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Currently, there is no standard nomenclature and procedure to systematically identify the

scale and magnitude of bedforms such as bars, dunes and ripples that are commonly present

in many sedimentary environments. This thesis proposes a standardization of the nomen-

clature and symbolic representation of bedforms, and details the combined application of

robust spline filters and continuous wavelet transforms to discriminate these morphody-

namic features, namely bedform hierarchies (BHs). The proposed methodology for bedform

discrimination is applied to synthetic bedform signals, which are sampled at a Nyquist ratio

interval of 5 to 100 and a signal-to-noise ratio interval of 1 to 20, and to a detailed 3D bed

survey of the Rio Parana, Argentina, which exhibits large-scale dune bedforms with super-

imposed, smaller bedforms. After discriminating the synthetic bedform signals into 3 BHs

that represent bars, dunes and ripples, the accuracy of the methodology is quantified by

estimating the reproducibility, the cross correlation and the standard deviation ratio of the

actual and retrieved signals. For the case of the field measurements, the proposed method

is used to discriminate small and large dunes; and subsequently, obtain and statistically

analyze the common morphological descriptors such as wavelength, slope, and amplitude for

both stoss and lee sides of these different size bedforms. The analysis of the synthetic sig-

nals demonstrates that the Morlet wavelet function is the most efficient in retrieving smaller

periodicities such as ripples and that the proposed methodology effectively discriminate the
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waves of different periodicities scales for Nyquist ratios higher than 50 and signal-to-noise

ratios. The analysis of the bedforms of the Parana River reveals that in most cases, a

Gamma probability distribution (with a positive skewness) best describes the dimensionless

wavelength and amplitude for both the lee and stoss sides of large dunes. For the case of

the smaller superimposed dunes, the dimensionless wavelength shows a discrete behavior

governed by the sampling frequency of the data, and the dimensionless amplitude better fits

the Gamma probability distribution, again with a positive skewness.
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2.1.1 Paraná Study Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 THE HIERARCHICAL SCALE DISCRIMINATION OF BEDFORMS . . . 9

2.3 METHOD OF BEDFORM SCALE DISCRIMINATION . . . . . . . . . . . 11

2.3.1 The Robust Spline Filter . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 The Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.0 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 ACCURACY OF THE METHOD . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 DISCRIMINATION OF THE BEDFORM SCALES IN THE PARANA RIVER 27

3.3 THE STATISTICS OF BEDFORM FEATURES . . . . . . . . . . . . . . . 32

4.0 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 DISCRIMINATION METHOD . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 THE STATISTICS OF BEDFORMS . . . . . . . . . . . . . . . . . . . . . . 47

5.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



LIST OF TABLES

3.1 Anderson-Darling test results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi



LIST OF FIGURES
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1.0 INTRODUCTION

The morphology and dynamics of alluvial bedforms are strongly governed by the interrela-

tionship between sediment transport and the hydraulic conditions. The persistent variability

in the geometry and migration rates of bedforms in rivers is not an exception, but rather the

hallmark of natural bedforms developing under, and interacting with, unidirectional shear

flows [37]. However, at present we lack a consistent, non-arbitrary, quantitative description

of both the morphology and dynamics that is necessary to understand and establish the

effect bedform morphology has on bedform migration, sediment transport and the resultant

bed roughness.

For the case of erodible channels with beds composed of non-cohesive materials, the-

oretical research on the morphodynamics of bedforms has largely followed five distinctive

approaches: 1) where sediment continuity is incorporated into the hydraulic and sediment

transport equations; 2) where instability of a water-bed interface is regarded as a Kelvin-

Helmholtz type of instability between stratified layer of fluids; 3) where stability of a sinu-

soidal fluid-bed interface is investigated using linear stability theory; 4) where kinematically-

admissible bedform profiles, containing stationary eddies in their lee side, were obtained using

the Helmholtz-Kirchoff method of streamline prediction, and 5) where statistical correlations

between dimensionless parameters are obtained through regression analysis [29].

Statistical methods developed for the description of sand waves in alluvial rivers were

first proposed by Nordin and Algert [60] and Engelund and Fredsøe [21]. Research performed

following the fifth approach outline above have typically used morphometric parameters such

as bedform height (∆), wavelength (λ) and steepness (∆/λ) to describe and classify bedform

features such as ripples and dunes commonly found on continental shelves and within river

channels in various superimposed states [6, 17].
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Some early studies considered bedform profiles to be stochastic variables [61, 35, 54] that

were analyzed by using time series analysis techniques [51]. However, more recent studies

have used a spatial scaling techniques that treat bed elevations in a bedform profile as a

random function, rather than identifying individual bedforms in a profile [58, 37, 78]

It has been argued that ripples and dunes form two distinct populations and that distinct

boundary layer regions are present on the stoss side of large dunes that are responsible for

the ripple instability that generates superposed secondary forms [Jerolmack et al., 2006]. In

terms of the Shields parameter θ, dunes form at larger values of θ, whereas ripples form at

smaller values of θ. At intermediate values of θ, these two bedform features may coexist [28]

Field and laboratory research show that for both nonuniform and unsteady flows, bed-

forms have a minimum relaxation time in which they are able to equilibrate to a new hydraulic

condition [3, 38, 57, 41, 10, 32] . Generally, both bedform height and wavelength increase

with flow velocity, presenting both negative and positive hysteresis [27]. More recent work,

based on experimental studies under steady flow conditions [50], found that scour in the dune

trough is the main mechanism by which dunes increase in height, contrary to the common

assumption that dunes grow by accretion or amalgamation.

Ripples show two-dimensional (2D) and three-dimensional (3D) patterns depending on

their relative location on dunes and the hydraulic properties and patterns. Baas [7] demon-

strated that ripples evolve from incipient, through straight, sinuous and non equilibrium

linguoid, to equilibrium linguoid plan morphology. The transition time is related to an in-

verse power of the flow velocity, ranges from several minutes to several hours, and several

days in some cases [81]. Venditti and his collaborators also point out that the reason why 3D

bedforms are observed to exist in the upper part of the stability fields may simply be that

it takes less time for the higher flow rate to move the sediment required for the transition.

Usually, 3D ripple patterns are observed among dune troughs and crests although predom-

inantly near to the crests. Likewise, dunes show 3D patterns that are intimately linked to

the morphology of the upstream dune, with changes in crest line curvature and crest line

bifurcations-junctions significantly influencing the downstream dune form [65].

Dunes are related to depositional histories and, similarly to ripples, are controlled by local

hydraulic conditions such as changes in water depth, sediment flow rate and flow competence
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[6]. Bars constitute an obvious source of non-stationarity of bedform signals that threaten

to invalidate the spectral analysis of bedforms [5].

The variability of bedform is closely related to the total form roughness of a channel,

and there is theoretical, laboratory, and field evidence that the roughness of all wave lengths

exists up to the scales of the largest bedforms [36]. It has also been hypothesized that the

variability in geometric variables of individual bedforms within a reach affects the reach-

averaged form roughness [78].

Based on experimental measurements and field data, Yalin and Lai [85] proposed that

(with reference to Figure 2.4a) the form resistance, f”, when ripples are superimposed upon

dunes can be estimated as f” = 4Ξ if Ξ >' 10−2, and as f” = [3.3 log(Ξ− 1)− 2.3]−2 if

Ξ <' 10−2; where Ξ = ∆2

Λh
. These relationships suggest that drag resistance is dependent

just on the geometric characteristics of dunes. Moreover, van der Mark et al. [78] hypoth-

esize that the variability of individual bedforms within a reach affects the reach-averaged

form roughness, and base this hypothesis on the analogy between grain roughness and form

roughness. For example, the 65%, 84%, or 90% percentiles of the grain size distribution are

often used as a representative particle diameter in predicting the grain roughness. Similarly,

form roughness may also be determined from bedforms that are higher, longer or steeper than

the median or mean bedform height, bedform length, or bedform steepness, respectively.

The quantification of variability in bedform geometry is necessary for scientific and prac-

tical purposes. For the former purpose, it is necessary for modeling: 1) bed roughness [76, 1],

2) the formation of cross-strata [11], 3) the vertical sorting of sediments [12, 48], 4) sediment

transport rates [31, 71, 20, 47], 5) the transition between 2D and 3D dunes [81], and 6)

velocity pulsations within the flow [30, 32]. Such quantification is also required for numeri-

cal modeling of flow over bedforms (e.g. [43, 82, 72]), assessing the interaction between flow

over bedforms and ground-water [15, 14, 16], and evaluating contaminant transport [64]. For

practical purposes, the study of the variability of bedforms is important in the prediction

of floods and flow resistance [5, 39, 66, 44, 42, 26, 83], prediction of potential disturbance

to man-made structures such as river tunnels [4], to predict future changes in sediment

transport rates and biotic responses following dam removal [55], to estimate the relationship

between bedform characteristics and biota [84, 73], and in river restoration projects [34].
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Past approaches to the quantification of bedform variability have used and applied spec-

tral analysis [35, 5, 51, 44], smoothing techniques such as a moving-average [78], signal

roughness techniques [71], fractals [84], and logistic regression [40]. However, moving-average

techniques as well as Fourier series analysis have generally proved to be insufficient as a tool

to extract smooth curves from data [74]. This lack of success is primarily because in using

spectral analysis, the mayor assumption is that the bedform waves are two-dimensional and

not highly variable in the cross-stream direction [51]. Likewise, Fourier transform techniques,

which are used in spectral analysis, has severe limitations when analyzing signals that in-

clude significant departures from stationarity and consist of intermittent and/or aperiodic

processes. A high number of Fourier coefficients are then necessary to take these features

into account, and which may be visible on some intervals but not in others [49]. This re-

sults in a limited representation of the frequencies of nonlinear processes such as river bed

morphology.

Wavelet transforms (WT) were developed to overcome these limitations of the Fourier

transforms. WT have been applied to fluid mechanics in the isolation of coherent structures in

turbulent flows, in analyzing the temporal variability of coherent convective storm structures,

within investigation of long-term land temperature/climate series, and in analyzing oxygen

isotopic ratios from marine sediments [49].

Some recent applications of 1D-wavelets in sedimentology encompass temporal variations

within streamflow and sediment loads [69], characterization of bedform morphology [17],

sediment concentration distributions [22], the recognition of patterns in seabed morphology

[52], analysis of riverbed roughness [62], and investigation of flow structure over alluvial sand

dunes [70]. I demonstrate that this technique identifies the various scales of bedforms present

within a series and significantly improves the quantification of form roughness at different

bedform scales.
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2.0 BEDFORM DISCRIMINATION METHOD AND FIELD STUDY SITE

2.1 DATA

2.1.1 Paraná Study Reach

The Rio Paraná River ranks among the Worlds largest rivers and has the fifth largest drainage

area and seventh highest mean flow discharge of all rivers [27]. The study reach is located

at 16 km north of Corrientes, NE Argentina (see Figure 2.1), close to its confluence with

the Rio Paraguay. At the confluence, the annual discharge of the Rio Paraná increases from

11,983 to 16,941 m3s−1 and the suspended sediment discharge from 5.1x106 to 118.7x106

tons year−1. The climate at the study reach is subtropical with a mean annual temperature

of 21.3 ◦C and a mean annual rainfall of 1,290 mm.

The flow regime of the Rio Paraná is characterized by summer floods (between February

and March) and spring low water levels [63]. At the study reach, the channel pattern can

be classified as multi thread/braided [63] and is approximately 2.5 km wide and 5-12 meters

deep [65]. Parsons et al. [65], surveyed the river bed at the study reach using a RESON

8125 multibeam echo sounder, and simultaneously obtained 3D flow information with an

acoustic Doppler current profiler. Therefore, a bed area of continuous morphological data

with a 370-m width and 1.028-km length area was obtained. In order to prepare the data

for the present analysis, a structured 1-m grid was obtained from this survey. Thus, 370

longitudinal transects of 1028 points (1-m sampling frequency and NR=100) were obtained.

The first transect (j=1) was located at the northing 6977640 and the last (j=370) at the

northing 6978010 (Figure 2.2). Figure 2.2 also shows that the bed morphology of the Paraná

River is characterized by 3D dunes with few straight crests that are subparallel, but with
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Figure 2.1: Study reach location of Paraná River
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numerous undulating crests with saddles and lobes which occasionally bifurcate, especially

in regions of deeper flow [65]. Inspection of the transects at the center and boundaries of the

survey area (see Figure 2.3) shows that most of the dunes are highly asymmetric, with crestal

platforms followed by marked changes of slope on the lee side (see [65] for more details).

2.1.2 Synthetic Data

In order to assess the accuracy of the proposed discrimination methodology, a set of synthetic

signals are produced. These signals are comprised by three layers of waves of different

periodicity scales intended to replicate ripples, dunes and bars. Bars are represented by the

sinusoidal function η3(x) = a ∗ Sin(2x/T − c) + d; where x is the relative distance in meters,

a = 0.05 m, T (the period) is equal to 200, c = 100 and d = 0.05x. The term d provides for

a slope in the bar synthetic signal. The stoss side of the dunes are represented by the

lower-regime dunes equation η2,s(x) defined by Equation 2.1 and proposed by Haque and

Mahmood [29]. The lee face is represented by a straight line, and defined by Equation 2.2.

η2,s = SL

{
1

2π sin kπ
2

(
ln sin

π

L

(
x+

L

2
[1− k]

)
− ln sin

π

2
[1− k]

)
+
x

L

}
; for 0 ≤ x ≤ kL

(2.1)

η2,l = −a(L− x)

(k − 1)L
; for kL < x ≤ L (2.2)

Where S is the wedge slope a/b, S = tan(θ), for θ =10 ◦ (see [29] for geometric details).

L is the dune wavelength assumed to be equal to 10 m. k is the normalized length of the

stoss face, which was assumed to be equal to 0.7. This value is close to k = 0.667 predicted

by the theory for mature ripples and dunes [29]. Centered versions of these dunes are used

in the present application. Ripples are represented by a random signal generated by using

the Wichman-Hill algorithm. The mean of these signals is equal to zero; their variances were

varied in order to obtain an interval of signal-to-noise ratios from 1 to 20, approximately.

The signal-to-noise ratio (SNR) is defined as the ratio between the variance of the random

signal and the variance of the signal comprised by the summation of the bar and dunes

signals.

7



Ea
sti
ng
[m
]

343800

344000

344200

344400

344600

Northing
[m
]
6977700

6977800

6977900

6978000

-10

-5

-12.0 -11.2 -10.4 -9.6 -8.8 -8.0 -7.2 -6.4 -5.6 -4.8 -4.0

Depth [m]

Figure 2.2: Bed morphology of the Paraná River after Parson et. al., 2005 [65]
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The signals are sampled at sample frequencies of 2m, 1m, 0.5m, 0.167m, 0.125m and

0.1m. Thus, an interval of Nyquist ratios (NRs) of 5, 10, 20, 60, 80 and 100 is obtained.

2.2 THE HIERARCHICAL SCALE DISCRIMINATION OF BEDFORMS

There is currently no standard definition nor methodology for the identification and dis-

crimination of the different scales of bedforms (e.g. ripples, dunes, bars) generated on a

natural mobile bed. As illustrated in Figure 2.4, various researchers have followed different

approaches to quantify and name the geometric characteristics of bedforms. For example,

bedform length has variously been defined as: 1) the length of a line connecting two subse-

quent troughs, 2) the distance between two successive mean bed level up-crossings, 3) the

distance between two successive mean down-crossings, and 4) the distance of two successive

crests or two successive troughs (see Figures 2.4c, 2.4f and 2.4h. Similarly, bedform height

has been defined as either the distance between a crest and its downstream trough, or as

the shortest distance between a crest and the line between two troughs [77]. Likewise, some

researchers (Figures 2.4d and 2.4f) have discriminated the length and amplitude of both the

lee and stoss sides of dunes, which is necessary because they represent markedly different

regions of flow over asymmetrical dunes. In the lee side, a region of flow separation, with

reattachment occurring approximately 4-8 dune heights downstream of the crest, and an

expanding flow region are formed [70]. On the other hand, on the stoss side, a new internal

boundary layer grows as flow re-establishes itself and develops a more logarithmic velocity

profile [10].These same gross patterns of flow also exist over the stoss and lee sides of the

ripples, although dunes both influence the water surface elevation and generate large-scale

macroturbuelnce that may reach the water surface [8, 9, 68].

Scaling remains a characteristic signature of bedforms [1],and both field and laboratory

data often show multiple superimposed scales of bedforms. It is therefore often necessary

to effectively subdivide these differing bedform scales into useful, quantified waveforms with

different periodicities. Ashley [6] proposed arbitrary thresholds of 5, 10, 100 m for bedform

length to differentiate ”small”, ”medium” and ”large” dunes, and proposed a classification
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Figure 2.4: Bedform parameters
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scheme to distinguish ripples from dunes by defining ripples as entities that have lengths

generally less than 0.6 m. Although this criterion is based on an observational gap (which

is currently being filled), it often used as an accepted criterion for distinguishing between

ripples and dunes, but without any theoretical, or causative process explanation. In practice,

the discrimination between ripples and dunes is often taken as obvious, so that many authors

fail to explain the criteria used for their discrimination in field and laboratory studies [36].

It is clear that the study of differing scales of bedforms requires both a uniform method for

their quantification and description of their geometric descriptors.

The most widely-used definitions of various bedform geometric descriptors are given in

Figures 2.4a, 2.4b, 2.4d, 2.4e and 2.4f, with the definitions in Figures 2.4c and 2.4h often

not being used [79]. It is important to note that the difference in the values of wavelength

obtained between these different methods is minimal and can be neglected. In order to

standardize the symbolic representation of bedform geometric descriptors, the symbols pre-

sented in Figure 2.5 are adopted herein. Many of these symbols have been widely used in

past research, although they have not been used on a standardized basis (see Figure 2.4).

Each descriptor is represented by a letter e.g. η (for bedform elevation), λ (for bedform

length), ∆ (for bedform height), and h (for water depth) followed by three indicators that

represent [1] its position (as superscript, but avoiding this descriptor if the bedform elevation

is represented) e.g. crest (c), trough (b), stoss (s), and lee (l); [2] its ordinal respect to all the

hierarchies (as sub-script and giving the first ordinal to ripples); and [3] the total number

of hierarchies (as a subscript). Therefore, the first hierarchy corresponds to the ripples, the

second to the dunes, and the third to bars. Thus, for h (or η) the following relationship is

always verified: h = h1,3 + h2,3 + h3,3.

2.3 METHOD OF BEDFORM SCALE DISCRIMINATION

Investigations into bedform dynamics face the difficulty of defining an objective method-

ology to adequately quantify bedforms of different scale. This difficulty is principally due

to the deterministic and stochastic nature of bedforms, where bedform profiles (BFPs) can

11



Figure 2.5: Symbolic representation of bedform descriptors for a given hierarchy adopted in

the present contribution.

further be viewed as series of discrete bedform elements, continuous bed-elevation fields or

some combination of these perspectives [18]. One of the latest studies of bedform discrimi-

nation was conducted by van der Mark et al. [79], who proposed a methodology named the

bedform tracking tool (BTT) which uses spectral analysis and a weighted moving-average

as a smoothing technique over BFPs that were previously verified to be statistically ho-

mogeneous. Generally speaking, the BTT works according to the following procedure over

individual BFPs: [1] it finds and replaces outliers, [2] a trend line is estimated based on

the nature of the BFP (e.g. flume experiments or field measurements), [3] the BFP is de-

trended, [4] the BFP is filtered by applying a weighted moving-average filter, [5] the zero

upcrossings (points where the filtered BFP crosses the zero line) and downcrossings (point

where the filtered BFP crosses the zero line in downward direction) shown in Figure 2.4g are

obtained, and finally [6] the geometric characteristics of individual bedforms are estimated.

This methodology performs reasonably well in minimizing any subjectivity in the estimation

of the variability of bedforms, although it uses a filter that may not be completely suitable

to detrend a BFP. A weighted-average is any average that has multiplying factors to give
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different weights to data at different positions in the sample window. Mathematically, the

moving-average is a convolution of the data points with a fixed weighting function, and can

therefore be considered as a rigid convolution function. The present work proposes the use of

robust spline filters and the application of continuous wavelet transforms to perform a hierar-

chical discrimination and separation of different bedform scales. Discrete wavelet transforms

and robust spline filters have been successfully used in the discrimination of engineering

surfaces [67], which similar to bedforms are comprised of a range of spatial wavelengths.

Engineering surfaces are split into form profiles that are similar to bars, waviness profiles

that are similar to dunes and roughness profiles that are similar to ripples.

2.3.1 The Robust Spline Filter

A fully automated robust spline procedure for uniformly-sampled datasets is used herein.

The algorithm, based on a penalized least squares method, allows fast smoothing of uniformly

sampled data yi of n elements, by means of the discrete cosine transform. To minimize or

cancel the side effects of high leverage (a measure of the influence, between 0 and 1, of a

given point on a fitting model due to its location in the space of the inputs), the algorithm

constructs weights with a specified weighting function by using the current residuals and

updating them, from iteration to iteration, until the residuals remain unchanged. In practice,

five iterative steps are sufficient [25]. The algorithm uses the bisquare weighting function

that is mathematically defined by Equation (2.3). The smoothed data ŷi is estimated by

the parameter s which is a real positive scalar that controls the degree of smoothing: as the

smoothing parameter increases, the smoothing of ŷi also increases.

wi =


rl

[
1−

(
ui

4.685

)2
]2

if
∣∣∣ ui

4.685

∣∣∣ < 1,

0 if
∣∣ ui

4.685

∣∣ ≥ 1

(2.3)

where ui is the Studentized residual which is adjusted for standard deviation and leverage

and is mathematically represented by Equation (2.4).

ui =
ri

σ̂
√

1− hi
(2.4)
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In the above equation ri = yi − ŷi is the residual of the ith observation, hi is its cor-

responding leverage and σ̂ is a robust estimate for the standard deviation of the residuals

given by 1.4826MAD, where MAD denotes the median absolute deviation. The leverage

values hi are all given by the diagonal elements of the hat matrix H. However, a faster and

more economical alternative for robust smoothing can be obtained using an average leverage,

which is mathematically defined by:

hi =
1

n

∑
i

Hii =
Tr(H)

n
(2.5)

An approximated value for Tr(H)/n is given:

Tr(H)

n
≈ ri

n∑
i=1

[1 + s(2− 2 cos((i− 1)π/n)2]−1 (2.6)

The approximated Studentized residuals finally reduce to the expression:

ui = ri

∣∣∣∣∣∣1.4826MAD(r)

√
1−

√
1 +
√

1 + 16s√
2
√

1 + 16s

∣∣∣∣∣∣
−1

(2.7)

The use of the bisquare weightings in combination with the approximated Studen-

tized residuals provides a robust version of the above-mentioned smoothing. An iteratively

weighted robust version of the algorithm is used to deal with occurrences of missing and

outlying values [25].

2.3.2 The Wavelet Transform

The unidimensional wavelet transform (WT) of a signal f(x) ∈ L2 is obtained by the con-

volution of the signal and the wavelet function (WF) or mother wavelet ψ(x) as expressed

by Equation (2.8), where a is the scale parameter, b is the location parameter and ψ̄a,b(t) is

the complex conjugate of ψa,b(t), as mathematically represented by Equation (2.9).

T (a, b) =

∞∫
−∞

x(t)ψ̄a,b(t) dt, for a > 0, (2.8)
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ψa,b(t) =
1√
a
ψ(
t− b
a

) (2.9)

According to the Parseval’s theorem the same wavelet transform can be expressed as:

T (a, b) =
1

2π

∞∫
−∞

x̂(f)
¯̂
ψa,b(f) df (2.10)

Where x̂(f) and ψ̂a,b(f) are the Fourier transforms of x(f) and ψa,b(f), respectively. The

wavelet power spectrum is defined as |T (a, b)|2.

Wavelets have advantages over traditional Fourier methods in analyzing physical sit-

uations where the signal contains discontinuities and sharp spikes. They also provide a

flexible time or spatial-scale window that is localized on time or space-scale planes [67]. The

most widely-used continuous WFs are the Morlet and the n− th derivatives of the Gaus-

sian (DOG). Among the DOGs, the Ricker or so- called Mexican hat wavelet represents the

second derivative. The selection of the appropriate WF depends on both the mathematical

and physical nature of the parameter being analyzed. Different categories of wavelet, and

various types of wavelets within each category, provide a multitude of options to choose from

when analyzing a process of interest [23].

The complex Morlet function is expressed by Equation (2.11) in its simplest form (where

k0 is the central frequency, which is generally assumed to be 5 or bigger to satisfy the wavelet

admissibility condition). The Ricker function, which is a real function, is mathematically

represented by equation Equation (2.12).

ψ(t) =
1

π1/4
.ei2πk0te−t

2/2 (2.11)

ψ(t) = (1− t2).e−t
2/2 (2.12)

According to the uncertainty Heisenbergs principle, there is a lower limit to the product

of frequency and time resolution. Thus, as time resolution is improved, frequency resolution

degrades and vice versa [2]

The Morlet function provides lower area of the Heisenberg cell than the DOGs WT and

retrieves accurate wavelengths at higher signal-to-noise ratios and lower sample frequencies.
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The wavelet analysis of the synthetic signals confirms this. Morlet WF (see Figure 2.6)

retrieves frequencies of the order of ripples for sampling frequencies below 0.25 m, and that

the efficiency of the DOGs improves as the order of the derivative is increased. This efficiency

of the Morlet WT is particularly important to retrieve frequencies of the order of ripples.

Therefore, it is used for all the estimations with wavelet transforms. They are performed by

using a modified version of the wavelet software provided by [75].

For each synthetic signal and Paraná River’s BFP, the separation procedure encompasses

the following steps and is valid for either h or η signals:

1. The outliers are identified and replaced by the mean water depth h (or bedform elevation

η).

2. The continuous wavelet analysis is performed on the given h (or η) signal (see Figures 2.7

and 2.8). The global wavelet transform spectrum (see Figure 2.7c and 2.8c) provides in-

formation to find the wavelength (192 m for signal SSNR80SNR489 and 337 m for j=100)

of the wave that underlies the dunes that have a mean wavelength of approximately 10

m and 62 m, respectively.

3. The original synthetic signal (η in Figure 2.9) and BFP (h in Figure 2.10) are filtered by

using the spline robust filter with several values of the parameter s. A wavelet transform

analysis is performed for each filtered signal and the one that has a mean wavelength

close to 192 m (for SSNR80SNR489) or 337 m (for j=100) is found. These signals become

the third level of the bedform discrimination (h3,3 in Figure 2.10 and η3,3 in Figure 2.9).

4. ĥ3 (or η̂3 for the synthetic signals) is defined as ĥ3 = h− h3,3 and contains the signal

of dunes with superimposed smaller dunes (or superimposed ripples, for the synthetic

signals).

5. The ĥ3 signal (or η̂3 for the synthetic signals) is filtered by using the robust spline filter

with different values of the parameter s to obtain several dune-like signals, named ĥ2(s).

For the case of synthetic signals several ripple-like signals, named η̂2(s) are obtained.

6. The ĥ3 signal is subtracted from each ĥ2(s) to obtain a set of smaller-dune-like signals,

named ĥ1(s) (or ripple-like signals, named η̂1(s) for the synthetic signals).

7. A wavelet analysis is performed on each ĥ1(s) and this determines a mean wavelength

of 0.6 m (threshold that defines ripples) and 5m (threshold that defines small dunes)
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for SSNR80SNR489 and j=100, respectively. These criteria are, as stated above, the

objective criteria to define ripples and small dunes. The chosen signal then becomes the

first level of the bedform discrimination (η1,3 in Figure 2.9 and h1,3 in Figure 2.10), and

the corresponding η̂2(s) and ĥ2(s) become the second level of the bedform separation

(η2,3 in Figure 2.9 and h2,3 in Figure 2.10).
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3.0 RESULTS

3.1 ACCURACY OF THE METHOD

The results reveal that the method presents high accuracy in retrieving information from

the bars and dunes signals. A cross correlation analysis of the retrieved and actual bar and

dunes signals is persistently higher than 0.9 at lags equal to zero for NR>50 at any SNR

(see Figure 3.1b and Figure 3.1c), and Figures Figure 3.2b and Figure 3.2c). Likewise, their

standard deviation ratios (see Figure 3.3b and Figure 3.3c) are markedly closer to one for

NR>50 at any SNR. Filters, inexorably, induces some deformation on the filtered signals

[67, 56]. This is particularly critical for retrieving ripple signals. A closer analysis of those

signals indicates that the cross correlation between them are higher than 75% for NR>50

(see Figure 3.1a) and the robust spline filter does not lag the ripple signal as shown in

Figure 3.2a. However, it distorts their amplitudes (see Figure 3.3a), especially for NR<50

and SNR<5. Most of the amplitude deformations take place in the troughs. It is important

to note that among the different filters, the robust spline filter minimizes such trough or valley

deformation [67]. The results reveal that this limitation of the filters is also improved when

the points of the ripple signal with negative elevation, and below a 2.5 times the standard

deviation threshold, are considered as outliers; and therefore, fixed at such threshold. The

aforementioned quantities, reflect that improvement. In order to assess the reproducibility

of the ripple frequencies, the reproducibility ratio, defined as the ratio between the number

of common peaks (of the actual and retrieved ripple signals) detected in at least 50% of the

whole spectra and the total number of peaks corresponded to the number of peaks detected

across all the spectra [56],was quantified. In the present work, the wavelet spectra are used.

The results point out that the reproducibility is higher than 70% for NR>50 (see Figure 3.4).
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3.2 DISCRIMINATION OF THE BEDFORM SCALES IN THE PARANA

RIVER

After the aforementioned procedure is conducted on the 370 BFPs, various scales of bedforms

are found and are presented in Figures 3.5, 3.6 and 3.7, respectively. Figure 3.5b shows that

for the case of markedly 3D medium and large dunes, the small dunes with higher amplitudes

are concentrated near to the troughs and that their amplitudes tend to increase as they

approximate to the peaks, denoting that the process of forms amalgamation is prevalent in

3D dunes. This pattern is not recurrent for large dunes that subparallel with their neighbors

and is explained by the fact that obliquity of the crest influences the length of any separation

zone and thus influences the magnitudes of the leeside Reynods stresses, drag coefficients and

the dispersal patterns of sediments .Figure 3.6 shows that crestal platforms are commonly

present is markedly 3D shallower large dunes. According to Maddux et al. [53],the turbulence

generated by 3D dunes is weaker than the 2D case, due to the generation of secondary flows

over the 3D forms. Thus, in shallower areas there is a massive creation of dunes, instead

they are eroded. Figure 3.7 shows that the bar is highly variable along the morphology

survey. Therefore, a linear representation of it had been too simplistic.

The wavelet analysis using the Morlet WT (Eq. 2.11) on the ĥ3 signals was also con-

ducted, and the average wavelet power spectrum, namely power Hovmöller, for 4-8 m and

8-16 m bands was obtained. The power Hovmöller is a 2D contour plot used to display the

wavelet variance of the bedform profile along the x-axis at distinct transverse locations, y.

This 2D contour plot allows assessment of the variability of the power distribution in both

the longitudinal and transverse directions, as well as isolation of features characterized by a

certain range of dimensions, such as wavelength [17]. The contours are plotted for the entire

survey area that is represented in a grey scale. Figure 3.8a indicates that the higher frequen-

cies are located mainly in the troughs and at the crest of some dunes. Likewise, Figure 3.8b

indicates that the second band is densely distributed in the dunes surveyed, especially close

to the troughs.
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Figure 3.5: (a) h1,3 (small dunes) data of the Paraná River survey, and (b) inset of small

dunes superimposed to markedly three-dimensional larger dunes. Recurrently, in this case

the smaller dunes (yellow areas) concentrate at the bottom and grow in amplitude as they

get closer to the peaks. Flow is from right to left
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Figure 3.6: h2,3 (medium to large size dunes) data of the Paraná River swath. Note that

crestal platforms are developed at shallower markedly three-dimensional larger dunes. Sub-

parallel larger dunes tend to be more two-dimensional. Bedforms migration from right to

left.
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Figure 3.7: h3,3 (bars) data of the Paraná River survey. Flow is from right to left. This

bedform hierarchy imposes a highly non-stationary condition on the BFPs. A linear repre-

sentation of it would be too simplistic for this survey.
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Figure 3.8: Power Hovmöller of the averaged wavelet power spectrum for two scale bands of

the h2,3 swath: (a) [4− 8]m (small dunes), (b) [8− 16]m (medium size dunes). In all cases

the contours present the variance with a 95% confidence level.
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3.3 THE STATISTICS OF BEDFORM FEATURES

The data for different size dunes, filtered as the signal of the smallest bedforms over the

stoss side of the larger dunes are analyzed statistically later. The histograms of the dune

descriptors (see Figure 3.9) show that there is a marked dierence in the distribution of the

wavelength of smaller features on the lee and stoss sides. Similar results were reported by

[33, 24, 44, 45] .

Figure 3.10 demonstrates that there is correlation between the wavelength and the

amplitude of these superimposed smaller features for the stoss side, but not the lee side.

The probability distribution functions (PDFs) of the dimensionless descriptors of the

large and small dunes are shown, with the Weibull, Gaussian, Gamma, GEV, and Pareto

distributions in Figures 3.11-3.14. In each case, a dimensionless value of each descriptor is

defined as the descriptor divided by its mean value. The goodness of fit of some distribution

functions was evaluated by the Anderson-Darling test (denoted A2; see Table 3.1) that allows

the testing of a wider range of distributions where some of the parameters may not be known

[19].The minimum A2 denotes the best PDF.

As shown by in Figures 3.11-3.14 and 3.1, in most of the cases the Gamma distribution

provides the best goodness of fit. Likewise, all the parameters show a positive skewness and

leptokurtic distribution.

A similar analysis was performed on the small dune sample population (see Figures 3.9

- 3.17 and Table 3.1). The histogram (Fig. 3.15) demonstrates that the wavelength of these

bedforms on both the stoss and lee sides present the characteristics of discrete variables.

On the other hand, the absolute value of their amplitudes reveals that the characteristic

amplitude is approximately 0.05 m. The slopes, when compared to that that of the dunes,

presents lower values in the stoss side and similar values in the lee side. The Gamma

distribution presents the best goodness of fit, with the kurtosis being positive, greater than

that of the larger dunes, and with a leptokurtic distribution.
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Figure 3.9: Histograms of the dune descriptors. The wavelength at the stoss side (λl2,3)

shows higher variability than that of the stoss side. The amplitudes at the stoss and lee

sides (∆s
2,3 and ∆l

2,3) show similar distribution of frequencies. The slope at stoss side (Ss2,3),

that is closely related to the angle of repose of the sediment material, shows an almost even

distribution: however, the slope at the lee side (Sl2,3) shows higher variability.
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Figure 3.11: Probability distribution of the dimensionless larger dunes lee amplitude.
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Figure 3.12: Probability distribution of the dimensionless larger dunes stoss amplitude
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Figure 3.13: Probability distribution of the dimensionless larger dunes lee wavelength
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Figure 3.14: Probability distribution of the dimensionless larger dunes stoss wavelength
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Table 3.1: Anderson-Darling test results

Descriptor Gaussian Weibull Gamma LEV

∆l
1,3 1223.694 142.025 24.039 125.096

λl1,3 3051.354 2760.217 3117.411 3521.328

Sl1,3 2075.473 300.636 221.084 707.954

∆s
1,3 2131.653 158.549 46.618 282.053

λs1,3 9282.491 8610.33 9927.283 11561.65

Ss1,3 3327.436 340.417 114.906 622.001

∆l
2,3 22.591 27.246 9.063 20.916

λl2,3 271.859 173.389 80.168 56.153

Sl2,3 35.957 35.233 65.794 40.963

∆s
2,3 9.208 25.055 38.174 65.365

λs2,3 83.835 41.148 6.286 3.578

Ss2,3 46.79 82.481 5.844 14.675
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Figure 3.15: Histograms of the small dunes descriptors. Note that the wavelengths at the

stoss and lee sides (λs2,3 and λl2,3) the continuity of the interval is strongly determined by the

sampling frequency. The amplitudes at the stoss and lee sides (∆s
2,3 and ∆l

2,3) shows similar

distribution and since small dunes represent shorter life-span structures, they appear to be

related to the angle of repose of the sediment material any more.
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Figure 3.16: Probability distribution of the dimensionless small dunes lee amplitude
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Figure 3.17: Probability distribution of the dimensionless small dunes stoss amplitude
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4.0 DISCUSSION

4.1 DISCRIMINATION METHOD

The proposed method is based on the scaling definition of dunes and ripples, it is applicable to

laboratory and field measurements and overcomes the limitations of using a moving average

and spectral analysis. The program allows the user to define the third level based on his/her

scales of interest.

In the present contribution, it is successfully used in discriminating larger bars and

different scales of dunes. By analyzing synthetic signals, the procedure has shown to perform

well in retrieving and quantifying the various scales of waves within a bedform series (up

to the third level wave) when at least one period of such a wave is present in the BFP, as

shown in Figures 4.1 and 4.2, although it does impose some waviness where no single period

is present (see Figure 4.3). This limitation dramatically distort the characteristics of the

dunes. The program solves for the s parameter that minimizes this limitation. Thus, the

retrieved bar signal is still more suitable than using a linear trend line that may not be

applicable for large rivers such as the Paraná River, where the mean river bed is fluctuating,

rather than linear [77].

Some researchers ([77, 24]) point out that the definition of ripples as entities that have

lengths less than 0.60 m is restrictive. Other researchers (e.g. [50]) successfully used such

threshold. Coleman and Nikora, 2011 ([18]) suggests the use of a threshold bedform height to

distinguish transient sand pile ups from stable bedforms resisting flow. The estimates demon-

strates that even though the ripple definition is limited, when coupled with the capabilities

of both robust spline filter and wavelet transforms such widely accepted discrimination cri-

terion can retrieve relevant information of both ripples and dunes for their lee and stoss

43



−10

−9

−8

−7

−6

h

−0.2

0

0.2

h
1,

3

−1

0

1

h
2,

3

0 100 200 300 400 500 600 700 800 900 1000
−9

−8

−7

Abscise(m)

h
3,

3

Figure 4.1: Discrimination of different bedform scales output for transect j=20. Flow is from

left to right

44



−8

−6

−4

h

−0.1

0

0.1

h
1,

3

−2

0

2

h
2,

3

0 100 200 300 400 500 600 700 800 900 1000

−7

−6.5

−6

Abscise(m)

h
3,

3

Figure 4.2: Discrimination of different bedform scales for transect j=161. Flow is from left

to right

45



−7

−6

−5

h

−0.2

0

0.2

h
1,

3

−1

−0.5

0

0.5

h
2,

3

0 100 200 300 400 500 600 700 800 900 1000
−7

−6.5

−6

Abscise(m)

h
3,

3

Figure 4.3: Discrimination of different bedform scales output for transect j=350. Flow is

from left to right

46



sides. Unfortunately, no many studies have focused on the transitional areas between bed-

form states, even though they are critical to explain bedform scales, apparently such studies

have attracted far less attention than studies of bed forms in the middle of their stability

fields ([9, 13, 10]).

I believe that when the understanding of the ripples is improved, a dynamic threshold

will be applied. Up to date, the aforementioned ripple definition represents the ocial criterion

to distinguishing between ripples and dunes [37], although it is based on an observational

gap. However, if in certain cases ripples are over or under represented by such threshold,

our proposed method can still retrieve the ripple signal with a reasonable level of accuracy

as demonstrated by the results of the synthetic signals analysis.

By using wavelet transforms, the distribution of the wavelengths of small dunes can be

estimated, and by using the robust spline filter the distribution of the amplitude of bedforms

within the Paraná River can be analyzed.

4.2 THE STATISTICS OF BEDFORMS

The bed morphology of the Rio Paraná comprises bars (unit, point, complex bars), dunes

and ripples with three-dimensional characteristics [65]. Bars have wavelengths from 325 m to

>450 m, and generally larger bars are associated with larger dunes. A similar trend has been

reported by [46] who studied the possible interaction between dunes and bars, and showed

that the nonlinear coupling between relatively short (dunes) and long (bars) wavelength

forms may cause the growth of the bars.

The dunes within the present reach are markedly asymmetric with the lee slope being

nearly four times that of the stoss slope. In many instances in the present analysis, the dune

signals show that a higher trough-scour depths, relative to mean bed level, are succeeded

by a higher upstream dune. As shown in Figure 2.3 the small dunes exhibit irregular three-

dimensional features. These entities are similar to linguoid ripples which form under higher

bed shear stresses and represent the second stage of the transition from ripples to dunes as

reported by [68].
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If similarly to the signal to noise ratio, the dune-to-ripple ratio (DRR) is set as the ratio

of the standard deviation of ĥ3 and that of the small dunes, the results show that the DRR

is highly variable and is not correlated with the average water depth (see Figure 4.4a). This

was expected since some of the descriptors of the ripples are governed by the sediment size

(and other parameters), but essentially are independent of the water depth [21]. Likewise,

Figure 4.4b demonstrates that the standard deviation of the ripples presents a relative high

redundancy when compared with that of ĥ3.

The Anderson-Darling test was applied to estimate the goodness of fit of the PDFs, which

in past studies has been assessed using a relative error [78] and the Kolmogorov-Smirnov

Test [80]. However, the Kolmogorov-Smirnov test presents two main limitations: [1] it tends

to be more sensitive near the center of the distribution than at the tails and, [2] perhaps its

most serious limitation is that the distribution must be fully specified. Importantly, if the

location, scale, and shape parameters are estimated from the data, then the critical region

of the K-S test is no longer valid, and typically must be determined by simulation [59]. Use

of the Anderson-Darling test as proposed herein, overcomes these limitations and appears a

more useful technique as a standard basis.

The PDFs of the dimensionless descriptors of bedform characteristics vary for dierent

hierarchies. The PDF that best describes the dune descriptors is the Gamma and Weibull

functions, whereas the smaller dunes are best represented by the Gamma distribution. In

all cases, the PDFs possess a positive skewness and leptokurtic distributions. Results from

past studies show dierent PDFs for these descriptors. Some researchers found that the

wavelengths, amplitudes and heights are best described by an exponential probability law

[5]; bedform height by Rayleigh, Weibull, Gamma, Gaussian, and Beta distributions [78]; for

bedform height and wavelength the Gaussian, Gamma and Weibull distributions, and the

Weibull distribution was best for distributions of crest elevation, trough elevation and lee

face slope [78]. Apparently, the PDFs of the bedform descriptors are very sensitive to the

preprocessing procedure. The lack of a standard denition of their scope also triggers dierent

results. Because of this fact, it is not reasonable to compare these results with those of past

studies.
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5.0 CONCLUSIONS

The synthetic bedforms comprised wavelength scales ranges up to four orders of magnitude

(bars of 200m and ripples of 0.1m) for the case of NR=100. For such spectrum of frequencies

the proposed method effectively retrieve information of bars and dunes with a high accuracy

for NR>50 and SNR closer to 5. For the case of ripples, it retrieves a signal that is 75%

correlated with the actual signal for NR>50. Likewise, it retrieves around 70% of the wave-

lengths and 70% of the actual ripple amplitudes when the NR is higher than 50 but slightly

decreases as the NR is increased. In cases where the frequency range is higher, the accuracy

will tend to decrease as explained by the Heisenbergs uncertainty principle.

The discrimination of different scale bedforms is important in order to study the geomet-

ric variability of bedforms, and quantify the influence of bedforms on the flow field and flow

resistance. The present thesis has developed a methodology that combines the capabilities of

continuous wavelet transforms and a robust spline filter to discriminate waves with dierent

periodicities in bedform profiles, and applied this methodology to the 3-D bedform data from

the Rio Parana, Argentina.

This thesis proposes a symbolic representation of bedform descriptors (e.g. wavelength,

amplitude and slope) for each hierarchy (e.g. small dunes, dunes, bars) and the delimitation

of such descriptors that is in line with past model, laboratory and field studies. The procedure

has successfully retrieved the descriptors of the dunes and ripples hierarchies for both the

stoss and lee sides.

Since bedforms in natural channels are predominantly three-dimensional in planform,

foresee such two-dimensional wavelet transforms, when coupled with two-dimensional robust

spline filters, would substantially improve the discrimination methodology proposed in this

thesis.
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