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Speeding the molecular binding process is of particular interest in many fields. While 

traditional belief dictates that ligand preorganization is optimal, the discovery of intrinsically 

disordered proteins may contest such convention. The “fly-casting” mechanism argues that a 

flexible protein can bind its partner faster due to a larger capture radius and a resulting coupled 

process of folding and binding. We directly test this hypothesis, using computational means, on 

the p53-MDM2 system, performing binding simulations of MDM2 to either a flexible p53 

peptide or its exact preorganized analog. We employ a path sampling algorithm, weighted 

ensemble, to generate large ensembles of binding pathways and to calculate rates of association. 

Additionally, the effect of hydrodynamic interactions, often omitted in implicit solvent 

simulations, on the binding rates was examined. We find no difference between the binding rates 

of flexible p53 and preorganized p53. The exclusion of hydrodynamic interactions significantly 

decreases the binding rates due to largely reduced translational diffusion coefficients, indicating 

the importance of using hydrodynamic interactions in binding simulations. 
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1.0  INTRODUCTION 

Molecular recognition is essential to the function of all biological systems. Different fields of 

molecular recognition have emerged, which include, but are not limited to, host-guest detection, 

macromolecular association, and drug discovery. Much interest in these fields involves 

optimizing the kinetics of molecular binding, focusing on ligand preorganization as the standard 

for providing the fastest binding scenarios. Such convention, though, may be challenged by the 

prevalence of intrinsically disordered proteins (Wright & Dyson, 1999), many of which adopt 

well-defined structures upon binding their partners. Recent theoretical studies have suggested 

that intrinsic disorder provides kinetic advantages through the “fly-casting mechanism” 

(Shoemaker, Portman, & Wolynes, 2000). As the theory explains, a disordered protein, due to its 

increased flexibility, exhibits a larger capture radius, thereby allowing it to better extend and 

bind weakly to its partner. The protein then reels its partner in through a simultaneous process of 

folding and binding. 

Experimental studies have been performed to investigate whether flexible proteins, in 

general, bind their targets faster than preorganized versions (Crespin, Boys, & Konermann, 2005; 

Hoffman, Blumenschein, & Sykes, 2006; Jemth & Gianni, 2007; Landfried, Vuletich, Pond, & 

Lecomte, 2007; Lengyel et al., 2007; Muralidhara, Rathinakumar, & Wittung-Stafshede, 2006; 

Narayanan, Ganesh, Edison, & Hagen, 2008; Onitsuka, Kamikubo, Yamazaki, & Kataoka, 2008; 

Perham, Chen, Ma, & Wittung-Stafshede, 2005; Sugase, Dyson, & Wright, 2007; Sugase, 
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Lansing, Dyson, & Wright, 2007; Vamvaca, Jelesarov, & Hilvert, 2008). However, none have 

addressed the direct question of whether a disordered protein binds its partner faster than its 

exact, folded analogue. Examining structural details of protein conformational changes during 

binding is challenging in experiments due to the transient nature of intermediate states. In 

addition, it is impossible, experimentally, to preorganize an intrinsically disordered protein 

without altering its chemical structure. 

Alternatively, molecular dynamics simulations can, in principle, offer atomistic detail in 

probing specific protein conformational changes upon binding while providing a means to 

comparing the kinetics of binding of the flexible vs. exact preorganized versions of the protein. 

However, it is computationally prohibitive to generate an ensemble of protein-protein binding 

events using such simulations. Instead, coarse-grained simulations with residue-level detail 

coupled with Gō-type potentials can be employed (Go, 1983; Takada, 1999). Many have 

attempted to study coupled folding and binding in intrinsically disordered proteins as predicted 

by the fly-casting mechanism (Huang & Liu, 2009; Levy, Onuchic, & Wolynes, 2007; Turjanski, 

Gutkind, Best, & Hummer, 2008). In addition, these types of molecular simulations have been 

successful at generating large ensembles of unfolding/refolding events, demonstrating 

thermodynamic tug-of-war between two-domain protein switches (Mills & Chong, 2011), and 

illustrating cotranslational folding (Elcock, 2006). 

Here, we directly test whether a flexible peptide binds its target faster than does its 

preorganized analogue. Binding simulations were conducted between an N-terminal peptide 

fragment of the transactivational domain of tumor suppressor p53 and its partner protein, 

MDM2. In addition to being of great biomedical interest, this system is a classic peptide complex 

in which the intrinsically disordered p53 peptide adopts a helical conformation upon binding 
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MDM2 in a well-defined pocket. In addition to directly comparing the kinetics of fully flexible 

p53 peptide and its preorganized counterpart, we also test the effect of hydrodynamic 

interactions, often omitted in implicit solvent simulations, on the binding kinetics. Furthermore, a 

path sampling algorithm, the weighted ensemble approach, was implemented to efficiently 

generate an ensemble of binding pathways. This method also allows for rigorous calculation of 

association rates. To our knowledge, the resulting simulations are the most comprehensive to 

date, initiated from 3000 selected conformations and random orientations, yielding an ensemble 

of over 50,000 binding events. Finally, in contrast to a previous study which used a coarse-

grained Cα model (Huang & Liu, 2009), we implemented a coarse-grained side-chain model that 

was necessary to reproduce the p53 α-helix structure in its MDM2-bound state otherwise absent 

in a simple Cα model. 
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2.0  METHODS 

2.1 PROTEIN MODEL 

All proteins were modeled with a coarse-grained side chain model (Frembgen-Kesner & 

Elcock, 2009). Each amino acid is represented by up to four pseudo-atoms: one for the Cα atom 

and up to three for the side chain atoms. The heavy-atom model contained 820 atoms whereas 

the side chain model comprised 262 atoms (see Figure 1). Coordinates for the bound state of p53 

and MDM2 were taken from the X-ray crystal structure (PDB code: 1YCR) (Kussie et al., 1996). 

Cartoon Diagram 

 

Heavy Atom Model 

 

Coarse-Grained Side-Chain 

Model 

 
Figure 1. Protein Model 

The coarse-grained side-side chain model (right) is shown in comparison to the heavy atom model (middle) for the 
p53-MDM2 complex. A cartoon of the complex is displayed on the left to show secondary structure. MDM2 is 
colored yellow, and p53 is colored red. 
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A Gō-type potential energy function governs the conformational dynamics of the protein 

model. Bonded interactions between atoms are modeled by standard molecular mechanics terms: 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = � 𝑘𝑏𝑜𝑛𝑑�𝑟 − 𝑟𝑒𝑞�
2

 

𝑏𝑜𝑛𝑑𝑠

+ � 𝑘𝑎𝑛𝑔𝑙𝑒�𝜃 − 𝜃𝑒𝑞�
2

 

𝑎𝑛𝑔𝑙𝑒𝑠

+ � 𝑉1[1 + cos(φ − φ1)] + 𝑉3[1 + cos(3𝜑 − 𝜑3)]
 

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

 

in which 𝑟, 𝜃, 𝜑 are pseudo-bond lengths, pseudo-angles, and pseudo-dihedrals, respectively; 𝑉1 

and 𝑉3 are potential barriers for the dihedral terms. Equilibrium bond lengths (𝑟𝑒𝑞), angles (𝜃𝑒𝑞), 

and dihedral phase angles (𝜑1 and 𝜑3) were taken from the crystal structure. The force constants, 

𝑘𝑏𝑜𝑛𝑑 and 𝑘𝑎𝑛𝑔𝑙𝑒, were set to 100 kcal/mol/Å and 20 kcal/mol/rad, respectively. 

Nonbonded interactions between residues separated by four or more pseudo-bonds were 

modeled in one of two ways, depending on whether or not the residues form (native) contacts in 

the native, bound state. A native contact is formed by two heavy atoms located within 5.5 Å of 

each other in the crystal structure of the protein complex. Native contact interactions were 

modeled using a Lennard-Jones-like potential: 

𝐸𝑖𝑗𝑛𝑎𝑡𝑖𝑣𝑒 = 𝜀𝑛𝑎𝑡𝑖𝑣𝑒 �5�
𝜎𝑖𝑗𝑛𝑎𝑡𝑖𝑣𝑒

𝑟𝑖𝑗
�
12

− 6�
𝜎𝑖𝑗𝑛𝑎𝑡𝑖𝑣𝑒

𝑟𝑖𝑗
�
10

� 

in which 𝜀𝑛𝑎𝑡𝑖𝑣𝑒 is the energy well depth for the native interaction, 𝑟 represents interatomic 

distance during simulation, and 𝜎𝑛𝑎𝑡𝑖𝑣𝑒 represents the corresponding distance in the crystal 

structure. Non-native interactions were modeled using a purely repulsive potential: 

𝐸𝑖𝑗𝑛𝑜𝑛−𝑛𝑎𝑡𝑖𝑣𝑒 = 𝜀𝑛𝑜𝑛−𝑛𝑎𝑡𝑖𝑣𝑒 �
𝜎𝑖𝑗𝑛𝑜𝑛−𝑛𝑎𝑡𝑖𝑣𝑒

𝑟𝑖𝑗
�
12
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in which 𝜎𝑖𝑗𝑛𝑜𝑛−𝑛𝑎𝑡𝑖𝑣𝑒 and 𝜀𝑛𝑜𝑛−𝑛𝑎𝑡𝑖𝑣𝑒 are set to 4.0 Å and 0.60 kcal/mol, respectively. The 

number of intramolecular native contacts for p53 and MDM2 are 63 and 884, respectively. In 

addition, there are 174 intermolecular native contacts between p53 and MDM2.  

Brute force simulations were carried out as controls to determine correct 

parameterizations for p53 peptide flexibility (preorganized vs. flexible) in isolation of MDM2, 

MDM2 stability in isolation of p53, and stability of flexible p53 when bound to MDM2. Stability 

and flexibility were measured by the fraction of native contacts, 𝑄, a standard metric for 

quantitatively assessing how folded a protein is relative to the reference crystal structure or the 

native state. The crystal structure has some total number, 𝑁, of native contacts, and any altered 

conformation of the protein may contain 0 to 𝑁 native contacts. The number of native contacts 

present within a conformation divided by 𝑁 yields 𝑄. Therefore, 𝑄 = 1 represents complete 

folding, and 𝑄 = 0 implies complete unfolding. By tracking the values and fluctuations of 𝑄 of a 

protein over time, information could be gathered about the stability of p53. 

The definitions of flexible and preorganized p53 were as follows. If 𝑄 > 0.8 throughout 

the duration of a simulation, the p53 peptide was considered preorganized. In contrast, p53 was 

deemed flexible if 𝑄 < 0.5 for all time. In this model, flexibility was tuned by adjusting 𝜀𝑛𝑎𝑡𝑖𝑣𝑒, 

the potential well depths of the native contacts, where a high 𝜀𝑛𝑎𝑡𝑖𝑣𝑒 favors preorganization and 

vice versa. Two different values of 𝜀𝑛𝑎𝑡𝑖𝑣𝑒 were attained to satisfy the criteria for flexible and 

preorganized p53: 0.05 for flexible and 1.70 for preorganized. In addition to parameterizing p53, 

we needed to ensure MDM2 remained folding at all times during simulation. An 𝜀𝑛𝑎𝑡𝑖𝑣𝑒 value of 

0.6 was sufficient in accomplishing this goal. 

A final criterion for these simulations was that flexible p53 peptide must assume an α-

helical conformation when bound to MDM2. Because the native contacts were so weak within 
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the flexible p53 peptide, only the intermolecular native contacts between MDM2 and p53 could 

force p53 into its bound conformation. Therefore, intermolecular native contacts’ potential well-

depths, 𝜀𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒, had to be tuned. The exact criterion to satisfy was that the fraction of 

intramolecular p53 native contacts must be greater than 0.5 throughout the simulation. Such 

condition for the flexible p53 peptide was met with 𝜀𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 = 6.0, which was then used for all 

binding simulations involving both flexible and preorganized p53. 

2.2 SIMULATIONS USING THE WEIGHTED ENSEMBLE APPROACH 

Because brute force sampling of binding events is very challenging, an enhanced path sampling 

algorithm, weighted ensemble, was employed to compute the rates of association. The weighted 

ensemble path sampling algorithm is an iterative procedure that uses “statistical ratcheting” to 

efficiently sample rare events (binding events in this case) using stochastic simulations (Huber & 

Kim, 1996). A progress coordinate is set up between initial (𝐴) and destination (𝐵) states. The 

progress coordinate is then arbitrarily divided into bins. An “ideal” number, 𝑛, is chosen as the 

number of simulations that should populate each bin. 

In the first iteration, 𝑛 simulations—of equal statistical weights that sum to one—start in 

the initial state 𝐴 and are propagated for a short but fixed time, 𝜏. After this time, the simulations 

may have populated different bins. The simulations in all bins are then copied into replicas until 

𝑛 simulations populate each occupied bin. Whenever a simulation is replicated, its statistical 

weight is split evenly between the newly copied simulations to maintain correct statistics. The 

next iteration is then prepared, and all simulations are again propagated for time 𝜏.  
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If, at the end of any iteration, there exists more than 𝑛 simulations in a given bin, the 

simulations are “merged” until 𝑛 simulations remain. The merging procedure goes as follows. 

The simulations in the bin are ordered by their statistical weights. The two simulations with the 

lowest statistical weights are paired. One simulation will be terminated while the other will 

remain. The choice of which simulation remains is based on the statistical weight of the 

simulations; thus, the simulation with the higher statistical weight will have a greater chance of 

continuing. The simulation that continues will be assigned a new statistical weight equivalent to 

the sum of the weights of the paired simulations. If there still are more than 𝑛 simulations in the 

bin, all the simulations are ordered again by statistical weights, and the same procedure occurs, 

terminating simulations one at a time. 

When a trajectory reaches a destination state 𝐵 at the end of an iteration, the trajectory is 

“recycled” as a new segment starting from the initial state 𝐴. The number of iterations run is 

dependent upon how long it takes to observe a desired number of rare events. In this work, 

simulations are run until steady state is achieved. The progress coordinate is a one-dimensional 

coordinate representing the root-mean-square deviation (RMSD) of p53 after the system is 

aligned to MDM2, and the bin boundaries are generally separated by 4 Å. 

In order to calculate rates of association, the Northrup-Allison-McCammon (NAM) 

method (Northrup, Allison, & McCammon, 1984) was applied in conjunction with the weighted 

ensemble approach. The NAM method involves the creation of two concentric spheres in which 

MDM2 is initially positioned in the center (see Figure 2). The inner sphere of radius 𝑏, on which 

p53 is initially positioned, is constructed sufficiently large such that distance is the only factor in 

the interaction between binding partners. The outer sphere of radius 𝑞, termed the truncation 

sphere, is the diffusion boundary. For this study, the inner sphere radius was set to 35 Å, and the 
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outer sphere radius was set to 50 Å. Trajectories are terminated either when p53 binds MDM2 or 

if p53 diffuses across the truncation sphere, two natural target states within weighted ensemble. 

The bound state was defined by an RMSD of p53 less than 1.159 Å, one standard deviation 

above the average RMSD of p53 obtained from brute force simulations of the bound state. By 

monitoring the minimum distance between p53 and MDM2, any trajectory reaching a minimum 

distance greater than 50 Å was terminated, and its probability was recycled back to the initial 

state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rate constant of association, 𝑘, can then be calculated with the following relation: 

𝑘 =
𝑘𝐷(𝑏)𝛽

1 − (1 − 𝛽)𝑘𝐷(𝑏) 𝑘𝐷(𝑞)⁄  

 

Figure 2. NAM Approach 

MDM2 is placed in the middle of two spheres: inner sphere (b) and 
outer sphere (q). The inner sphere is where all initial states of p53 lie. A 
simulation can be terminated either when p53 binds MDM2 or p53 
diffuses away from the outer sphere. 

b 

q 

35 Å 

50 Å 
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in which 𝑘𝐷(𝑥) is the diffusion rate constant for the two partners achieving a separation distance 

𝑥, and 𝛽 is the fraction of total simulations that satisfy the criteria for binding. Assuming that the 

motions of the two partners are isotropic leads to the Smoluchowski result: 𝑘𝐷 = 4𝜋𝐷𝑥, in 

which 𝐷 represents the relative translational diffusion coefficients of the two partners. 

Use of the weighted ensemble algorithm changes the standard brute force computation of 

𝛽 in the NAM approach. Instead, 𝛽 can be estimated by the following equation (Rojnuckarin, 

Livesay, & Subramaniam, 2000): 

𝛽 =
𝑓𝑆𝑆𝐵𝑖𝑛𝑑

𝑓𝑆𝑆𝐵𝑖𝑛𝑑 + 𝑓𝑆𝑆
𝑄𝑆𝑢𝑟𝑓 

in which 𝑓𝑆𝑆𝐵𝑖𝑛𝑑 is the steady-state binding flux and 𝑓𝑆𝑆
𝑄𝑆𝑢𝑟𝑓 is the steady-state flux across the 𝑞 

surface. In addition, the progress coordinate must define a target state for the truncation sphere. 

Therefore, by monitoring the minimum distance between p53 and MDM2, any trajectory 

reaching a minimum distance greater than 50 Å, and its probability was recycled to the initial 

state. 

2.3 SIMULATIONS DETAILS 

A standard Brownian Dynamics algorithm was employed using the Ermak-McCammon (Ermak 

& McCammon, 1978) equation: 

𝒓𝑖(𝑡 + Δ𝑡) = 𝒓𝑖(𝑡) + �
𝑫𝑖𝑗𝑭𝑗Δ𝑡
𝑘𝑏𝑇𝑗

+ 𝑹𝑖 

in which 𝒓𝑖(𝑡) is the position vector of the 𝑖th pseudoatom at time 𝑡, Δ𝑡 is the simulation time 

step, 𝑫𝑖𝑗 is the 𝑖, 𝑗th 3 × 3 submatrix of the diffusion tensor 𝑫 (a 3N × 3N matrix where N is the 
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number of pseudoatoms in the system), 𝑭𝑗 is the force acting on the 𝑗th pseudoatom, and 𝑹𝑖 is a 

stochastic term that creates a random displacement of the 𝑖th pseudoatom. 

In addition, hydrodynamic interactions that model the correlated motions of water are 

incorporated into the simulation algorithm. Thus, each 𝑖, 𝑗th submatrix where off-diagonal terms 

may contain non-zero elements depending on the whether pseudoatoms 𝑖 and 𝑗 are 

hydrodynamically coupled. In addition, each submatrix is calculated using the complete set of 

equations of Rotne and Prager (Rotne & Prager, 1969) and Yamakawa (Yamakawa, 1970): 

𝑫𝑖𝑖 = (𝑘𝐵𝑇 6𝜋𝜂𝑠𝑎⁄ )𝑰 

𝑫𝑖𝑗 = (𝑘𝐵𝑇 6𝜋𝜂𝑠⁄ )��1 𝑟𝑖𝑗⁄ ���1 + 2𝑎2 3𝑟𝑖𝑗2� �𝑰 + �1 − 2𝑎2 𝑟𝑖𝑗2� ��𝒓𝑖𝑗𝒓𝑖𝑗 𝑟𝑖𝑗2⁄ ��� for 𝑟𝑖𝑗 ≥ 2𝑎 

𝑫𝑖𝑗 = (𝑘𝐵𝑇 6𝜋𝜂𝑠⁄ )��1 𝑟𝑖𝑗⁄ ���𝑟𝑖𝑗 2𝑎⁄ ��8 3⁄ − 3𝑟𝑖𝑗 4𝑎⁄ �𝑰 + �𝑟𝑖𝑗 4𝑎⁄ ��𝒓𝑖𝑗𝒓𝑖𝑗 𝑟𝑖𝑗2⁄ ��� for 𝑟𝑖𝑗 < 2𝑎 

where 𝑰 is the 3 × 3 identity matrix, 𝑎 is pseudoatom sphere radius, 𝑟𝑖𝑗 is the distance between 

pseudoatoms 𝑖 and 𝑗, and 𝒓𝑖𝑗 is the vector connecting them. 

 There is evidence that the use of hydrodynamic interactions better models translational 

diffusion (Frembgen-Kesner & Elcock, 2009). The diffusion coefficients of p53 and MDM2 

were calculated using the following equation: 

𝐷 =
〈𝑥〉2

6𝛿𝑡
 

where 𝐷 is the diffusion coefficient, 〈𝑥〉 is the mean displacement, and 𝛿𝑡 is the time between 

sampled displacements. 

Within the Brownian Dynamics framework, a 3.5 Å hydrodynamic radius value was 

utilized (Frembgen-Kesner & Elcock, 2009). This radius for the side-chain model best 

reproduced the translational diffusion coefficient of the all-atom model estimated by 

HYDROPRO (Garcia de la Torre, 2001; Garcia De La Torre, Huertas, & Carrasco, 2000). A 
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time step of 50 fs was used, constraining pseudo bonds between residues to their native bond 

lengths using the LINCS algorithm (Hess, Bekker, Berendsen, & Fraaije, 1997). Protein 

conformations were sampled every 100 ps for brute force control simulations and every 1 ps for 

weighted ensemble binding simulations. 

Weighted ensemble binding simulations were performed between preorganized p53 with 

MDM2 and flexible p53 with MDM2. In all binding simulations, initial p53 conformations were 

selected from a list of 3000 randomly generated conformations taken from brute force 

simulations of the unbound p53 peptide. The initial state of the system was obtained by randomly 

reorienting both p53 and MDM2 and separating the two proteins by a minimum distance of 35 Å 

(𝑏). Trajectories ending in the target state are recycled to the initial state with a randomly chosen 

conformation and calculated orientation. The chosen 𝜏 used in the weighted ensemble algorithm 

for these simulations was 100 ps. This value was selected to be short enough to maximize the use 

of statistics but not too short due to the overhead cost of implementing the weighted ensemble 

code. The bin spacing along the RMSD coordinate (discussed above) was determined such that, 

ideally, one segment would traverse a bin in one iteration of time 𝜏. 
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3.0  RESULTS AND DISCUSSION 

3.1 SUCCESSFUL TUNING OF PEPTIDE FLEXIBILITY 

Flexibility was tuned by adjusting 𝜀𝑛𝑎𝑡𝑖𝑣𝑒, the potential well depths of the native contacts. Two 

different values of 𝜀𝑛𝑎𝑡𝑖𝑣𝑒 were attained to satisfy the criteria (see Methods) for flexible and 

preorganized p53: 0.05 for flexible and 1.70 for preorganized. Histograms compiling data for 

each individual set of simulations are shown in Figure 3.  

Flexible p53 

 

Preorganized p53 

 

MDM2 

 

Figure 3. Stability of Flexible/Preorganized p53 and MDM2 

Histograms, attained from brute force simulations, of relative probability against intramolecular fraction of native 
contacts helps determine stability of a protein. “Bound” indicates simulations of the p53-MDM2 complex and 
“Unbound” denotes simulations of each peptide alone. 
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Each histogram illustrates the probability of conformations with a certain fraction of native 

contacts, 𝑄. Preorganized p53 peptide remained folded with probability only for 𝑄 > 0.8 in p53-

only simulations; flexible p53 only assumed conformations for which 𝑄 < 0.5. Depictions 

comparing the different conformations attained by flexible and preorganized p53 are shown in 

Figure 4.  

Flexible p53 Preorganized p53 

  

  

Figure 4. Comparison of Flexible and Preorganized p53 

Ribbon diagrams of p53 are randomly selected snapshots taken from their respective brute force 
simulations. The red ribbon is representative of the crystal structure. This juxtaposition of conformations 
provides a perspective on what it means for p53 peptide to be flexible or preorganized. 

 

In addition, simulations beginning from the bound complex yielded results consistent 

with the criterion, 𝑄 > 0.5, for flexible p53 when bound to MDM2. Finally, overall MDM2 

stability was assessed. Not only was the total fraction of native contacts examined, but the 

fraction of native contacts per residue was also investigated. The per-residue fraction of native 

contacts gives more detailed insight into whether local regions of the protein are changing in 

stability that may not have been observed in the total fraction of native contacts analysis. The 
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results of this analysis are displayed in Figure 5, where fraction of native contacts by residue is 

color coded. This little, if any, change in coloration of MDM2 gives confidence that binding p53 

does not affect the stability of MDM2. 

These findings confirm that tuning the native contact potentials is effective in altering the 

flexibility of p53. In addition, the use of strong intermolecular MDM2-p53 native contacts could 

stabilize the fully flexible p53 peptide. Furthermore, MDM2 stability is unaffected by binding to 

p53, relieving the possibility of errors associated with such effects. 

 

Isolated MDM2 

 

Bound MDM2 

 

                      Minimum                                                                   Maximum 

 

Figure 5. MDM2 Fraction of Native Contacts by Residue 

Per-residue fraction of native contacts provides a more detailed description of which residues tend to form more 
contacts. “Maximum” is defined as the highest per-residue fraction of native contacts observed, and vice versa for 
“Minimum.” This comparison shows that there is little difference between isolated MDM2 and bound MDM2 in 
terms of stability. 
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3.2 DIFFUSION AND ASSOCIATION OF FLEXIBLE VS. PREORGANIZED P53 

Calculation of binding rates was achieved by implementing the NAM method in conjunction 

with the weighted ensemble approach (see Methods). This approach requires simulations to 

reach steady state because the steady state fluxes into target states are necessary in the 

computation. Recall that the two target states were the bound state and all regions outside of the 

outer sphere. Therefore, weighted ensemble simulations were carried out until fluxes into those 

states remained constant over time. Plots of flux over the iterations of weighted ensemble are 

displayed in Figure 6 for binding simulations with hydrodynamics. Figure 7 displays the fluxes 

into the target states of simulations without hydrodynamics. 
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Figure 6. Flexible/Preorganized p53 Target State Fluxes With Hydrodynamics 

Target state fluxes are used to gage convergence of simulations. 95% confidence intervals are displayed every 50 
iterations. 
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Table 1 contains information for diffusion coefficients, rates of association, and number 

of binding events. The translational diffusion coefficients were very similar between flexible and 

preorganized p53 with hydrodynamics. It is noteworthy, though, that flexible p53 had a slightly 

smaller diffusion coefficient, which is expected because flexible p53 has a larger radius of 

gyration (Figure 8), which effectively increase its surface area and lowering its diffusion rate. 

Also, the diffusion coefficients for both flexible and preorganized p53 are comparable to the 

ones produced by HYDROPRO. In addition, simulations without hydrodynamics exhibited 

diffusion coefficients of an order of magnitude smaller than those with hydrodynamics, 

indicating that hydrodynamics are key to reproducing diffusion. 
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Figure 7. Flexible/Preorganized p53 Target State Fluxes Without Hydrodynamics 

Fluxes into the bound state and out of the outer sphere are plotted over time. While the outer sphere fluxes 
appear to have leveled off, the bound state fluxes are still on the rise. Therefore, these simulations have yet to 
converge. 
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Computed rate constants for the binding of p53 to MDM2 indicate that flexible p53 binds 

MDM2 faster than does preorganized p53 by a factor of 1.04. However, this ratio is not 

statistically significant as the 95% confidence intervals of the two rates overlap.  

Table 1: Relative Diffusion Coefficients and Rates of Association 

 With Hydrodynamics Without Hydrodynamics* 
 Flexible Preorganized Flexible Preorganized 

Relative Diffusion 
Coefficient (𝑐𝑚2 𝑠⁄ ) 3.91 ∙ 10−9 3.98 ∙ 10−9 4.95 ∙ 10−10 4.95 ∙ 10−10 

HYDROPRO 
Diffusion Coefficient 3.63 ∙ 10−9 NA 

Number of Successful 
Binding Events 16,488 41,461 24,107 53,338 

Binding Rate Constant 
(𝑀−1𝑠−1) 

2.51 ∙ 106  
±  0.14 ∙ 106 

2.41 ∙ 106  
±  0.12 ∙ 106 

3.38 ∙ 105 ±
0.33 ∙ 105  

3.23 ∙ 105 ±
0.26 ∙ 105  

* Because these particular simulations had not reached steady state, the binding rate constants are subject to change. 
 

 

 

 

 

 

 

 

 

The overall results do not support the predictions of the fly-casting hypothesis as they 

pertain to the kinetic advantages of intrinsic disorder. However, a point can be made for the 

small, counterbalancing effects of diffusion and radius of gyration. The association rate is 

directly proportional to the rate of diffusion, thereby creating a slight kinetic disadvantage for 

flexible p53. At the same time, the larger radius of gyration for flexible p53 increases its capture 

 
Figure 8. Radius of Gyration 

The mean radius of gyration was larger for flexible p53 than 
for preorganized p53 peptide. In addition, the fluctuations 
were larger for flexible p53, which is expected for a flexible 
peptide. 
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radius for MDM2, offering a slight kinetic advantage. These two opposing effects may cancel 

each other out, providing some explanation for the insignificant change in the binding rate 

constant. 

A future set of simulations will be conducted to compare binding affinities of flexible and 

preorganized p53 to MDM2. Although the same energies were used for the intermolecular native 

contacts for both cases, we cannot be certain that the binding affinities were equivalent. To 

control for equal binding affinities, the intermolecular native contact potentials can be altered. 

Because 𝜀𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 = 6.0 was chosen such that flexible p53 would have 𝑄 > 0.5 when bound to 

MDM2, only 𝜀𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 for preorganized p53 binding simulations will be changed to tune the 

binding affinity. 

3.3 MECHANISM OF BINDING 

Observing the mechanism of binding requires a large ensemble binding events, which was 

accomplished in this study. In simulations with hydrodynamics, flexible p53 peptide had 16,488 

successful binding events while preorganized p53 peptide had 41,461 binding events (see Table 

1). Interestingly, flexible p53 had far fewer successful binding events than did preorganized p53 

yet exhibited a similar association rate constant—a similar situation applies for simulations 

without hydrodynamics. This suggests, then, that the average successful binding event carried 

greater particle weight in the weighted ensemble framework for flexible p53 compared to 

preorganized p53. In other words, the percentage of collisions resulting in binding events is 

higher for the flexible p53 peptide. These observations are consistent with those reported in 

Huang and Liu (Huang & Liu, 2009) for the pKID-KIX system. 
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A possible reason for this finding is that there exists a coupling of folding and binding.   

Figure 9 plots the intramolecular p53 contacts, 𝑄𝑝53, against the intermolecular p53-MDM2 

contacts, 𝑄𝑝53−𝑀𝐷𝑀2, for distinct binding trajectories for flexible p53. If there were coupling of 

folding to binding, one would expect to see a correlated increase of both measures once p53 and 

MDM2 come into contact and initiate their eventual binding. Indeed, we observed that the 

number of intramolecular contacts in the p53 peptide increased with the number of 

intermolecular contacts, thus indicating a coupled folding-binding process.  

 

  
Figure 9. Coupling of Intermolecular and Intramolecular Contacts 

Intramolecular p53 fraction of native contacts is plotted against intermolecular fraction of native contacts between 
p53 and MDM2 for 5 distinct weighted ensemble trajectories. For the flexible case, there is good correlation 
between Qp53 and Qp53-MDM2. While the preorganized peptide generally remains very folded, there occurs a periods 
of instability during the binding process. 
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when examining the plot for preorganized p53 (Figure 9, bottom). The trajectories indicated 

destabilization of p53 during the binding process as evidenced by small decreases in 𝑄𝑝53. This 

suggests that in order to fully bind MDM2, some conformational rearrangement of p53 was 

necessary. Further inspection is necessary to determine what structural change is occurring 

during these moments of destabilization. 
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4.0  LIMITATIONS OF THE SIMULATION MODEL 

Our simulation model allows for direct comparison between flexible vs. preorganized cases of a 

peptide. Relevant in this study is the determination of their relative rates of association with their 

partner protein. The simplicity of these protein models enables a comprehensive account of 

binding kinetics within a reasonable amount of computer time. Nonetheless, there are certain 

properties that this model overlooks. The major approximations and limitations of these 

simulations are discussed below. 

One simplification is in the use of Gō-type potentials that considerably smooth the energy 

landscape. The lack of favorable non-native contacts may hinder our observation of some 

mechanisms of folding and binding. In addition, studies have shown that the simulated protein 

folding mechanisms, which lead to accelerated folding times, are not consistent with either 

experiment (Clementi, Nymeyer, & Onuchic, 2000; Koga & Takada, 2001) or all-atom 

molecular dynamics simulations (Daggett & Fersht, 2003). However, there is evidence that 

relative rates of folding can be in agreement with experiment (Chavez, Onuchic, & Clementi, 

2004). Also, our inclusion of hydrodynamics and the hydrodynamic radii of the pseudoatoms 

results in good approximations of translational diffusion coefficients. Hence, this study focuses 

on the ratio of calculated binding rates for flexible vs. preorganized and simulations with or 

without hydrodynamics. 
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Another limitation of these simulations is the attainable level of conformational detail. 

Unlike all-atom simulations, only residue-level detail can be acquired after coarse-graining. This 

was crucial, though, for generating thousands of binding events (in a reasonable amount of time) 

necessary to calculate converged rates of association. In addition, these coarse-grained side-chain 

models do offer more detail than commonly used Cα models in which each residue is modeled 

by one pseudoatom. Furthermore, side chain interactions were found to be essential for correct α-

helical formation in the flexible version of p53 upon binding MDM2, likely due to the introduced 

steric effects. These simulations also exclude electrostatics. Because both p53 and MDM2 have 

net charges— -2 for p53 and +5 for MDM2—one might suspect that electrostatics play an 

important role in the binding of p53 to MDM2. However, it has been shown these net charges do 

not play a major role in p53-MDM2 binding (Schon, Friedler, Bycroft, Freund, & Fersht, 2002). 

Therefore, our model minimizes the computational costs of protein binding while retaining a 

sufficient amount of detail for generating coupled folding and binding events. 
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5.0  CONCLUSION 

Protein binding involving intrinsically disordered proteins is of great interest. The proposal of a 

“fly-casting” mechanism emphasized the kinetic aspects of the association between an 

intrinsically disordered protein and its binding partner. We studied this hypothesis 

computationally with the p53-MDM2 complex using a protein model capable of producing 

flexible and preorganized versions of the p53 peptide. In addition, we investigated the effects of 

hydrodynamics on the kinetics of binding. 

Use of hydrodynamic interactions results in larger rates of association by an order of 

magnitude compared to corresponding simulations without hydrodynamics. This is due to the 

order of magnitude difference between the peptides’ translation diffusion coefficients. Many 

implicit solvent models do not include hydrodynamic interactions and hence do not simulate the 

effects of the correlated motions of water. However, these effects can prove to be important in 

calculating rates of certain processes such as protein binding. Therefore, inclusion of 

hydrodynamic interactions in implicit water simulations can be crucial. 

 In comparing the kinetics between flexible and preorganized p53 binding to MDM2, our 

results indicate no significant change in their rates of association. Despite this, there were 

significantly fewer binding events observed in the flexible p53 simulations, indicating that 

flexible p53 peptide was more efficient at binding upon encountering MDM2. We attribute this 

fact to the observed coupling of folding and binding. 
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Overall, this study does not support the predictions of the fly-casting mechanism. In 

addition, it should be noted that our protein model creates a significantly smoother energy 

landscape. Because of this, rates associated with all processes tend to be amplified, implying that 

the small—and statistically insignificant—changes observed here are negligible. It must be 

noted, though, that fly-casting is predicated upon the fact that flexible proteins have larger 

capture radii. Therefore, larger proteins would benefit more from fly-casting. This study 

investigates a 13-residue fragment of p53, which may be less effective from the fly-casting 

perspective. Nonetheless, we observe no change in the rates of association of flexible and 

preorganized p53 binding to MDM2. 
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