

Overall, once we are able to successfully isolate and purify the recombinant proteins to 

highest degree possible, we will then be able to test the anti-viral effects without cytotoxicity.      
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