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The total synthesis of apoptolidin C (3), a highly selective cytotoxic macrolide, has been under 

investigation in our lab.  Work completed includes the synthesis of the C1-C11 fragment 29, the 

macrocyclic core 3b, and the disaccharide subunit 31. These goals have been realized utilizing 

catalytic, asymmetric reaction methodology including the acyl halide-aldehyde 

cyclocondensation (AAC) and proline catalyzed dimerization of simple aldehyde starting 

materials 33-38. 
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1.0  INTRODUCTION 

1.1 BIOLOGICAL ACTIVITY AND STRUCTURAL FEATURES 

Apoptolidin A (1) was first discovered by Seto in 1997, isolated from the soil bacteria 

Nocardiopsis sp.
1,2  Structural derivatives apoptolidin B (2) and C (3) were isolated in 2005 from 

the same bacteria by Wender (Figure 1).3  Wender also isolated the most recent addition to this 

family of natural products, apoptolidin D (4), in 2007.4  This family of natural products has 

garnered interest in the scientific community for both its cytotoxic profile and structural 

complexity.  Although a more complete biological profile has been built for apoptolidin A due to 

its relative ease of isolation, biochemical studies have also focused on B through D as well as 

other, synthetic derivatives. 

 
Figure 1. Apoptolidin A-D 
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Cytotoxicity studies have shown the apoptolidins to be highly potent against various 

resistant cancer cell lines.  A GI50 of 24 nM has been reported for apoptolidin C in a cell 

proliferation assay with H292 cancer cells (Table 1).1  Apoptolidin A displays similar efficiency 

with apoptolidin C, while data suggest that apoptolidin B is more active.  Impressively, 

apoptolidin A has also been shown to be extremely selective and is detrimental to healthy cells 

only at high concentrations (>1 M).  This potency and selectivity has caught the attention of 

many members of the scientific community, causing the formulation of synthetic strategies that 

allow variability in substrate diversity to be a high priority.  

 
 

Table 1. Growth inhibition assay results with H292 cells 

 

 

The work of the Khosla in 2001 was the first documented attempt to elucidate the mechanism of 

action of the apoptolidins.  These data suggested that the cytotoxicity is due to apoptolidin A’s 

inhibition of mitochondrial F0F1-ATP synthase.5  This analysis was later applied to a wide range 

of analogs including apoptolidin C.6-9  Despite these studies, the structure-activity-relationship 

responsible for this inhibition remains elusive.  These preliminary investigations by Wender 

suggest that the conformation of the macrocyclic core, as well as variation of the C20 and C21 

functionalization, have a direct and considerable impact on levels of inhibition.  

 In addition the apoptolidins’ impressive biological profile, these natural products are 

abundant in interesting structural features.  This document will focus on the C1-C11 fragment of 
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the macrocycle, the completion of the macrocycle, and the completion of the disaccharide 

moiety.  In total, apoptolidin C contains twenty five stereocenters, five geometrically defined 

olefins, and a twenty member macrolactone, presenting researchers with a target abundant in 

opportunities to apply novel, expedient methodology. 

1.2 PREVIOUS SYNTHESES OF APOPTOLIDIN A 

Previous total syntheses of apoptolidin A have been reported by Nicolaou10-13, Koert14-17 and 

Crimmins.19-22  Sulikowski23-28 has also reported a synthesis of the aglycone, apoptolidinone.  

Because the C1-C11 fragment of apoptolidin A is identical to that of apoptolidin C, a brief 

inspection of this derivative’s syntheses is useful. 

 Nicolaou’s work on apoptolidin A has been distributed in four reports.10-13  These works 

have culminated in the retrosynthetic analysis displayed in Scheme 1, in which the molecule was 

dissected into four major fragments:  the C9 appended sugar 5, the C27 appended hexose 6, the 

C1-C11 fragment of the aglycone 7, and the C12-C28 fragment 8.  Both the sugar 5 and the hexose 

6 were joined to their respective fragments prior to the construction of the macrocyclic core.  The 

two major disconnections of this macrocyclic core come from an intermolecular Stille coupling 

between the organostannane 7 and the vinyl iodide 8 followed by Yamaguchi macrolactonization 

to complete the macrocyle. 

 
 
 
 
 
 
 
 

. 
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Scheme 1. Nicolou’s retrosynthetic analysis 

 

The C1-C11 fragment was assembled in two ways.  In the pathway preferred by the 

author, vinyl boronate 9 was joined to diene 10 via a Suzuki cross-coupling reaction.  The C8 and 

C9 stereocenters of the vinyl boronate were set utilizing Brown’s crotylation method.  The 

boronate was installed from the hydroboration of the alkynyl product of an Ohira-Bestmann 

homologation.  The diene 10 was constructed from a tandem oxidation-Wittig sequence from a 

known alcohol. 

 Koert’s major disconnections were similar to that of Nicolaou (Scheme 2).14-17  Similar 

major building blocks were employed:  sugar 11, hexose 12, and the same two halves of the 

aglycone.  A Stille cross-coupling reaction was used to couple the two halves together.  In this 

case, however, the organostannane was appended to the C12-C28 framework 13 and the vinyl 
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iodide to the C1-C11 14.  Yamaguchi macrolactonization was utilized to complete the 

macrocycle.  

 

Scheme 2. Koert’s retrosyntheic analysis 

 

The C8 and C9 stereocenters were set from known -hydroxylactone 15, which was easily 

accessed from a commercially available -hydroxylactone.18  The triene moiety of the C1-C11 

fragments was constructed from a sequence of contiguous Wittig olefinations after consecutive 

reductive ring opening and oxidation of lactone 15.  The C9 appended sugar 11 was joined to the 

C3-C11 fragment 16 immediately prior to the final olefination. 

 Crimmins has taken a different approach with respect to the construction of the aglycone 

(Scheme 3).19-21  A cross-metathesis reaction was employed to join the two major fragments of 

the macrocycle instead of opting for the previously discussed cross-coupling reactions.  
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Macrolactonization under the Yamaguchi conditions was again proven highly efficient.  

Formation of the C12-C28 coupling partner was accomplished through a Horner-Wadsworth-

Emmons olefination between aldehyde 17 and phosphonate 18. 

 

Scheme 3. Crimmins’ retrosynthetic analysis 

 

 

Similar to the synthesis of Koert, the triene fragment 19 was formed via three sequential 

Wittig olefinations from aldehyde 20.  Stereocenters C8 and C9 were installed from methodology 

developed in the Crimmins group.22  These transformations involve the titanium mediated cross 

aldol reaction of aldehyde 21 and the chiral auxiliary appended thiazolidinethione enolate 22.   

 Sulikowski has taken a highly convergent approach in the formation of the aglycone 

(Scheme 4).23-28  The aglycone was formed from a series of reactions involving vinyl boronate 

23, diene 24 and the product of two consecutive aldol reactions between vinyl iodide 25, ketone 

26, and aldehyde 27.  The product of these aldol reactions were then joined with vinyl boronate 

23 in a Suzuki cross-coupling reaction.  Subsequent appendage of diene 24 was accomplished 
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under Yamaguchi esterification conditions.  Ring closure was successfully completed via 

intramolecular Suzuki coupling between the C5 iodide and the C6 boronate, produced from a 

cross metathesis, hydroboration sequence employed post esterafication. 

 
 

Scheme 4. Sulikowski’s retrosynthetic analysis 

 

 

The C8 and C9 stereocenters were set by the implementation of Roush’s crotylation 

protocol29 utilizing diisopropyl tartrate derived crotylboronates.  The crotylation was executed on 

a known pinacol ester to furnish coupling partner 23.30,31 The C1-C5 fragment 24 was produced 

through an oxidation, Wittig olefination sequence starting with a known alcohol. 
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 In addition to these major syntheses, other investigations into the synthesis of smaller 

fragments have been reported.32-39  Many elements of these partial syntheses mirror the 

aforementioned syntheses.    

1.3 RETROSYNTHETIC ANALYSIS OF APOPTOLIDIN C 

Our retrosynthetic analysis follows literature precedent for reliable major disconnections 

(Scheme 5).  The C1-C11 fragment 29 will be joined with C11-C28 fragment 30 via Stille cross 

coupling followed by Yamaguchi’s macrolactonization conditions to complete the macrocyclic 

core of apoptolidin C.  For a synthesis of the natural product, disaccharide 31 will be coupled via 

glycosylation to the C12-C28 fragment 30 followed by Stille cross coupling to the C1-C11 fragment 

29 and finally glycosylation of sugar subunit 32 prior to macrolactonization to complete the 

synthesis.  The major halves of the macrocycle were constructed from simple achiral acyl halide 

and aldehyde building blocks 33-36 in acyl halide-aldehyde cyclocondensations (AACs) to set 

every stereocenter in apoptolidinone C in a catalytic, asymmetric fashion.40-42  The disaccharide 

moiety was constructed from proline catalyzed asymmetric aldol dimerizations of simple, 

protected acetoxyacetaldehydes 37 and 38.43,44  This document will focus on the completion of 

the C1-C11 fragment, the macrocyclic core, and the disaccharide moiety. 
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Scheme 5. Our retrosynthetic analysis of apoptolidin C 
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2.0  COMPLETION OF THE MACROCYCLE 

2.1 C1-C11 EXPLORATORY SYNTHESES 

Toward the total synthesis of apoptolidin C, investigations have been completed in our 

laboratory regarding the construction of the C1-C11 fragment 7 of the macrocyclic core.  Three 

major approaches have been attempted, all of which will be covered in this document.  

Investigations began with exploratory routes that were not incorporated into the final, preferred 

synthesis.  Our primary goals were to set relevant stereocenters from achiral starting materials 

utilizing catalytic methodology and to generate an efficient, convergent final route.  To 

accomplish this directive, it was decided to set the C8 and C9 stereocenters with acyl halide-

aldehyde cyclocondensation (AAC) chemistry,40-42 laying the foundation for the C7-C11 fragment 

39 of the molecule.  To maximize convergency, it was initially anticipated that the C1-C6 triene 

40 would be constructed as one piece and then coupled to the C7-C11 fragment (Scheme 6).  The 

final triene 7 would be produced after isomerization of Suzuki cross coupling product 41.  Cross 

coupling partners 39 and 40 would be constructed from the AAC substrate 42 and acteol (43), 

respectively. 
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Scheme 6. First generation retrosynthetic approach to apoptolidinone C 

 

 

 The first-generation synthesis of the C1-C11 fragment began with a triamine 44 catalyzed 

acyl halide-aldehyde cyclocondensation between propargylic aldehyde 34 and propionyl bromide 

(35) to generate -lactone 42 in 81% yield, >95:5 dr (93% ee, assayed by comparison of D) 

(Scheme 7).45  Reductive ring opening with DIBAl-H followed by selective protection of the 

crude diol produced the tosylated product 45 in 46% yield over two steps.  The modest yield in 

this sequence is attributed to over-tosylation of the diol, a consequence of the secondary alcohol 

being propargylic and relatively unhindered.  Tosyl-protected product 45 was then converted to 

the fully protected iodide 39 by silyl ether formation followed by a Finkelstein reaction with NaI 

to generate the coupling fragment 39 in 77% yield over two steps. 
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Scheme 7. C7-C11 fragment synthesis 

 
a) 10 mol% 44, AlMe3 iPr2Net, CH2Cl2, –78 ºC. b) iBu2AlH, THF, –78 ºC. c) TsCl, pyr, DMAP, CH2Cl2.  
d) TBSCl, imid, DMF. e) NaI, acetone  

 
 

 Having completed a synthesis of fragment 39, silyl protection of acetol (43) initiated 

construction of triene precursor 40, affording protected product 46 in 81% yield (Scheme 8).  

Ketone 46 was then converted to allene 47 via addition of ethynylmagnesium bromide, 

homologation of the alkyne to the allenol with paraformaldehyde, CuBr, and iPrNH, and finally 

acyl protection of the alcohol to produce allene 47 in 62% yield over three steps.  An interesting 

Pd(II)-catalyzed rearrangement46 of allene 47 produced diene 48 in 78% (9:1 E:Z) after LiI 

addition to the -allyl complex formed from acyl displacement via catalytic Pd(OAc)2.  Diene 48 

was then homologated to triene 40 after silyl deprotection, Swern oxidation, and HWE 

olefination with phosphine oxide 49 in 68% (~9:1 E:Z) over three steps.  It is important to note 

that the polyenes in this final sequence are extremely thermo- and acid-sensitive and must be 

handled with care.  The conjugated aldehyde, for example, decomposed within an hour if left at 

room temperature and the final triene 40 was prone to olefin isomerization in CDCl3 or upon 

exposure to light. 
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Scheme 8. C1-C6 fragment synthesis 

 
a) TBSCl, imid, CH2Cl2. b) ethynylmagnesium bromide, Et2O/THF, –78 ºC. c) (CH2O)n, CuBr, iPrNH, dioxane, . 
d) Ac2O, pyr, DMAP. e) LiI, Pd(OAc), AcOH, 40 ºC. f) HF•pyr, pyr/THF. g) oxalyl chloride, DMSO, NEt3, –78 ºC 
to RT. h) 49, LDA, THF, –78 ºC. 
 

Some optimization was required in formulating conditions for the sp
2-sp

3 cross coupling 

reaction (Equation 1).  Alkyl iodide 39 was treated with t-BuLi and 9-MeOBBN to form the 

borane coupling partner in situ.  This substrate was then subjected to vinyl iodide 40 utilizing 

PdCl2(dppf) as a precatalyst, AsPh3 for its ligand, and Cs2CO3 as a base to generate coupling 

product 41 in 47% yield.47  While the yield is modest, sp
3 coupling reactions are considered 

difficult because of -hydride elimination, requiring more active Pd species with large bite 

angles and electron rich ligands such as AsPh3 to improve reaction rates to make reductive 

elimination more facile than the competing -hydride elimination. 

 
 

 
 
 
 

Having obtained triene 41, efforts were directed toward performing the requisite 

isomerization to generate the structural core of the C1-C11 fragment (Scheme 9).  Our initial 

efforts focused on cationic iridium-catalyzed isomerization, based on precedent set in similar 
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systems.48  This reaction is known to proceed via Ir(I) insertion into the allylic C-H bond, 

rearrangement via an 3 complex placing Ir-H at the desired carbon, and finally reductive 

elimination to generate the product.  Literature examples do not directly match our system, the 

least reactive substrates being monosubstituted olefins and 1,1-disubstituted vinyl ethers.  It was 

decided, however, that the mechanism involved should apply to 1,1-disubstituted alkyl systems 

as well, promoting formation of the more thermodynamically favored trisubstituted alkene 50.  

 
 

Scheme 9. Desired isomerization and its precedent 

 
 
 
 

Unfortunately, attempts to incorporate this chemistry into the synthesis of apoptolidin C 

were ultimately unsuccessful (Equation 2).  Utilizing a catalyst loading of 2 mol % [(Cy3P)3Ir]+ 

with three equivalents of PCy3 ligand per Ir(I) resulted in no reaction at ambient temperature.  In 

subsequent isomerization attempts, a higher catalyst loading was used (3.6 and 10 mol%) as well 

as an increase in temperature (40 and 70 °C) using dichloroethane as a solvent.  These 
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modifications resulted in the lack of reactivity seen previously with some decomposition 

occurring at extended reaction times and higher temperatures.  Attempts to use only two 

equivalents of PCy3 ligand per Ir+ for a more reactive cationic catalyst gave no reaction at low 

temperatures and decomposition in refluxing dicholoroethane.      

 

 
 
 

 The observed lack of reactivity seen in this system could be attributed to steric hindrance 

at the vinylogous methylene (C7).  As mentioned previously, these cationic metal isomerizations 

are dependent on initial C-H insertion at C7.  The vinylogous carbon in this system is relatively 

hindered from the -methyl, -silyl ether, and triene moieties, especially considering the methyl 

group from the triene is probably pointing directly at the -CH2- (C7) in order to maintain orbital 

alignment and, thus, resonance.  Considering the relative bulk of the ligands used in this 

chemistry (PCy3), it is feasible to conclude that this methylene is too sterically encumbered to 

allow for the required C-H insertion to occur. 

 Having attempted a number of reaction conditions within the Ir+ system, alternate 

reaction pathways were considered involving a variety of metals and reagents.  Multiple 

conditions attempted involved a RuH or RhH catalyst.  Incorporation of both premade and in situ 

generated catalysts were was attempted (Scheme 10).  These systems were thought to succeed 

where Ir(I) had proven insufficient, considering the mechanism involves insertion across the 

alkene itself followed by -hydride elimination to regenerate the catalyst.  The -bond involved 
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in the first step of this reaction sequence was thought to be less sterically hindered than the 

methylene.  The RuH catalyst generated from Grubbs II (51) and vinyl TMS ether 52 is known to 

isomerize 1,1-disubstituted olefin 53 to fully substituted olefin 54.49     

 
 

Scheme 10. Literature example of olefin isomerization 

 
 
 

 A number of conditions were attempted, some of which on a test substrate where R = 

isovaleryl to convert test substrate 55 to isomerized product 56.  All conditions attempted 

resulted in recovery of starting material or decomposition to unisolable materials under harsher 

reaction conditions (Table 2).  Subjecting the triene to RuH generated in situ 

(vinyloxytrimethylsilane, Grubbs II) led to recovery of starting material at lower temperatures 

and decomposition at higher temperatures.  Considering that a more aggressive catalyst may be 

useful, the triene was reacted with RhH formed from refluxing RhCl3 in EtOH50 to less 

successful results, rapidly decomposing the starting material.  Preformed RhH51 and RuH 

hydride catalysts (RhH(CO)(PPh3)3) were not effective and led to recovery of starting material; 

similar results were obtained from attempts at base catalyzed isomerization (NaHMDS). 
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Table 2. Attempted isomerization conditions 

 
 

The lack of reactivity seen in all these metal isomerizations could be attributed to the 

large steric bulk presented by these catalysts (Figure 2).  Inability to access the vinyl C-H bond 

for C-H insertion explains the observed lack of reactivity in the case of the iridium catalyzed 

isomerizations.  While the alkene is not as sterically hindered as the vinylogous methylene, the 

C6 olefin in this triene system is fairly sterically hindered, contributing to lack of M-H insertion 

into the -bond.  Deactivation of the alkene via resonance with the triene/ether system should 

also be taken into account as a less electron-rich olefin would be less susceptible to react with the 

electron-deficient RuH and RhH species.  The results of these studies have shown that bulky, 

metal based isomerization catalysts are even more susceptible to deactivation via steric hindrance 

and electronic deactivation than initially anticipated. 
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Figure 2. 1,1-Disubstituted olefin stability towards isomerization 

 
 
 Unwilling to completely abandon this synthetic route, efforts were focused on 

implementing a slightly altered key intermediate that would allow for adjustment in the key 

isomerization step while retaining a considerable amount of the synthesis.  Investigations into 

diazene rearrangement of allylic diazenes (Figure 3) suggested that this type of reaction could be 

integrated into the synthesis of apoptolidinone C.52   

 

 
Figure 3. N-Tosyl hydrazine diazine rearrangement 

 
 

This diazene rearrangement to final triene 57 would require access to vinylogous N-tosyl 

hydrazone intermediate 58, necessitating adjustments to the synthetic scheme (Scheme 11).  

Hydrazone intermediate 58 would be constructed from the ketone product of Stille cross 

coupling between acid chloride 59 and vinyl stannane 60.  The coupling partners will be 

accessed from -lactone 42 and acetol (43), starting materials used in the previous approach. 
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Scheme 11. C1-C11 second aproach retrosynthesis 

 
 
 
 

 Construction of ketone 61 began with ring opening of -lactone 42 with lithium peroxide 

and subsequent reduction to the carboxylic acid 62 in 69% yield (Scheme 12).  Direct ring 

opening with various hydroxides resulted in TMS deprotection while the peroxide nucleophile 

was soft enough to promote ring opening while leaving the silane intact.  Protecting the 

secondary alcohol as the TBS ether followed by acid chloride formation with oxalyl chloride 

gave coupling partner 59 that was used crude in the coupling sequence.  Generating the stannane 

coupling partner 60 was accomplished by metal-halide exchange, treating vinyl iodide 48 with 

Sn2Me6 and catalytic Pd(PPh3)4 (78%).  Coupling of stannane 60 and acid chloride 59 with 

Pd2(dba)3 as the palladium source proceeded in good yield (75% over 3 steps) to produce ketone 

intermate 61. 
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Scheme 12. C1-C11 second approach forward synthesis 

 
a) LiOH, H2O2, then Na2SO3, THF/H2O, 0 ºC to RT. b) TBSOTf, 2,6-lutidine, CH2Cl2, –78 ºC. c) oxalyl chloride, 
benzene. d) Sn2Me6, Pd(PPh3)4, DIPEA, benzene, 80 ºC to RT. e) Pd2(dba)3, DIPEA, Benzene. 
 
 
 

Ketone 61 was then subjected to hydrazone formation conditions with little initial success 

towards formation of rearrangement precursor 58.  Preliminary attempts to aminate the ketone 

(EtOH, ; AcOH; EtOH, HCl) resulted in either no reaction or decomposition (Scheme 13).  The 

terminal unsaturated enone was found to be considerably unstable.  Somewhat counter-

intuitively, harsher conditions for a shorter period of time were found to be most effective.  TFA 

catalysis was found to generate hydrazone 58 at an acceptable level of efficiency (23%) to then 

test the key rearrangement.  Subjecting hydrazone 58 to catecholborane and then NaOAc buffer 

and heat52 lead to formation of the rearrangement product 63 in moderate yield and E:Z 

selectivity (51%; 2:1 E:Z).   

 
 

Scheme 13. Hydrazone formation and rearrangement 

 
a) H2NNHTs, TFA, CH2Cl2. b) catecholborane, SiO2, CHCl3, then NaOAc•3H2O, ; 2:1 (E:Z). 
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 The result of moderate E:Z selectivity was unexpected considering an analysis of the 

transition state (Figure 4).  After reduction of the hydrazone to the diazene, the retroene reaction 

may occur from one of two transition states, one in which the two large alkyl groups (R, RL) are 

eclipsing one another and one in which they are anti.  Reaction from the enthalpically lower 

transition state would be expected, producing the desired olefin geometry as the major product.  

Unfortunately, experimental evidence disproves this analysis, likely due to the high degree of 

planarity in these large R groups with sp
2 and sp centers alpha and beta to the reactive sites.  The 

discovery that this rearrangement generated less than optimal results coupled with the low yields 

from working with sensitive intermediates leading up to the rearrangement, it was decided that 

another approach to this fragment may be appropriate. 

 
 

 
Figure 4. Analysis of retroene transition state 
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2.2 C1-C11 FINALIZED ROUTE 

Having attempted to implement isomerization of a C6 terminal olefin to the desired isomer in two 

different routes, our thoughts shifted to the possibility of incorporating a synthesis of the C1-C11 

fragment 29 in which the C6 olefin was already in the correct position prior to coupling (Scheme 

14).  A convergent retrosynthetic analysis was devised in which dibromide 64 and vinyl borane 

65 would be joined via regioselective Suzuki cross coupling, placing the C6 olefin in the correct 

orientation.  Dibromide coupling partner 64 would be constructed from a Corey-Fuchs reaction 

after setting the requisite stereocenters utilizing an AAC reaction involving aldehyde 34 and 

propionyl chloride (33).  The vinyl borane coupling partner 65 would be generated from 

propargyl alcohol (66) after carboalumination and an oxidation, Wittig reaction sequence. 

 
 

Scheme 14. Final C1-C11 retrosynthetic analysis. 

 
 
 
 

 Synthesis of dibromide fragment 64 commenced with a cinchona alkaloid catalyzed AAC 

reaction between aldehyde 34 and propionyl chloride (33) (Scheme 15).  Upon reaction of these 

cycloaddition partners with cinchona alkaloid catalyst 67, MgCl2 and iPr2NEt, -lactone 42 was 

obtained in 92% yield (98% ee).  In previous routes, this reaction was completed with the 

triamine Lewis acidic catalyst.  Propargylic aldehydes are often not compatible with the cinchona 



 23 

alkaloid procedure due to their rapid reactivity and lack of steric bias in the transition state, 

promoting poor diastereoselectivity.  It was assumed that the use of the less reactive MgCl2 as a 

Lewis acidic additive rather than the more traditional LiI used in these reactions would allow for 

shorter coordinative bond lengths in the transition state and a slower rate of reaction allowing for 

the use of propargylic aldehydes.  The -lactone 42 ring was then opened and the resulting 

alcohol protected in an efficient one-pot procedure.  KHMDS catalyzed the nucleophilic attack 

of ethane thiol that was followed by in situ silyl trapping of the free alcohol (TBSOTf, 2,6-

lutidine) to give the crude thioester.  The thioester was then reduced to aldehyde 68 (76%, 2 

steps) with iBu2AlH and subjected to the ylide formed from CBr4 and PPh3, converting the 

aldehyde to dibromide 64 in 80% yield. 

 
 

Scheme 15. C1-C6 Fragment synthesis 

 
a) 10 mol% 67, EtCOCl, MgCl2, iPr2NEt, ‒78 °C. b) 10 mol% KHMDS, EtSH, THF then TBSOTf, 2,6-lutidine. c) 
iBu2AlH, THF, ‒78 °C. d) CBr4, PPh3, CH2Cl2. KHMDS = potassium hexamethyldisilazide. 
 
 
 
 Integration of dibromide 64 into the C1-C11 portion of the molecule required a synthesis 

of Suzuki coupling partner vinyl borane 65 beginning with commercially available propargyl 

alcohol (66) (Scheme 16).  The alkyne was halogenated in a modification of a known 
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carboalumination procedure53 (Cp2ZrCl2, AlMe3, H2O then I2) to afford vinyl iodide 69 (59%).  

The water additive in this reaction was not used in literature procedures and the 20% increase in 

yield is attributed to increased basicity of the aluminum methoxide. A more basic aluminum 

species allowed the propargyl alcohol to be fully deprotonated prior to formation of a proton-

sensitive carboaluminum intermediate.  Vinyl iodide 69 was then converted to alkynol 70 via 

Pd[(PPh)3]4-catalyzed cross coupling with 1-(trimethylsilyl)-alkyne followed by TBAF 

deprotection to liberate alkyne 70.  Attempts to incorporate another carboalumination into the 

synthesis to generate diene 71 at this point led to mediocre results and poor yields.  The 

unsatisfactory results were attributed to formation of sensitive intermediates related to the 

reactive alkyne being in conjugation with an olefin. 

 

Scheme 16. Attempted borane construction 

 
a) Cp2ZrCl2, AlMe3, H2O, C2H4Cl2, then THF, I2. b) 1-(Trimethylsilyl)-alkyne, iPr2NH, CuI, Pd(PPh3)4. c) TBAF, 
THF, 0 °C to RT. d) Cp2ZrCl2, AlMe3, H2O, C2H4Cl2. 
 
 

 To avoid the second, low yielding carboalumination, the route to vinyl borane 65 was 

slightly modified to generate diene 72 directly from carboaluminated propargyl alcohol (66) 

(Scheme 17).  A one-pot oxidation, Wittig reaction was carried out on the carboalumination 

product 69 with MnO2 as the oxidant and the appropriate triphenylphosphine ylide to give 

homologated diene 72 in 83% yield.54  Performing these reactions sequentially resulted in a 

slightly improved yield over two steps (89%) but the convenience of the one pot procedure 
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secured its position as the reaction of choice for material throughput.  To complete the Suzuki 

coupling partner, vinyl borane 65 was obtained via metal-halogen exchange of the iodide 

(bis(pinacolato)diboron, [Pd(dppf)Cl2], KOAc; 97%).55 

 
 

Scheme 17. Completion of the C1-C11 fragment 

 
a) Cp2ZrCl2, AlMe3, H2O, C2H4Cl2, then THF, I2. b) MnO2, PPh3C(CH3)CO2Et, CH2Cl2. c) (pinB)2, 3 mol% 
[Pd(dppf)Cl2], KOAc, DMSO, 85°C. Dppf = 1,1`-bis(diphenylphosphino)ferrocenyl, pin = pinacol (C6H4O2). 
 

 

Regioselective coupling of borane 65 and dibromide 64 proceeded smoothly by reaction 

at the less sterically hindered bromine to generate the “all-E” triene fragment 73 in 66% yield 

(Scheme 18).  This coupling reaction was optimized when using TlOEt and catalytic 

[Pd(PPh3)4];56 the use of bases lacking Thallium’s halide affinity lead to slow reaction times, 

incomplete conversion and poor regioselectivity.  Methylation at C6 required some optimization; 

attempts to append the methyl group via Suzuki coupling with various methyl boranes such as 

trimethylboroxine and 9-MeBBN produced decomposition or no reaction.  Implementing a fairly 

exotic palladium catalyst with a large bite angle, [Pd(PtBu3)2], in a Negishi coupling with ZnMe2 

resulted in 90% yield of triene 74 product (6.6:1 E:Z).57  The modest E:Z selectivity is attributed 

to residual [Pd(PPh3)4] from the previous step; [Pd(PPh3)4] is known to give the Z olefin under 

these conditions.58
  Triene 74 was then functionalized appropriately for Stille coupling by silyl 

removal (TBAF) to furnish alcohol 75 and hydrostannation59 (nBu3SnH, 3 mol% [PdCl2(PPh3)2]) 

of the terminal alkyne (57%, 2 steps) to complete the C1-C11 fragment 29 of the aglycone. 
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Scheme 18. Completion of the C1-C11 fragment 

 
a) 64, 10 mol% [Pd(PPh3)4], TlOEt, aq THF. b) ZnMe2, 7 mol% [Pd(PtBu3)2], THF; C6-C7 E:Z = 6.6:1. c) nBu4NF, 
THF. d) nBu3SnH, 3 mol% [PdCl2(PPh3)2], THF; C10-C11 E:Z = 3.4:1. 

2.3 MACROCYCLE SYNTHESIS 

Following completion of the C1-C11 fragment 29, our attention was turned to completion of the 

macrocyclic core of apoptolidin C (Scheme 19).  The two major fragments would be joined in a 

Stille cross coupling reaction to construct the C11-C12 bond, generating an intermediate that could 

be saponified to the seco-acid.  The seco-acid would then be closed to the macrocycle via 

lactonizating followed by global deprotection to give the final product. 

Scheme 19. Retrosynthesis of apoptolidinone C 

 
 



 27 

 We initially anticipated implementing cross coupling conditions from previous syntheses 

of apoptolidin A to complete the aglycone synthesis (Scheme 20).10-13  Our particular system, 

however, required further optimization than was present in the literature.  After extensive 

experimentation, treating the coupling partners 29 and 30 with [PdCl2(MeCN)2] and phosphine 

salt Ph2PO2N(nBu)4
60 was found to consistently produce the coupling product in 75% yield with 

12:1 (E:Z) enantiopurity across the C10-C11 bond.  Without the phosphine additive, complex 

mixtures (~1:1; E:Z) of olefin isomers were obtained; other palladium sources produced similar 

results.61  Ph2PO2N(n-Bu)4 is thought to maintain olefin geometry by scavenging tin halide 

byproducts that could otherwise isomerize weak -bonds via a metathesis pathway.   

 

Scheme 20. Synthesis of apoptolidinone C 

 
a) 0.25 equiv 30, 10 mol% PdCl2(MeCN)2, 5 equiv Ph2PO2N(n-Bu)4, DMF; C10-C11 E:Z = 12:1. b) LiOH, 
THF:MeOH:H2O (6:2:1). c) 1 equiv TFA, CH2Cl2:MeOH, ‒15 °C. d) NEt3, DMAP, 2,4,6-trichlorobenzoyl chloride, 
THF:Toluene. e) H2SiF6 (aq), MeCN, ‒35 °C. TFA = Trifluoroacetic acid, DMAP = 4-Dimethylaminopyridine. 
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Saponification of the ethyl ester under basic conditions (LiOH) lead to conversion of the 

ester moiety to the carboxylic acid along with non-selective partial TES removal at the C19 and 

C23 alcohols to afford a complex mixture of products 76 (~78% of the mixture).  The mixture of 

partially deprotected compounds 76 was treated with TFA in MeOH to selectively remove the 

remaining TES groups while leaving the TBS ether intact to generate seco-acid 77 (61%).  It was 

anticipated that macrolaconization would occur preferentially at the desired proximal (C19) 

alcohol rather than at the more remote position (C23).  Yamaguchi’s conditions62 generated the 

protected aglycone, with the majority of lactonization occurring on the C19 alcohol (~10:1).  The 

rigidity of the highly unsaturated C1-C13 framework was thought to play a major role in this 

regioselectivity.63  Deprotection of the anomeric methoxy and TBS ether was not trivial.  Various 

conditions including HF•pyridine, TBAF followed by aqueous acid, and TASF either failed to 

remove the protecting groups or lead to decomposition.  Concomitant silyl 

deprotection/anomeric hydrolysis was ultimately achieved using aqueous H2SiF6 in acetonitrile 

at ‒35 °C, completing the synthesis of apoptolidinone C (3b) (36%, 2 steps).14-17  The lower 

yield in this step is attributed to some decomposition at necessarily elevated reaction 

temperature; lower temperatures lead to incomplete conversion while higher temperatures lead to 

decomposition. 

 This synthesis of apoptolidinone C displays the efficacy of the acyl halide-aldehyde 

cyclocondensation (AAC) as well as a highly efficient, convergent route to the C1-C11 triene 

portion of the molecule.  The derivation of 10 of 10 stereocenters catalytically, 8 directly 2 

indirectly, illustrates the reality that asymmetric synthesis of complex targets does not necessitate 

stoichiometric and/or auxiliary based methodology.  To expand upon our success in catalytic, 
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asymmetric synthesis, a route to the disaccharide portion of the natural product has been 

developed, heavily utilizing organocatalysis.  
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3.0  COMPLETION OF THE DISACCHARIDE 

3.1 DISACCHARIDE EXPLORATORY ROUTES 

Upon completing the aglycone, our efforts were focused on devising a synthetic route for the 

disaccharide moiety of the molecule, to be integrated into the total synthesis of apoptolidin C.  

Similar to our fragment synthesis for the aglycone, our goal in the disaccharide synthesis was to 

provide an expedient route to each sugar subunit utilizing interesting and efficient catalytic 

methods to set requisite stereocenters.  Toward that goal, it was decided that the increasingly 

prolific work on organocatalyzed aldol products could potentially be assimilated into the 

synthesis of the apoptolidin disaccharide (Scheme 21).  Of particular interest were these cross-

aldol reactions being performed by a number of laboratories, giving high yields of 

enantioenriched polyols, polyethers, and polypropionate subunits.64,65   

 
 

Scheme 21. Recent breakthroughs in organocatalyzed aldol reactions 
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With this chemistry in mind, our retrosynthetic analysis from disaccharide 78 began with 

glycosidic bond formation between the sugars derived from cyclization of aldol products 79 and 

80 (Scheme 22).  The cyclization precursors are being built from a Mukaiyama aldol onto 

organocatalyzed cross-aldol products 81 and 82.  The core of our initial analysis of this synthesis 

was the formation of these cross-aldol products, thought to be obtainable through proline 

catalysis between simple aldehyde starting materials 37, 38, 83 and 84.   

 
 

Scheme 22. Initial disaccharide retrosynthetic analysis 

 
 
 
 

 Preliminary studies focusing on utilization of L-proline met with little success (Scheme 

23-3, 23-4).  Our ambition was to incorporate acetoxyacetaldehyde-based nucleophile 38 and 

electrophile 84 into cross-aldol systems in the absence of literature examples.64,65  It was 

discovered that application of proline catalysis resulted in a complex mixture of products, with 

no desired product 85 found (3).  Very low yields of product 86 were obtained (15%) when using 

nucleophile 38 and non-enolizable aldehyde 87 (4).  The inductive effects of the benzyl ether 

moiety results in excellent electrophilicity at the aldehyde position and poor enolate 

nucleophilicty, making this compound a poor candidate as a nucleophile in cross-aldol additions. 
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Scheme 23. Attempts at proline catalyzed cross aldol chemistry 

 
 

 
  Maintaining a desire to incorporate proline catalysis into the dissacharide synthesis, a 

potential opportunity presented itself in the -oxidation of aldehydes66 that could be made from 

our group’s AAC chemistry (Scheme 24).  Cinchona alkaloid-catalyzed cyclocondensation 

between acetaldehyde 84 and acetyl chloride 88 resulted in -lactone 89 followed by a ring 

opening (Weinreb amine), protection (TBSOTf), reduction sequence (iPr2AlH) to generate 

aldehyde 90.  -Oxidation of the aldehyde with proline and nitrosobenzene resulted in only 48% 

conversion and 20% isolated yield of the oxidized product 91.  Realizing that the literature 

substrate scope of this reaction is limited to unsubstituted propionate aldehydes, it is likely that 

bulky -substitution of the TBS ether prevents an efficient rate of conversion. 

 
 

Scheme 24. Proline catalyzed -oxidation of aldehydes 

 
a) LiClO4, TMSQd, DIPEA, Et2O, CH2Cl2, ‒78 °C. b) Me2AlCl, CH2Cl2, ‒45 °C. c) TBSOTf, 2,6-lutidine, CH2Cl2, 
‒78 °C. d) iPr2AlH, THF, ‒78 °C. e) PhNO, L-proline, DMSO, then NaBH4, EtOH. 
 
 
 
 With setbacks in attempting to make innovations in cross-aldol chemistry and other 

organocatalyzed considerations, it seemed prudent to consider more analogous literature 

examples going forward.  Proline-catalyzed dimerization of the acetoxyacetaldehyde ethers we 

had been working with are known,43,44 the drawback in this chemistry being that the methyl 
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group of the electrophilic aldehyde is one oxidation state too high for direct incorporation into 

our sugar synthesis (Scheme 25).  The dimerization chemistry is, however, sufficiently efficient 

to allow for the necessary additional steps involved in deoxygenating the methyl group.  After 

formation of dimer 92 and protection to silyl ether 93, aldehyde 94 could be obtained via a Lewis 

base catalyzed substrate controlled Mukaiyama aldol that has been implemented in other 

syntheses in our labs.67  From aldehyde 94, cyclization and functional group manipulations 

would provide access to sugar 95. 

 
 

Scheme 25. Proline catalyzed dimerization and incorporation into synthesis 

 
 
 
 

 Before continuing with the forward synthesis, an analysis of the Lewis base catalyzed 

Mukaiyama aldol’s transition state made us wary of the potential diastereoselective outcome of 

this reaction (Figure 5).  In previous applications of this chemistry, the OTIPS group was 

replaced with the much smaller, electron donating methyl group.  Under these conditions, 

addition occurred Felkin with respect to the alkyl group being RL, providing the correct, desired 

product for the synthesis of the apoptolidin sugars.  In our example, however, there was a 

recognized possibility that the OTIPS group is sufficiently large and electron withdrawing 

enough to occupy the RL position in the Felkin model, leading to the undesired diastereomer. 
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Figure 5. Stereochemical outcome of Mukaiyama aldol 

 
 
 With aldehyde 92 only a few steps from a known enantiopure material,19 the most 

expedient way to deduce relative stereochemistry was to construct the known material.  

Dimerization of TIPS-protected acetoxyacetaldehyde 83 to dimer 92 followed by silyl protection 

(TESOTf, 2,6-lutidine) gave fully silated triol 93 in 58% yield over two steps (Scheme 26).  

Achiral Lewis base tetra-n-butylammonium p-nitrophenoxide-catalyzed Mukaiyama aldol 

addition of enol silane 96 to aldehyde 93 gave amide 97 as a single diastereomer in 89% yield,67 

relative stereochemistry currently unknown but represented as the desired isomer in this scheme.  

Attempts to cyclize the resulting straight chain to produce the sugar core was more problematic 

than anticipated.  Direct acidic cyclization failed to produce the cyclization product when 

reacting the amide or the aminol resulting from reduction with catalytic acid.  During the course 

of these attempts it was found that the TES and TMS groups could be deprotected with 1 M HCl 

and from intermediate diol 98 and the cyclization to lactone 99 would occur under basic 

conditions.  Ultimately a one pot procedure in which simultaneous acidic cleavage of both the 

TMS and TES silanes followed by in situ base promoted cyclization was devised to generate the 

6-membered lactone 99 in good yield (81%).   
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Scheme 26. Disaccharide forward synthesis 

 
a) D-proline, DMF. b) TESOTf, 2,6-lutidine, CH2Cl2, ‒78 °C. c) 20 mol% NO2C6H4ONBu4, 96, THF, ‒70 °C. d) 1 
M HCl, MeOH. e) NaOMe, MeOH, 0 °C f) CF3CO2H, CH2Cl2/MeOH, 0 °C then NaOMe. 
 
 
 

The cyclization product 99 was then reduced to the lactol with iPr2AlH and subsequently 

benzyl protected at the anomeric center with benzyl alcohol and catalytic PPTS to afford benzyl 

ether 100 in moderate yield over 2 steps (68%) (Scheme 27).  Alcohol 100 was then methylated 

(MeI, NaH) prior to silyl ether deprotection (TBAF) to yield diol 101 (48%).  Interestingly, 

attempts to methylate or desilate lactone 99 directly lead to decomposition suggesting that this 

intermediate is base sensitive, probably due to retroaldol tendencies.  Barton deoxygenation of 

diol 101 proceeded in moederate yield (45%) through selective formation of the primary o-

phenylthionoformate and subsequent radical initiation with catalytic AIBN in the presence of 

Bu3SnH.68   Enough material was obtained at this stage to compare the product to a known 

literature sample of 102. 
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Scheme 27. Disaccharide forward synthesis 

 
a) iPr2AlH, CH2Cl2, ‒78 °C. b) PPTS, BnOH, CH2Cl2. c) MeI, NaH, THF, 0 °C to RT. d) TBAF, THF, 0 °C to RT. 
e) PhOCSCl, pyr, CH2Cl2. f) AIBN, Bu3SnH, toluene, . 
 
 
 
 Unfortunately, our sample’s spectra showed enough incongruence between the 1H and 

13C-NMR of the literature sample19 to suggest that we had obtained the wrong diastereomer.  All 

chemical shifts were accounted for, with major alteration in the position of the proton and carbon 

formed in the Mukaiyama aldol addition.  2D experimentation also supported the probability of 

having generated the incorrect isomer.  With this data in hand it was necessary to develop some 

alterations in the route while maintaining as much of the core synthesis as possible. 

3.2 DISACCHARIDE FINAL ROUTE 

Advancement of the disaccharide synthesis required some alteration in our approach in order to 

incorporate an appropriate substrate controlled addition to the dimer product (Scheme 28).  The 

disaccharide 78 would still be accessed via the glycosidation of cyclized, deoxygenated 

precursors 103 and 104.  The C4 stereocenter in aldehydes 103 and 104 would be set in a chelate 

controlled allylation of dimers 105 and 106 rather than the Lewis base catalyzed Mukaiyama 

aldol attempted previously, which proceeded via an open transition state.  Utilizing substrate 

controlled chelation required incorporation of a different dimerizing aldehyde, 37 or 38, so that 

the -center would contain a coordinating group for the transition state.  This scheme allows all 
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6 fixed stereocenters to be derived from a single reaction in which commercially available 

proline (100 g, $63.50; Sigma-Aldrich) is the only additional reagent. 

 
 

Scheme 28. Disaccharide retrosynthesis 

 
 
 
 

 Application of the proline catalyzed aldol dimerization on 37 yielded the PMB dimer 106 

(4:1 anti:syn, 98% ee)43,44 that was protected as the TES silyl ether 107 (TESOTf, 2,6-lutidine; 

52% 2 steps) (Scheme 29).  This silyl protection was less trivial than anticipated; decomposition 

related to Lewis acid induced retroaldol was found to be a major contributor to the reported 

modest yield.  The reaction necessitated the use of TESOTf in lieu of TBSOTf and higher 

reaction temperatures so that the hydroxyl group was protected immediately upon addition of the 

silating reagent, restricting the possibility of undesired decomposition pathways.  Aldehyde 107 

was then alkylated (MeMgBr) and directly oxidized (DMP) to generate ketone 108 in 85% yield 

over 2 steps.  Chelate controlled allylation of the ketone (nBu3SnAllyl, MgBr2·Et2O) gave 

alcohol product 109 in 72% yield (> 95:5 dr).69 

 
 
 
 
 
 
 
 

 



 38 

Scheme 29. L-Proline derived sugar forward synthesis 

 
a) 10 mol% L-proline, DMF; 4:1 (anti:syn), 98% ee. b) TESOTf, 2,6-lutidine, CH2Cl2, 0 °C; 2.8:1. c) MeMgBr, 
Et2O, ‒78 °C. d) DMP, NaHCO3, CH2Cl2; >95:5 dr. e) nBu3SnAllyl, MgBr2·Et2O, CH2Cl2, ‒78 °C-RT. DMP = Des-
Martin periodinane. 

 
 
 

 Continuing from silyl ether 109, Basic fluoride conditions effected silyl ether cleavage to 

give diol 110 in 93% yield (Scheme 30).  Cyclization of alkene 110 to pyran core 111 was 

accomplished using a one pot dihydroxylation/oxidative cleavage/cyclization (OsO4, NaIO4) in 

the presence of 2,6-lutidine, acting as a buffer for potential carboxylic acids/peroxides that may 

be formed during oxidative cleavage.70  Allyl protection of the resulting anomeric alcohol of 111 

(Ag2O, allyl bromide; 48%, 2 steps) generated the fully protected pyran core 112.71  Attempts to 

directly deprotect bisPMB ether 112 lead to formation of the PMP acetal or decomposition under 

more aggressive reaction conditions (CAN).  A compromise in which 112 was transformed into 

the PMP acetal 113 under oxidizing conditions (DDQ) followed by hydrolysis to the triol (aq 

AcOH) furnished 114 in good yield (70%, 2 steps).  It is also noted that this substrate was also 

constructed with benzyl protecting groups in exchange for PMB. Various methods failed to 

successfully deprotect the benzyl ethers with acceptable efficiency (LiDBB; Na Naphthalenide; 

ClO2SNCO).  Selective formation of the primary xanthate (pyridine, phenyl 

chlorothionoformate) followed by radical deoxygenation (Bu3SnH, AIBN) completed the 

synthesis of the appropriately functionalized glycosyl donor 115 (57%, 2 steps). 
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Scheme 30. L-Proline derived sugar forward synthesis 

 a) TBAF, THF, 0 °C; 1:1 (:). b) OsO4, NaIO4, 2,6-lutidine, dioxane:H2O (3:1).  c) AllylBr, Ag2O, DMF; > 95:5 
(:). d) DDQ, CH2Cl2:pH 7 buffer. e) 80% AcOH. f) pyridine, phenyl chlorothionoformate, CH2Cl2. g) nBu3SnH, 
AIBN, toluene, . TBAF = tetra-n-butylammonium fluoride. 

 
 

Opting for benzyl protecting groups in the synthesis of the D-Proline derived sugar, 

dimerization43,44 of benzyl protected acetoxyacetaldehyde 38 followed by silyl ether formation 

afforded the TES protected dimer 116 in 53% yield (Scheme 31).  The C4 stereocenter was set 

under the same chelate controlled allylation conditions69 seen previously (nBu3SnAllyl, 

MgBr2·Et2O) and methylation (Me3OBF4, proton sponge) of the resulting alcohol, avoiding a 

hard alkoxide and TES migration, yielded alkene 117 in 51% over 2 steps.  Replication of the 

oxidative cleavage conditions70 on alkene 117 followed by simultaneous silyl ether 

cleavage/cyclization/anomeric allyl protection under acidic conditions (PPTS, allyl alcohol) 

furnished the cyclized product 118 (53% 2 steps).  Reductive deprotection of dibenzyl ether 118 

with LiDBB afforded diol 119 in moderate yield (57%). 
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Scheme 31. D-Proline derived sugar and disaccharide synthesis 

 
a) 10 mol% D-proline, DMF; 4:1 (anti:syn), 98% ee. b) TESOTf, 2,6-lutidine, CH2Cl2, 0 °C; 2.8:1. c) nBu3SnAllyl, 
MgBr2·Et2O, CH2Cl2, ‒78 °C-RT. d) Me3OBF4, proton sponge, CH2Cl2. e) OsO4, NaIO4, 2,6-lutidine, dioxane:H2O 
(3:1). f) HOCH2C2H3, PPTS, 55 °C. g) LiDBB, THF, ‒78 °C. PPTS = pyridinium p-toluenesulfonate, LiDBB = 
lithium 4,4`-ditertbutylbiphenylide. 

 

To continue the synthesis, the C6 position of 119 was then deoxygenated under Barton’s 

conditions to generate alcohol 120 (54% 2 steps; Scheme 32).  TBS protection (2,6-lutidine, 

TBSOTf) to 121 (84%) followed by nucleophilic allyl deprotection mediated by a ruthenium 

species generated from [CpRu(MeCN)3]PF6 and quinaldic acid gave the glycoside accepter 

precursor 95 (72%; 80% conv).72  Formation of disaccharide 122 was ultimately accomplished 

by conversion of anomeric alcohol 95 to the bromide followed by treatment with alcohol 115 and 

lewis acidic activation via Ag2O-SiO2
73,74 (38%) with a nontrivial quantity of glycosidation 

occurring at the tertiary alcohol (18%).19 

 
 

Scheme 32. D-Proline derived sugar and disaccharide synthesis 

 
a) pyridine, phenyl chlorothionoformate, CH2Cl2. b) nBu3SnH, AIBN, toluene, . c) TBSOTf, 2,6-lutidine, CH2Cl2. 
d) [CpRu(MeCN)3]PF6, quinaldic acid, MeOH. e) TMSBr, C6H6 then 115, Ag2O‒SiO2, CH2Cl2, ‒78 °C. AIBN = 
azobisisobutyronitrile, TMSBr = bromotrimethylsilane. 
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Implementation of the proline-catalyzed dimerization into the synthesis of the apoptolidin 

C sugar substructures has been realized.  All 6 non-anomeric stereocenters present in the 

disaccharide have been set by a single catalytic reaction.  With completion of the sugar moieties 

and aglycone, future work involves their mergence into the natural product synthesis.  

Integration of these substructures into the preexisting aglycone synthesis would involve 

glycosidation of the C1-C11 and C12-C29 fragment prior to coupling.  It is anticipated that the end-

game synthesis of the natural product will be closely related to that of the aglycone. 
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4.0  EXPERIMENTAL 

 
General Information:  Optical rotations were measured in chloroform obtained directly from a 

bottle purchased from Sigma-Aldrich and measured on a Perkin-Elmer 241 digital polarimeter 

with a sodium lamp at ambient temperature and are reported as follows: [α]λ (c g/100mL).  

Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer.  NMR spectra were 

recorded on a Bruker Avance-300 (300 MHz) spectrometer with chemical shifts reported relative 

to residual CHCl3 (7.26 ppm) for 1H, CHCl3 (77.00 ppm) for 13C NMR, CH2Cl2 (5.30 ppm) for 

1H, and CH2Cl2 (53.52 ppm) for 13C spectra.  Unless otherwise stated, all reactions were carried 

out in dry glassware under a nitrogen atmosphere using standard inert atmosphere techniques for 

the manipulation of solvents and reagents.  Anhydrous solvents (CH2Cl2, THF, DMF, diethyl 

ether, pentane and toluene) were obtained by passage through successive alumina and Q5 

reactant-packed columns on a solvent purification system.  N,N-Diisopropylethylamine, N,N-

diisopropylamine and triethylamine were distilled under nitrogen from CaH2.  Flash 

chromatography was performed as previously described on EM silica gel 60 (230-240 mesh). 

 

 
3-(S)-Methyl-4-(S)-(trimethylsilylethynyl)oxetan-2-one (42):45 

Dimethylaluminum chloride (0.79 mL, 0.79 mmol, 1 M) was added to a 

solution of triamine 44 (0.48 g, 0.79 mmol) in 20 mL of CH2Cl2 at ambient 
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temperature and stirred for 2 h.  The reaction was cooled to −50 °C and DIPEA (2.74 mL, 15.8 

mmol) and propionyl bromide (1.40 mL, 15.8 mmol) was added in succession.  The reaction was 

stirred 3 min prior to the addition of aldehyde 34 (1.0 g, 7.9 mmol).  The reaction stirred for 12 h 

at −50 °C and was quenched at that temperature with 40 mL saturated aqueous NH4Cl.  The 

mixture was allowed to come to ambient temperature and the aqueous and organic portions were 

separated.  The aqueous portion was extracted with CH2Cl2 (3x 40 mL) and the organics were 

combined, dried (MgSO4), filtered, and concentrated.  1.16 g (81%) of the title compound was 

isolated after purification of the crude oil via flash chromatography (5-15% Et2O/hexanes).  [α]D 

+12.6 (c 1.02, CHCl3); 1H NMR (300 MHz, CDCl3) δ 5.12 (d, J = 6.6 Hz, 1H), 3.91-3.81 (dq, J = 

6.6, 7.8 Hz, 1H), 1.43 (d, J = 7.5, 3H), 0.21 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 171.3, 98.9, 

97.1, 64.8, 49.9, 10.6, −0.2; HRMS (EI) m/z calcd for (M+) C9H14O2Si: 167.0530; found: 

167.0528. 

 

 (2R,3S)-2-Methyl-5-(trimethylsilyl)pent-4-yne-1,3-diol (42b): 

Diisobutylaluminum hydride (11 mL, 11 mmol, 1 M) was added to a −50 °C 

solution of -lactone 42 (0.644 g, 3.54 mmol) in 25 mL of THF over 30 min.  The resulting 

reaction mixture was stirred for 30 min at −50 °C, was removed from the cold bath and was 

stirred an additional 30 min prior to being quenched with 30 mL saturated aqueous Rochelle’s 

salt.  The mixture was stirred for 2 h and was then extracted with Et2O (3x 30 mL) and the 

combined organics were dried (MgSO4) and concentrated.  The resulting crude product was 

routinely used crude in the next step; a small sample was further purified via column 

chromatography (20% EtOAc/hexanes) for characterization purposes.  1H NMR (300 MHz, 

CDCl3) δ 4.50 (d, J = 3.9 Hz, 1H), 3.87 (dd, J = 8.4, 10.5 Hz, 1H), 3.70 (dd, J = 4.2, 10.8 Hz, 
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1H), 2.24 (s, 1H), 2.17-2.07 (m, 1H), 0.95 (d, J = 6.9 Hz, 3H), 0.18 (s, 9H); 13C NMR (75 MHz, 

CDCl3) δ 104.6, 91.3, 67.1, 65.9, 40.2, 12.4, −0.1; HRMS (EI) m/z calcd for (M+) C9H18O2Si: 

168.0970; found: 168.0965. 

 

(2R,3S)-3-Hydroxy-2-methyl-5-(trimethylsilyl)pent-4-ynyl 4-

methylbenzenesulfonate (45): 

Pyridine (0.71 mL, 8.7 mmol), DMAP (0.084 g, 0.77 mmol), and TsCl (0.985 g, 5.22 mmol) 

were added successively a solution of diol 42b (0.644 g, 3.48 mmol) in 19 mL of CH2Cl2 at 

ambient temperature.  The resulting reaction mixture was allowed to stir for 20 h and was 

quenched with saturated aqueous NH4Cl (20 mL) and the organic and aqueous portions were 

separated.  The aqueous portion was washed with CH2Cl2 (3x 20 mL) and the combined organics 

were dried (MgSO4), concentrated, and the resulting crude product was purified via column 

chromatography (10-20% EtOAc/hexanes) to afford 0.554 g (46% over 2 steps) of the title 

compound.  [α]D +8.2 (c 1.03, CHCl3); IR (thin film): 3524, 2962, 1598, 1361, 1176 cm-1; 1H 

NMR (300 MHz, CDCl3) δ 7.79 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 4.42 (d, J = 4.2 Hz, 

1H), 4.14 (dd, J = 7.2, 9.6 Hz, 1H), 3.95 (dd, J = 6, 9.6 Hz, 1H), 2.45 (s, 3H), 2.08-2.16 (m, 1H), 

0.99 (d, J = 6.9, 3H), 0.14 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 145.0, 133.1, 130.1, 128.2, 

104.2, 91.5, 71.7, 63.4, 39.2, 21.9, 11.0, 0.0; HRMS (Q-Tof) m/z calcd for (M+ + Na) 

C16H24O4SiSNa: 363.1062; found: 363.1041.    
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 (2R,3S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-5-

(trimethylsilyl)pent-4-ynyl 4-methylbenzenesulfonate (45b): 

Imidazole (0.016 g, 0.24 mmol) was added to a mixture of alcohol 45 (0.042 g, 0.12 mmol) and 

TBSCl (0.027 g, 0.18 mmol) in 0.5 mL of DMF and the resulting solution was allowed to stir for 

24 h at ambient temperature.  The crude reaction mixture was passed through a plug of silica gel 

eluting with CH2Cl2.  The mixture was concentrated and was left under reduced pressure for 

about 12 h to yield 0.055 g (99%) of the title compound as a crude oil.  Sample purified further 

via flash chromatography (5% Et2O/hexanes) for characterization purposes.  [α]D +37.4 (c 1.02, 

CHCl3); IR (thin film): 2957, 2858, 2175, 1599, 1468, 1252cm-1; 1H NMR (300 MHz, CDCl3) δ 

7.79 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.1, 2H), 4.36 (d, J = 4.2 Hz, 1H), 4.08 (dd, J = 6.6, 9.6 Hz, 

1H), 3.92 (dd, J = 6.9, 9.6 Hz, 1H), 2.4 (s, 3H), 1.98-2.07 (m, 1H), 0.97 (d, J = 6.9 Hz, 3H), 0.83 

(s, 9H), 0.13 (s, 6H), 0.10 (s, 3H), 0.04 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 144.9, 133.3, 

130.0, 128.2, 105.3, 90.6, 71.9, 63.7, 40.1, 31.8, 25.9, 21.8, 18.3, 11.77, –0.1, –4.3, –5.0; HRMS 

(Q-Tof) m/z calcd for (M+ + Na) C22H38O4Si2SNa: 477.1927; found: 477.1902.    

 

tert-Butyl((3S,4S)-5-iodo-4-methyl-1-(trimethylsilyl)pent-1-yn-3-

yloxy)dimethylsilane (39): 

A solution of tosylate 45b (0.623 g, 1.37 mmol) and NaI (0.282 g, 1.88 mmol) was refluxed in 3 

mL dry acetone for 10 h.  The resulting reaction mixture was cooled to ambient temperature and 

passed through a plug of silica gel eluting with Et2O.  The volatiles were removed and the 

resulting crude product mixture was purified via column chromatography (1-5% EtOAc/hexanes) 

to yield 0.436 g (78%) of the title compound.  1H NMR (300 MHz, CDCl3)  4.42 (d, J = 4.5 

Hz, 1H), 3.35 (dd, J = 6.3, 6.6 Hz, 1H), 3.15 (dd, J = 6.6, 9.6 Hz), 1.84-1.92 (m, 1H), 1.11 (d, J = 
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6.6 Hz, 3H), 0.90 (s, 9H), 0.16 (s, 6H), 0.153 (s, 3H), 0.13 (s, 3H); HRMS (EI) m/z calcd for 

(M+) C15H31O1ISi2: 410.0958; found: 410.0957. 

 

 1-(tert-Butyldimethylsilyloxy)propan-2-one (46): 

Acetol (10.0 g, 0.135 mol) was added to a mixture of TBSCl (22.4 g, 0.149 mol) and imidazole 

(18.0 g, 0.270 mol) in 250 mL of CH2Cl2 at 0 C and the resulting reaction mixture was allowed 

to come to ambient temperature and stirred for 1 h.  The resulting crude mixture was passed 

through a plug of silica gel eluting with CH2Cl2.  The volatiles were removed and the resulting 

crude oil was purified via column chromatography (5%-10% EtOAc/hexanes) to yield 20.4 g 

(81%) of the title compound.  1H NMR (300 MHz, CDCl3) 4.15 (s, 2H), 2.17 (s, 2H), 0.92 (s, 

9H), 0.09 (s, 6H).    

 

 1-(tert-Butyldimethylsilyloxy)-2-methylbut-3-yn-2-ol (46b): 

Ethynylmagnesium bromide (58.3 mL, 28.2 mmol, 0.5 M in THF) was added 

dropwise to a −78 °C solution of silyloxypropanone 46 (4.86 g, 25.8 mmol) in 145 mL of 

THF:Et2O (2:1).  The resulting mixture stirred at −78 °C for 30 min, then was allowed to warm 

to ambient temperature and was stirred an additional 2 h prior to being quenched with 1 M citric 

acid (250 mL).  The resulting aqueous and organic portions were separated.  The aqueous layer 

was extracted with EtOAc (2x 250 mL) and the combined organics were dried (MgSO4), 

concentrated, and the resulting crude product was used in the next step without further 

purification.  1H NMR (300 MHz, CDCl3) 3.68 (d, J = 9.6 Hz, 1H), 3.51 (d, J = 9.3 Hz, 1H), 

2.95 (s, 1H), 2.37 (s, 1H), 1.43 (s, 3H), 0.92 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H). 
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1-(tert-Butyldimethylsilyloxy)-2-methylpenta-3,4-dien-2-ol (46c): 

Dry dioxane (157 mL) was added to a mixture of CuBr (1.66 g, 11.7 mmol) and 

paraformaldehyde (1.08 g, 37.2 mmol) in a 250 mL 3-neck round bottom flask equipped with a 

reflux condenser.  DIPA (3.92 mL, 27.4 mmol) and alkyne 46b (5.00 g, 23.5 mmol) were added 

successively to the mixture and the resulting suspension was heated at reflux for 14 h.  The 

mixture was allowed to cool to ambient temperature and was diluted with H2O (150 mL) and 

extracted with Et2O (3 x 150 mL).  The combined organics were washed with cold 10% aqueous 

NaCl (5 x 150 mL).  The organic portion was dried (MgSO4), concentrated and the resulting 

crude mixture was used in the next step without further purification.  1H NMR (300 MHz, 

CDCl3) 5.27 (t, J = 6.6 Hz, 1H), 4.86 (d, J = 6.6 Hz, 2H), 3.52 (d, J = 9.3 Hz, 1H), 3.45 (d, J = 

9.3 Hz, 1H), 1.27 (s, 3H), 0.91 (s, 9H), 0.07 (s, 6H). 

 

 (S)-1-(tert-Butyldimethylsilyloxy)-2-methylpenta-3,4-dien-2-yl acetate 

(47): 

Allenol 46c (5.00 g, 21.8 mmol) was heated in a solution of acetic anhydride (4.50 mL, 47.5 

mmol), DMAP (0.288 g, 21.8 mmol), and pyridine (1.78 mL, 22.4 mmol) at 40 C for about 12 

h.  The crude reaction mixture was cooled to ambient temperature and loaded directly onto a 

flash column.  The column was eluted (10% Et2O/hexanes) and the volatiles were removed to 

yield 3.7 g (62% over 3 steps) of the title compound as a translucent oil.  IR (thin film): 2955, 

2858, 1958, 1741, 1250 cm-1; 1H NMR (300 MHz, CDCl3) δ 5.55 (t, J = 6.9, 1H), 4.89 (dd, J = 

6.9, 11.1 Hz, 1H), 4.84 (dd, J = 6.6, 11.1 Hz), 3.83 (d, J = 10.2, 1H), 3.67 (d, J = 10.2, 1H), 1.99 

(s, 3H), 1.51 (s, 3H), 0.90 (s, 9H), 0.05 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 207.5, 171.7, 
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170.1, 93.4, 81.1, 77.8, 68.0, 25.8, 25.5, 22.1, 21.2, 18.2, 17.5, –5.0, –5.4; HRMS (EI) m/z calcd 

for (M+) C14H26O3Si: 270.1651; found: 270.1650.    

 

 (E)-tert-Butyl(4-iodo-2-methylpenta-2,4-dienyloxy)dimethylsilane (48): 

Allenic ester 47 (3.50 g, 13.0 mmol) was added to a mixture of LiI (3.92 g, 

29.5 mmol) and palladium acetate (0.042 g, 0.19 mmol) in 120 mL of acetic acid and the 

resulting reaction mixture was allowed to stir at 40 C for about 8 h.  Pentane and H2O were 

added to the solution and the resulting aqueous and organic portions separated.  The aqueous 

portion was extracted with pentane (3x) and the combined organic extracts were washed with 

H2O (1x), NaHCO3 (2x), and brine (1x).  The organic solution was dried (MgSO4), concentrated 

and the resulting crude oil was purified by flash chromatography (1-3% Et2O/hexanes) to yield 

3.42g (78%) of the title compound as a yellow oil.  IR (thin film):  2930, 2857, 1723, 1468, 

1255cm-1; 1H NMR (300 MHz, CDCl3) 6.16 (s, 1H), 5.97 (t, J = 1.2 Hz, 1H), 5.95 (d, J = .6 

Hz, 1H), 4.07 (d, J = .9 Hz, 2H), 1.74 (t, J = .6 Hz, 3H), 0.92 (s, 9H), 0.08 (s, 6H); 13C NMR (75 

MHz, CDCl3) δ 139.2, 131.1, 128.3, 128.0, 103.2, 67.1, 26.1, 18.6, 14.8, –5.1; HRMS (EI) m/z 

calcd for (M+) C12H23OSiI: 338.0563; found: 338.0562. 

 

 (E)-4-Iodo-2-methylpenta-2,4-dien-1-ol (48b): 

HF·pyr (2.15 mL, 70:30) was added to a solution of TBS ether 48 (0.650 g, 2.15 

mmol) in 50 mL THF/pyr (2:1) at ambient temperature and the reaction mixture was allowed to 

stir for 20 h before being quenched with 1 M NaOH (50 mL).  The aqueous portion was 

extracted with Et2O (3x 50 mL) and the combined organics were washed with saturated aqueous 

NH4Cl (50 mL) followed by brine (50 mL), dried (Na2SO4), and concentrated.  Purification of 
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the resulting crude oil via column chromatography (20% EtOAc/hexanes) yielded 0.420 g (98%) 

of the title compound as a pale yellow oil.  IR (thin film):  3315, 2913, 2854, 1646, 1067 cm-1; 

1H NMR (300 MHz, CDCl3) 6.16 (d, J = 0.6 Hz, 1H), 6.00 (t, J = 1.5 Hz, 1H), 5.98 (d, J = 0.6 

Hz, 1H), 4.09 (s, 2H), 1.81 (d, J = 1.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 139.3, 129.1, 

128.5, 67.3, 15.0; HRMS (EI) m/z calcd for (M+) C6H9OI: 223.9698; found: 223.9694.    

 

 (E)-4-Iodo-2-methylpenta-2,4-dienal (48c): 

Oxalyl chloride (0.030 mL, 0.33 mmol) was added dropwise to a −78 °C solution 

of DMSO (0.050 mL, 0.69 mmol) in 3 mL of CH2Cl2 in a 10 mL round bottom flask wrapped in 

aluminum foil.  The reaction mixture was stirred for 30 min and a solution of dienol 48b (0.050 

g, 0.21 mmol) in 2.5 mL of DCM was added.  The reaction mixture was stirred at −78 °C for 1.5 

h before the addition of NEt3 (0.10 mL, 0.69 mmol) and the resulting mixture was allowed to 

warm to ambient temperature and stirred an additional 25 min before being quenched with 3 mL 

saturated aqueous NH4Cl.  The resulting aqueous and organic portions were separated.  The 

aqueous portion was extracted with CH2Cl2 (3x mL) and the combined organics were washed 

with brine, dried (Na2SO4), and concentrated.  The resulting crude dark yellow oil was 

immediately dissolved in THF and carried on to the next step. 

 

Methyl 2-(diethoxyphosphoryl)propanoate (49):51 

A mixture of 2-bromomethylpropionate (6.7 mL, 66 mmol) and triethyl 

phosphite were heated at 140 °C for 48 h and the undesired byproduct bromoethane was removed 

under reduced pressure.  The resulting crude mixture was distilled under reduced pressure  (95 °C, 

1.0 mm Hg) to yield 7.69 g (52%) of the title compound.  1H NMR (300 MHz, CDCl3) 4.10-4.20 
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(m, 4H), 3.75 (s, 3H), 3.05 (dq, J = 7.5, 23.4 Hz, 1H) 1.44 (dd, J = 7.2, 16.5 Hz, 3H), 1.31-1.36 (m, 

6H).   

 

 (2E,4E)-Methyl 6-iodo-2,4-dimethylhepta-2,4,6-trienoate (40):  

 n-BuLi (0.80 mL, 1.2 mmol, 1.6 M in hexanes) was added to a solution of 

phosphonate ester 49 (0.280 g, 1.20 mmol) in 6 mL of THF at 0 C in a 10 mL 

round bottom flask wrapped in aluminum foil.  The solution stirred for 15 min and was then 

cooled to −78 °C before adding aldehyde 48c (0.100 g, 0.450 mmol) as a solution in 5 mL of 

THF.  The mixture was stirred for 3 h, then was warmed to ambient temperature and was stirred 

an additional 30 min before being quenched with 6 mL saturated aqueous NaHCO3.  The 

resulting solution was extracted with Et2O (3x 6 mL) and the combined organics were washed 

with brine, dried (Na2SO4), and concentrated.  The crude product was purified via flash 

chromatography (10% Et2O/Hexanes) to yield 0.078 mg (69%) of the title compound as a yellow 

oil.  IR (thin film): 2950, 1714, 1435, 1256, 1211, 1119 cm-1; 1H NMR (300 MHz, CDCl3) 7.28 

(s, 0.33H), 7.05 (s, 0.66H), 6.17 (s, 0.66H), 6.17 (q, J = 1.5 Hz, 0.33H), 6.07 (t, J = 1.5 Hz, 

0.66H), 6.03-6.04 (m, 0.66H), 5.95 (t, J = 1.5 Hz, 0.33H), 5.90 (d, J = 1.5 Hz, 0.33H), 3.71 (s, 

3H), 2.00 (d, J = 1.5 Hz, 2H), 1.97 (d, J = 1.2 Hz, 2H), 1.94 (d, J = 1.5 Hz, 1H), 1.88 (d, J = 1.5 

Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 140.5, 137.3, 137.1, 135.4, 135.3, 129.6, 129.1, 51.9, 

22.7, 17.5, 14.3, 13.9.  
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 (2E,4E,8R,9S)-Methyl 9-(tert-butyldimethylsilyloxy)-2,4,8-

    trimethyl-6-methylene-11-(trimethylsilyl)undeca-2,4-dien-10-

      ynoate (41): 

tert-Butyllithium (0.70 mL, 1.1 mmol, 1.5 M in hexanes) was added to a −78 °C solution of 

alkyl iodide 39 (0.21 g, 0.50 mmol) in  7.5 mL of Et2O.  The reaction was stirred for 5 min 

before adding 9-MeOBBN (1.2 mL, 1.2 mmol, 1 M in hexanes) and 7.5 mL of THF.  The 

resulting mixture was stirred for 10 min, then allowed to warm to ambient temperature and 

stirred for an additional 1 h.  A solution of Cs2CO3 (0.50 g, 1.6 mmol) in 0.4 mL of H2O was 

added to the reaction followed by triene 40 (0.088 g, 0.30 mmol) as a solution in 7.5 mL of 

DMF.  Pd(dppf)Cl2 (0.024 g, 0.030 mmol) was added to the reaction followed by AsPh3 (0.014 g, 

0.036 mmol) and the reaction mixture was allowed to stir for 18 h before being diluted with 15 

mL H2O and extracted with Et2O (3x 15 mL).  The combined organic extracts were dried 

(Na2SO4), concentrated, and the resulting crude product mixture was purified via column 

chromatography (1%-6% EtOAc/hexanes) to yield 0.063 g (47%) of the title compound.  1H 

NMR (300 MHz, CDCl3) 7.41 (s, 0.2H), 7.10-7.13 (m, 0.8H), 5.91-5.98 (m, 1H), 5.13 (s, 

0.8H), 5.02 (s, 0.2H), 4.99 (s, 0.8H), 4.86 (s, 0.2H), 4.2 (d, J = 4.8 Hz, 1H), 3.70-3.71 (m, 3H), 

2.45 (dd, J = 5.1, 13.5 Hz, 1H), 1.90-2.0 (m, 7H), 1.15 (d, J = 6.9 Hz, 0.6H), 0.88-0.91 (m, 

11.4H), 0.08-0.13 (m, 15H).   

 

 (2S,3S)-3-Hydroxy-2-methyl-5-(trimethylsilyl)pent-4-ynoic acid (62): 

A premixed solution of 0.2N LiOH (2.3 mL) and 30% H2O2 (4.6 mL) was 

added to a solution of -lactone 42 (0.050 g, 0.28 mmol) in 17 mL of THF at 0 °C and the 

resulting reaction mixture was allowed to warm to ambient temperature and was stirred for 1.5 h.  
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The reaction was then cooled to 0 °C before quenching with 2 M Na2SO3 (15 mL) dropwise and 

the mixture stirred for 30 min before adjustment to a pH of 3 with 1 M HCl.  The resulting 

solution was extracted with Et2O (5x, 20 mL) and the combined organics were dried (MgSO4).  

Removal of the volatiles yielded 0.039 g (69%) of the title compound as a crude product that was 

used in the next step without further purification.  1H NMR (300 MHz, CDCl3) 4.68 (d, J = 3.9 

Hz, 1H), 2.82 (dq, J = 3.9, 7.2 Hz, 1H), 1.43 (s, 1H), 1.34 (d, J = 7.2 Hz, 3H), 0.17 (s, 9H). 

 

 (2S,3S)-tert-Butyldimethylsilyl 3-(tert-butyldimethylsilyloxy)-2-

methyl-5-(trimethylsilyl)pent-4-ynoate (62b): 

A mixture of 2,6-lutidine (2.2 mL, 19 mmol) and carboxylic acid 62 (0.656 g, 3.28 mmol) in 2 

mL CH2Cl2 was cooled to −78 °C.  TBSOTf (1.9 mL, 8.3 mmol) was added dropwise to the 

reaction mixture and the reaction was stirred for 3 h.  The mixture was quenched at −78 °C with 

saturated aqueous NaHCO3 and the resulting solution was allowed to warm to ambient 

temperature prior to separation of the aqueous and organic portions.  The aqueous portion was 

extracted with CH2Cl2 (3x) and the combined organics were washed with 1 M NaHSO4.  The 

organics were then dried (MgSO4), concentrated, and purification of the crude oil by column 

chromatography (20% EtOAc/hexanes) yielded 0.660 g (47%) of the title compound.  1H NMR 

(300 MHz, CDCl3) 4.71 (d, J = 5.4 Hz, 1H), 2.58-2.67 (m, 1H), 1.24 (d, J = 6.9 Hz, 3H), 0.94 

(s, 9H), 0.88 (s, 9H), 0.26 (m, 6H), 0.15-0.16 (m, 9H), 0.10 (s, 3H).    

 

 (E)-tert-Butyldimethyl(2-methyl-4-(trimethylstannyl)penta-2,4-

dienyloxy)silane (60): 

N,N-Diisopropylethylamine (0.010 mL, 0.058 mmol), hexamethylditin (0.17 
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mL, 0.82 mmol), and Pd(PPh3)4 (0.017 g, 0.014 mmol) were added successively to a solution of 

diene 48 (0.100 g, 0.290 mmol) in 3 mL of benzene.  The reaction was heated for 1 h at 80 °C, 

then was allowed to cool to ambient temperature and was stirred an additional 2 h.  The reaction 

mixture was quenched with 3 mL saturated aqueous CuSO4 and the resulting aqueous and 

organic portions were separated.  The aqueous portion was extracted with hexanes (1x 3 mL) and 

the combined organics were dried (Na2SO4) and passed through a plug of Celite eluting with 

EtOAc.  The volatiles were removed and purification of the resulting crude oil via column 

chromatography (1:5:100-1:0:25 EtOAc/toluene/hexanes) yielded 0.083 g (78%) of the title 

compound.  IR (thin film): 3038, 2930, 2857, 1463, 1078 cm-1; 1H NMR (300 MHz, CDCl3) 

6.14 (dd, J = 1.2, 2.7 Hz, 1H), 5.68 (dd, J = 1.8, 3.3 Hz, 1H), 5.36 (dd, J = 1.2, 3.3 Hz, 1H), 

4.07 (s, 2H), 1.66 (s, 3H), 0.92 (s, 9H), 0.15 (s, 9H), 0.07 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 

151.3, 134.1, 128.8, 127.3, 68.6, 26.2, 18.6, 14.8, −5.0, −8.8; HRMS (EI) m/z calcd for 

(M−CH3
+) C14H29OSiSn: 361.1010; found: 361.0994. 

 

 (5S,6S,E)-2,2,3,3,6,10,13,13,14,14-Decamethyl-8-methylene-5-

((trimethylsilyl)ethynyl)-4,12-dioxa-3,13-disilapentadec-9-en-7-one 

(61):  

Oxalyl chloride (0.27 mL, 3.2 mmol) was added to a solution of TBS ester 62b (0.695 g, 1.62 

mmol) in 15 mL benzene at ambient temperature.  A catalytic amount of DMF (15 L) was 

added to the reaction and the reaction mixture was stirred for 24 h and the volatiles were 

removed.  The resulting crude oil was azeotroped with benzene (3x, 15 mL) and the resulting 

crude acid chloride was left under reduced pressure for 4 h.  The acid chloride was then 

dissolved in 15 mL benzene and to the resulting solution was added Pd2(dba)3 (0.077 g, 0.084 
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mmol), DIPEA (0.090 mL, 0.45 mmol), and organostannne 60 (0.714 g, 1.89 mmol), 

successively.  The reaction stirred at ambient temperature for 30 min before the addition of 

another portion of Pd2(dba)3 (0.077 g, 0.084 mmol).  The reaction stirred an additional 1 h before 

passing the crude reaction mixture through a plug of silica gel eluting with EtOAc and the 

volatiles were removed.  Purification of the crude oil via column chromatography (0.5%-2.5% 

Et2O/hexanes) yielded 0.622 g (75%) of the title compound.  IR (thin film): 2931, 2858, 1680, 

1463, 1252 cm-1; 1H NMR (300 MHz, CDCl3) 6.24 (t, J = 1.2 Hz, 1H), 6.17 (s, 1H), 5.68 (s, 

1H), 4.50 (d, J = 7.8 Hz, 1H), 4.12 (s, 2H), 3.41 (quintet, J = 6.9 Hz, 1H), 1.70 (s, 3H), 1.17 (d, J 

= 6.6 Hz, 3H), 0.92 (s, 9H), 0.89 (s, 9H), 0.09-0.13 (m, 18H); 13C NMR (75 MHz, CDCl3) δ 

203.3, 144.7, 140.5, 125.4, 119.5, 106.3, 68.3, 66.1, 65.0, 48.7, 26.2, 26.0, 18.6, 18.5, 15.5, 15.4, 

13.8, −0.1, −4.3, −4.9, −5.1; HRMS (EI) m/z calcd for (M+) C27H52O3Si3: 508.3224; found: 

508.3226. 

 

(Z)-N'-((3S,4R,E)-3,9-Dihydroxy-4,8-dimethyl-6-methylene-1-

(trimethylsilyl)non-7-en-1-yn-5-ylidene)-4-

methylbenzenesulfonohydrazide (58): 

Trifluoroacetic acid (14.3 L, 0.186 mmol) was added to a solution of ketone 61 (0.358 g, 0.690 

mmol) and hydrazide (0.158 g, 0.840 mmol) and the resulting reaction mixture was allowed to 

stir for 1.5 h before quenching with H2O.  The organic phase was separated, dried (MgSO4) and 

the crude product was purified via flash column chromatography (5% EtOAc/hexanes) to yield 

110 mg (23.5%) of the title compound.  1H NMR (300 MHz, CDCl3)  7.81 (d, J = 8.4 Hz, 2H), 

7.27 (d, J = 6.9 Hz, 2H), 5.90 (s, 1H), 5.36 (s, 1H), 5.04 (s, 1H), 4.46 (d, J = 5.1 Hz, 1H), 3.98 (s, 
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2H), 2.65-2.54 (m, 1H), 2.41 (s, 3H), 1.15 (d, J = 6.9 Hz, 3H), 0.91 (s, 9H), 0.79 (s, 9H), 0.10 (s, 

6H), 0.09-0.07 (m, 12H). 

 

(2E,4E,6R,7S)-2,4,6-Trimethyl-9-(trimethylsilyl)nona-2,4-dien-8-

yne-1,7-diol (63): 

Catecholborane (0.042 mL, 0.148 mmol) was added to a solution of 

hydrazone 58 (0.050 mg, 0.074 mmol) in 1 mL CHCl3 at 0 °C and the resulting solution stirred 

for 2 h.  NaOAc•3H2O (0.150 mg, 0.740 mmol) and 1 mL CHCl3 was added and the resulting 

suspension was refluxed for 14 h before being passed through a plug of SiO2 eluting with Et2O 

(20 mL).  The volatiles were removed in vacuo and the crude product was purified via flash 

column chromatography (5% EtOAc/hexanes) to yield 18 mg (51.0%) of the title compound.  1H 

NMR (300 MHz, CDCl3) mixture of E:Z isomers (~2:1)  5.94 (s, 1H), 5.86 (s, 1H), 5.20-5.17 

(m, 2H), 4.15-4.13 (m, 2H), 4.06-4.05 (m, 4H), 2.73-2.47 (m, 2H), 1.79 (s, 3H), 1.75 (s, 3H), 

1.61 (s, 3H), 1.25 (s, 3H), 1.03 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.92-0.90 (m, 36H), 

0.15-0.05 (m, 42H). 

 

(3S,4S)-3-Methyl-4-((trimethylsilyl)ethynyl)oxetan-2-one (42): 

Magnesium(II) chloride (1.90 g, 20.0 mmol) and TMSQd (0.800 g, 2.00 

mmol) were stirred in 20 mL Et2O for 5 min prior to the addition of 50 mL 

CH2Cl2 and the resulting suspension was cooled to −78 °C.  To this suspension was added 

sequentially iPr2Net (8.96 mL, 51.6 mmol), aldehyde 34 (2.52 g, 20.0 mmol) and propionyl 

chloride (3.44 mL, 39.2 mmol) dissolved in 10 mL of CH2Cl2 dropwise over 1 h via syringe 

pump.  The reaction mixture was allowed to stir for 10 h before dilution with Et2O (60 mL) and 
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the entire reaction contents were passed through a plug of SiO2 eluting with Et2O.  The volatiles 

were removed in vacuo and the crude product was purified via flash column chromatography (5-

15% Et2O/hexanes) to yield 3.35 g (92.0%) of the title compound.  [α]D +12.2 (c 1.0, CHCl3); 1H 

NMR (300 MHz, CDCl3) δ 5.12 (d, J = 6.6 Hz, 1H), 3.91-3.81 (dq, J = 6.6, 7.8 Hz, 1H), 1.43 (d, 

J = 7.5, 3H), 0.21 (s, 1H). 

 
 
 

(2S,3S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-5-(trimethylsilyl)pent-4-

ynal (68): 

KHMDS (0.11 mL, 0.060 mmol) was added to ethanethiol (50.2 L, 0.660 mmol) in 5.5 mL of 

THF at 0 °C and was stirred for 5 min prior to the addition of -lactone 42 (100 mg, 0.550 

mmol).  The reaction was warmed to ambient temperature and was stirred for 2 h before being 

cooled to −78 °C.  2,6-Lutidine (0.130 mL, 1.10 mmol) was added to the reaction mixture 

followed by TBSOTf (0.22 mL, 0.94 mmol) and the reaction was stirred for 1 h before being 

quenched with H2O (4 mL).  The emulsion was warmed to ambient temperature and the mixture 

was extracted with Et2O (3x 5 mL).  The organic portions were combined and washed with 1 M 

NaHSO4 (aq), dried (MgSO4), and the volatiles were removed in vacuo to yield 194 mg of the 

intermediate thioester xx that was used without further purification in the subsequent reaction. 

 (i-Bu)2AlH (1.1 mL, 1.1 mmol, 1 M in THF) was added to the crude thioester (197 mg, 

0.550 mmol) in CH2Cl2 at −78 °C over 30 min and the resulting solution was stirred an 

additional 30 min.  The reaction mixture was quenched with excess MeOH (6.5 mL) dropwise 

over 15 min prior to the addition of H2O (10 mL).  The mixture was extracted with CH2Cl2 (3x 

10 mL) and the combined organics were dried (MgSO4) and concentrated in vacuo.  Purification 

via flash chromatography (2% EtOAc/hexanes) yielded 123 mg (76% over 2 steps) of the title 
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compound.  [α]D −45.6 (c 1.10, CHCl3); IR (thin film): 2958, 2933, 2896, 2712, 2175, 1730, 

1463, 1252, 1143, 1086, 1031 cm-1; 1H NMR (300 MHz, CDCl3) δ 9.77 (d, J = 1.2 Hz, 1H), 4.70 

(d, J = 4.5 Hz, 1H), 2.48-2.55 (m, 1H), 1.18 (d, J = 6.9 Hz, 3H), 0.86 (s, 9H), 0.16 (s, 6H), 0.15 

(s, 3H), 0.11 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 203.7, 104.7, 91.8, 63.8, 52.6, 25.9, 19.0, 

9.3, −0.1, −4.2, −4.9; HRMS (EI) m/z calcd for (M+) C15H30O2Si2: 298.1784; found: 298.1770. 

 

(3S,4R)-6,6-Dibromo-3-tert-butyldimethylsilyloxy-4-methyl-1-

(trimethylsilyl)hex-5-en-1-yne (64): 

Triphenylphosphine (12.1 g, 46.3 mmol) was added at 0 °C to a solution of carbontetrabromide 

(7.65 g, 23.2 mmol) in 42 mL of CH2Cl2.  Aldehyde 68 (3.51 g, 11.6 mmol) as a solution in 116 

mL CH2Cl2 was added to the resulting reaction mixture.  The reaction mixture was warmed to 

room temperature and stirred for 20 min before being quenched with H20 (350 mL).  The organic 

and aqueous portions were separated and the aqueous portion was extracted with CH2Cl2 (2x 350 

mL).  The organics were combined, dried (MgSO4), and the volatiles were removed in vacuo.  

Purification via flash chromatography (4% EtOAc/hexanes) afforded 4.22 g (80%) of the title 

compound.  [α]D −39.6 (c 1.00, CHCl3); IR (thin film): 2957, 2931, 2897, 2858, 2174, 1722, 

1621, 1462, 1252, 1142, 1103, 1026 cm-1; 1H NMR (300 MHz, CDCl3) δ 6.36 (d, J = 9.3 Hz, 

1H), 4.30 (d, J = 5.1 Hz, 1H), 2.70 (ddq, J = 5.1, 6.0, 9.6 Hz, 1H), 1.09 (d, J = 6.6 Hz, 3H), 0.91 

(s, 9H), 0.17 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 140.5, 105.4, 90.8, 

89.1, 66.0, 45.4, 26.0, 18.5, 14.3, −0.0, −4.3, −4.8; HRMS (EI) m/z calcd for (M+) 

C15H27O1Si2Br2: 436.9967; found: 436.9965. 
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(E)-3-Iodo-2-methylprop-2-en-1-ol (69): 

Trimethylaluminum (77.4 mL, 154 mmol, 2 M in hexanes) was added to Cp2ZrCl2 in 

100 mL dichloroethane at 0 °C and propargyl alcohol (3.00 mL, 51.5 mmol) was added to the 

resulting solution.  The reaction mixture was stirred for 7 h at ambient temperature before 

cooling to –42 °C and addition of iodine (19.62 g, 77.40 mmol) dissolved in THF (50 mL).  The 

reaction mixture stirred for 20 min prior to quenching with 80 mL saturated aqueous K2CO3 and 

120 mL saturated aqueous Rochelle’s salt and the emulsion was allowed to stir vigorously 

overnight before extracting with Et2O (3x 200 mL).  The organic portions were combined, dried 

(MgSO4) and the crude product was purified via flash column chromatography (30% 

EtOAc/hexanes) to yield 5.58 g (55.0%) of the title compound.  1H NMR (300 MHz, CDCl3) δ 

6.28 (s, 1H), 4.12 (s, 2H), 1.84 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 147.4, 77.6, 67.4, 21.6. 

 

 (2E,4E)-Ethyl-5-iodo-2,4-dimethylpenta-2,4-dienoate (72): 

(Carbethoxyethylidene)triphenylphosphorane (11.7 g, 32.2 mmol) was 

added to a suspension of alcohol 69 (5.27 g, 26.6 mmol) and MnO2 (23.5 g, 

268 mmol) in 526 mL CH2Cl2 at ambient temperature.  The resulting heterogeneous mixture was 

stirred for 24 h before being passed through a plug of SiO2 eluting with EtOAc/hexanes (1:5, 300 

mL).  Purification via flash chromatography (10% EtOAc/hexanes) afforded 6.18 g (83%) of the 

title compound as a yellow oil.  IR (thin film): 3065, 2980, 1709, 1244, 1114, 1030 cm-1; 1H 

NMR (300 MHz, CDCl3) δ 7.05 (s, 1H), 6.40 (s, 1H), 4.22 (q, J = 6.9 Hz, 2H), 2.01 (s, 3H), 1.95 

(s, 3H), 1.31 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 168.4, 143.9, 138.8, 128.5, 85.5, 

61.2, 24.8, 14.5, 14.4; HRMS (EI) m/z calcd for (M+) C9H13O2I: 279.9960; found: 279.9954. 

 



 59 

(2E,4E)-Ethyl 2,4-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)penta-2,4-dienoate (65): 

Vinyl iodide 72  (6.30 g, 22.7 mmol) as  a solution in 77 mL DMSO was 

added to a nitrogen flushed flask containing (Bpin)2 (16.2 g, 68.0 mmol), 

PdCl2(dppf)∙CH2Cl2 (548 mg, 0.630 mmol), and KOAc (6.65 g, 68.0 mmol).  The resulting 

suspension was warmed to 85 °C and was stirred at that temperature for 20 min.  The mixture 

was cooled to ambient temperature, diluted with Et2O (500 mL), and the organic solution was 

washed with H2O (2x 500 mL).  The organics were dried (MgSO4) and the volatiles were 

removed in vacuo.  Purification via flash chromatrography (10% EtOAc/hexanes) afforded 6.1 g 

(97%) of the title compound as a yellow oil.  IR (thin film): 2979, 2934, 1708, 1623, 1595, 1443, 

1327, 1242, 1143, 1034, 968 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.12 (s, 1H), 5.38 (s, 1H), 4.20 

(q, J = 7.2 Hz, 2H), 2.12 (s, 3H), 1.98 (s, 3H), 1.28-1.32 (m, 15H); 13C NMR (75 MHz, CDCl3) δ 

169.0, 154.9, 143.2, 128.4, 83.3, 61.1, 25.1, 21.5, 14.5, 14.3; HRMS (EI) m/z calcd for (M+) 

C15H25BO4: 280.1846; found: 280.1838. 

 

(2E,4E,6Z,8R,9S)-Ethyl 6-bromo-9-(tert-

butyldimethylsilyloxy)-2,4,8-trimethyl-11-

(trimethylsilyl)undeca-2,4,6-trien-10-ynoate (73): 

Pd(PPh3)4 (880 mg, 0.760 mmol) was added to a solution of dibromide 64 (3.45 g, 7.60 mmol) 

and vinyl borane 65 (6.41 g, 22.9 mmol) in 39 mL THF/H2O (3:1) at ambient temperature.  The 

suspension stirred for 5 min, TlOEt (1.00 mL, 13.5 mmol) was added, and the suspension was 

stirred an additional 40 min.  The mixture was diluted with Et2O (~75 mL) and quenched with 1 

M NaHSO4 (~60 mL) before being passed through a plug of celite.  The resulting eluent was 
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then washed with brine (60 mL), the organics were dried (MgSO4), and the volatiles were 

removed in vacuo.  Purification of the crude product via flash chromatography (10:1:89 

toluene/EtOAc/hexanes to 5% EtOAc/Hexanes) yielded 2.65 g (66.3%) of the title compound as 

a single regioisomer by 1H-NMR.  [α]D −22.2 (c 1.03, CHCl3); IR (thin film): 2958, 2931, 2899, 

2858, 2173, 1711, 1630, 1462, 1366, 1252, 1107, 1022, 934 cm-1; 1H NMR (300 MHz, CDCl3) δ 

7.13 (s, 1H), 6.09 (d, J = 0.9 Hz, 1H), 5.81 (dd, J = 1.2, 9 Hz, 1H), 4.32 (d, J = 5.1 Hz, 1H), 4.21 

(q, J = 6.9 Hz, 2H), 2.93 (ddq, J = 5.4, 6.6, 9 Hz, 1H), 2.03 (d, J = 1.2 Hz, 3H), 2.01 (d, J = 1.2, 

3H), 1.31 (t, J = 7.2 Hz, 3H), 1.1 (d, J = 6.6 Hz, 3H), 0.89 (s, 9H), 0.15 (s, 6H), 0.14 (s, 3H), 0.11 

(s, 3H); 13C NMR (75 MHz, CDCl3) δ 168.9, 141.4, 135.8, 135.5, 133.9, 129.8, 128.5, 120.7, 

106.6, 90.5, 66.8, 61.1, 44.3, 26.0, 18.5, 15.2, 14.5, 14.4, 0.0, −4.2, −4.8; HRMS (EI) m/z calcd 

for (M−CH3)+ C24H40O3Si2Br: 511.1699; found: 511.1690. 

 

(2E,4E,6E,8R,9S)-Ethyl 9-(tert-butyldimethylsilyloxy)-2,4,6,8-

tetramethyl-11-(trimethylsilyl)undeca-2,4,6-trien-10-ynoate 

(74): 

Dimethyl zinc (2.27 mL, 4.54 mmol, 2 M in toluene) was added to a solution of palladium 

bistributylphosphine (138 mg, 0.270 mmol) in 15 mL THF at 0 °C and the resulting mixture was 

stirred for 5 min.  Triene 73 (1.91 g, 3.63 mmol) as a solution in 8 mL THF was added to the 

reaction mixture at 0 °C and the resulting solution was warmed to ambient temperature and 

stirred for 45 min.  The reaction was then quenched with H2O (40 mL) and the resulting 

emulsion was extracted with Et2O (3x 40 mL).  The combined organic layers were washed with a 

saturated aqueous solution of NaHCO3 (40 mL) followed by brine (40 mL), dried (MgSO4), and 

the volatiles were removed in vacuo.  The crude product was purified via flash chromatography 
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(10% EtOAc/Hexanes) to yield 1.5 g (90%) of the title compound as a ~6.6:1 mixture of olefin 

isomers as detected by 1H-NMR (calculated from δ 1.79 to 1.86).  [α]D +91.2 (c 1.01, CHCl3); IR 

(thin film): 2958, 2931, 2857, 2172, 1708, 1614, 1462, 1388, 1366, 1251, 1208, 1112, 1023, 939, 

842 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.16 (s, 1H), 6.01 (s, 1H), 5.32 (d, J = 9.9 Hz, 1H), 

4.26-4.16 (m, 3H), 2.76-2.68 (m, 1H), 2.07 (d, J = 1.2 Hz, 3H), 2.03 (d, J = 1.5 Hz, 3H), 1.79 (d, 

J = 0.9 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H), 1.05 (d, J = 6.6 Hz, 3H), 0.90 (s, 9H), 0.14 (s, 12H), 

0.12 (s, 3H);  resonances for the minor diastereomers were observable at: δ 6.41 (s, 0.15H), 5.81 

(dd, J = 1.2, 9 Hz, 0.14H), 4.35-4.32 (m, 0.28H), 2.55-2.60 (m, 0.13H), 2.07 (d, J = 1.2 Hz, 

0.54H), 1.86 (s, 3H), 1.12 (d, J = 6.9 Hz, 0.40H), 0.97 (d, J = 6.9 Hz, 0.69H), 0.19 (s, 0.94H), 

0.16 (s, 0.62H);  13C NMR (75 MHz, CDCl3) δ 168.4, 144.0, 139.1, 133.7, 132.9, 132.1, 126.1, 

107.0, 89.6, 67.8, 60.8, 40.1, 26.0, 18.6, 18.5, 17.7, 16.7, 14.6, 14.3, 0.0, −4.2, −4.8; HRMS (Q-

TOF) m/z calcd for (M+Na)+ C26H46O3NaSi2: 485.2883; found: 485.2836. 

 

(2E,4E,6E,8R,9S)-Ethyl 9-hydroxy-2,4,6,8-

tetramethylundeca-2,4,6-trien-10-ynoate (75): 

TBAF (0.86 mL, 0.86 mmol, 1 M in THF) was added to a solution 

of triene 74 (0.100 g, 0.220 mmol) in 4.3 mL THF at 0 °C  and the resulting reaction mixture 

was stirred for 60 min at that temperature.  The reaction mixture was allowed to come to ambient 

temperature and was stirred an additional 20 min before being quenched with a saturated 

aqueous NH4Cl solution (10 mL).  The resulting emulsion was extracted with Et2O (3x 10 mL) 

and the organic portions were combined and dried (MgSO4).  The crude product was purified via 

flash chromatography (15-20% EtOAc/Hexanes) to yield 0.873 g (83%) of the title compound.  

[α]D +40.8 (c 1.00, CHCl3); IR (thin film): 3455, 3300, 2977, 1700, 1610, 1448, 1369, 1254, 
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1115, 1029 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.16 (s, 1H), 6.03 (s, 1H), 5.42 (dd, J = 9.9, 1.2 

Hz, 1H), 4.3 (broad s, 1H), 4.21 (q, J = 7.2, 2H), 2.85 (ddq, J = Hz, 1H), 2.46 (d, J = 2.1 Hz, 1H), 

2.03 (d, J = 1.5 Hz, 3H), 2.01 (d, J = 1.2 Hz, 3H), 1.96 (d, J = 6.9 Hz, 1H), 1.83 (d, J = 1.2 Hz, 

3H), 1.30 (t, J = 7.2 Hz, 3H), 1.11 (d, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 169.3, 

143.7, 136.1, 135.1, 132.9, 131.9, 126.4, 88.6, 74.2, 66.8, 60.9, 38.3, 18.6, 17.7, 16.3, 14.5, 14.4; 

HRMS (Q-TOF) m/z calcd for (M+Na)+ C17H24O3Na: 299.1623; found: 299.1601.   

 

(2E,4E,6E,8R,9S,10E)-Ethyl 9-hydroxy-2,4,6,8-tetramethyl-

11-(tributylstannyl)undeca-2,4,6,10-tetraenoate (29): 

Tributyltin hydride (0.680 mL, 2.54 mmol) was added to a 

solution of alkyne 75 (248 mg, 0.899 mmol) and PdCl2(PPh3)2 

(22 mg, 0.029 mmol) dissolved in 2.95 mL of THF at 0 °C.  The resulting reaction solution was 

allowed to come to ambient temperature and was stirred for 30 min.  The volatiles were removed 

and the crude reaction product was loaded directly onto a flash column and eluted (10% 

EtOAc/Hexanes) to yield 0.346 g (68%) of the title compound and 0.101 g (20%) of the 

undesired regioisomer (3.4:1).  [α]D +73.6 (c 1.03, CHCl3); IR (thin film): 3479, 2957, 2926, 

2871, 1705, 1705, 1609, 1459, 1370, 1253, 1208, 1174, 1114, 1019 cm-1; 1H NMR (600 MHz, 

CDCl3) δ 7.15 (s, 1H), 6.18 (dd, J = 1.2, 19.2 Hz, 1H), 6.05 (dd, J = 4.8, 19.8 Hz, 1H), 6.01 (s, 

1H), 5.28 (d, J = 10.2 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 3.97 (app q, J = 6.0 Hz, 1H), 2.72-2.619 

(m, 1H), 2.03 (s, 3H), 1.98 (s, 3H), 1.80 (s, 3H), 1.61 (d, J = 5.4 Hz, 1H), 1.51-1.45 (m, 6H), 

1.32-1.28 (m, 12H), 1.05 (d, J = 7.2 Hz, 3H), 0.88 (m, 12H); 13C NMR (75 MHz, CDCl3) δ 

168.3, 148.9, 143.9, 139.0, 134.0, 133.1, 132.0, 129.0, 126.2, 60.8, 39.4, 29.3, 27.5, 18.6, 17.5, 
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16.7, 14.5, 14.3, 13.7, 8.7; HRMS (Q-TOF) m/z calcd for (M+Na)+ C29H52O3NaSn: 591.2836; 

found: 591.2813. 

 

 (2E,4E,6E,8R,9R,10E,12E,17R,19S)-ethyl 20-

((2S,3R,4S,5S,6R)-6-((R)-2-(tert-

butyldimethylsilyloxy)-3-methoxypropyl)-2-methoxy-

3,5-dimethyl-4-(triethylsilyloxy)tetrahydro-2H-pyran-

2-yl)-9-hydroxy-17-methoxy-2,4,6,8,12-pentamethyl-

19-(triethylsilyloxy)icosa-2,4,6,10,12-pentaenoate 

(29b):  To a flame dried vessel was added 0.151 g of vinyl stannane 29 (0.266 mmol, 4 equiv), 

and 0.060 g of vinyl iodide 30 (0.066 mmol, 1.0 equiv).  The mixture was subjected to high 

vacuum for one hour before refilling the vessel with N2(g).  To this was added 1.3 mL of degassed 

DMF at ambient temperature, before adding 0.152 g of Ph2PO2NBu4 (0.332 mmol, 5 equiv).  The 

vessel was opened to atmosphere momentarily to add 1.7 mg of Pd2Cl2(MeCN)2 (0.0066 mmol, 

0.1 equiv).  The reaction mixture immediately turned black.  The reaction was covered in foil 

and stirred at ambient temperature for 15 hours before being quenched with 13.0 mL of a 1:1 

solution of Et2O to hexanes.  This heterogeneous mixture was passed through a plug of celite, 

rinsing with more of the same 1:1 solution.  The yellowish organic eluent was washed with brine 

(3 x 20 mL) before being dried (Na2SO4), and concentrated.  The crude yellow oil was purified 

by flash chromatography (10 % EtOAc/Hex) affording 48 mg (75%) of the title compound as a 

12:1 mixture of isomers as assayed by 500 MHz 1H NMR.    [α]22
D   +54.7 (c 0.19, CHCl3). IR 

(thin film): 2925, 1705, 1460, 1376, 1250, 1068, 1004 cm-1; 1H NMR (500 MHz, CDCl3) δ 7.15 

(s, 1H), 6.22 (d, J = 15.5 Hz, 1H), 6.01 (s, 1H), 5.57 (dd, J = 15.5, 7.0 Hz, 1H), 5.47 (t, J = 7.0 
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Hz, 1H), 5.27 (d, J = 10.0 Hz, 1H), 4.18 (q, J = 5.0 Hz, 2H), 4.05-4.02 (m, 1H), 3.98-3.94 (m, 

1H), 3.93-3.88 (m, 1H), 3.83-3.77 (m, 2H), 3.38-3.29 (m, 5H), 3.26-3.22 (m, 4H), 3.10 (s, 3H), 

2.70-2.65 (m, 1H), 2.16-2.10 (m, 2H), 2.02 (s, 3H), 1.96 (s, 3H), 1.92-1.86 (m, 1H), 1.79 (s, 3H), 

1.76-1.70 (m, 4H), 1.66-1.61 (m, 3H), 1.50-1.44 (m, 2H), 1.42-1.32 (m, 4H), 1.31-1.24 (m, 5H), 

1.05 (d, J = 6.5 Hz, 3H), 0.98-0.90 (m, 21H), 0.88 (s, 9H), 0.86 (d, J = 7.0 Hz, 3H), 0.63-0.57 (m, 

12H), 0.06 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 169.3, 143.6, 138.9, 136.5, 133.7, 133.4, 132.9 

(2C), 131.8, 136.9, 125.9, 101.7, 77.8, 73.0, 70.2, 68.2, 66.7, 60.6, 58.7, 55.6, 47.0, 43.0, 40.0, 

39.4, 36.9, 32.8, 28.4, 27.8, 26.8, 25.9 (3C), 24.5, 18.2, 17.5, 17.3, 16.5, 14.3, 14.1, 13.6, 12.5, 

12.3, 7.0 (3C), 6.9 (3C), 5.4, 5.31 (3C), 5.3 (3C), −3.8, −4.7; HRMS (ES) m/z calcd for 

C58H110O10NaSi3 (M + Na)+: 1073.7305; found: 1073.7268. 

 

 (2E,4E,6E,8R,9R,10E,12E,17R,19S)-20-

((2S,3R,4S,5R,6R)-6-((R)-2-(tert-

butyldimethylsilyloxy)-3-methoxypropyl)-4-hydroxy-

2-methoxy-3,5-dimethyltetrahydro-2H-pyran-2-yl)-

9,19-dihydroxy-17-methoxy-2,4,6,8,12-

pentamethylicosa-2,4,6,10,12-pentaenoic acid (77):  

Lithium hydroxide monohydrate (36.8 mg, 0.876 mmol) was added to a solution of ethyl ester 

29b (91.9 mg, 0.087 mmol) in 1.7 mL THF:MeOH:H2O (6:2:1) and the resulting heterogeneous 

mixture was stirred for 48 h at ambient temperature.  The reaction was quenched with 2 mL 

saturated aqueous NH4Cl and the resulting emulsion was extracted with EtOAc (5x 5 mL).  The 

resulting organic portions were combined, dried (MgSO4), and the volatiles removed in vacuo.  

Purification via flash chromatography (5-8% MeOH/CH2Cl2) yielded 7 mg (10%) of the title 
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compound and 52 mg (~68%) of a mixture of variously SiEt3 protected products that was carried 

on to the title compound in the following reaction. 

Deprotection:  The mixture of protected seco-acid (52 mg, 0.0572 mmol, 1.0 equiv) was 

added to 8.34 mL of a 1:1 mixture of MeOH and CH2Cl2.  The solution was cooled to −15° C in 

a MeOH and ice bath.  4.3µL (0.0572 mmol, 1.0 equiv) of CF3CO2H dissolved in 0.6 mL of 

CH2Cl2 and added dropwise.  The solution was maintained at −15° C for 30 minutes before being 

quenched with sat. aq. NaHCO3 (10 mL).  The aqueous layer was extracted with EtOAc (3 x 20 

mL), the combined organic layers were dried over Na2SO4, concentrated, and purified by flash 

column (5% MeOH/CH2Cl2), to yield 26.5 mg (58%) of the seco-acid which was combined with 

the purified material from the previous step, giving an overall yield of 33.5 mg (48% over two 

steps).  [α]D +58.8 (c 0.82, CHCl3); IR (thin film): 3420, 2928, 1683, 1459, 1250, 1067, 834, 

776; 1H NMR (600 MHz, CDCl3) δ 6.22 (d, J = 15.6 Hz, 1H), 6.07 (s, 1H), 5.57 (dd, J = 6.6, 15 

Hz, 1H), 5.47 (t, J = 7.2 Hz, 1H), 5.27 (d, J = 9.6 Hz, 1H), 4.13 (m, 1H), 4.04 (t, J = 6.6 Hz, 1H), 

3.94-3.88 (m, 2H), 3.81 (dd, J = 4.2, 10.8 Hz, 1H), 3.48-3.44 (m, 1H), 3.35 (s, 3H), 3.3 (s, 3H), 

3.17 (s, 3H), 2.71-2.67 (m, 1H), 2.12-2.15 (m, 2H), 1.98 (s, 3H), 1.93-1.87 (m, 3H), 1.86-1.83 

(m, 2H), 1.82 (s, 3H), 1.72 (s, 3H), 1.65-1.60 (m, 4H), 1.50-1.41 (m, 4H), 1.37-1.32 (m, 2H), 

1.31-1.27 (m, 2H), 1.06 (d, J = 6.6 Hz, 3H), 1.02 (d, J = 6.6 Hz, 3H), 0.93-0.90 (m, 3H), 0.89-

0.88 (m, 9H), 0.06 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 173.1, 145.9, 140.2, 136.5, 134.3, 

133.1, 133.0, 132.9, 131.8, 127.2, 124.6, 102.2, 78.8, 77.6, 72.4, 69.8, 68.4, 66.0, 58.8, 56.8, 

47.9, 42.2, 40.8, 39.5, 39.4, 39.3, 38.9, 38.5, 32.9, 28.3, 27.8, 27.0, 26.8, 25.2, 18.2, 18.2, 17.5, 

17.3, 16.4, 16.6, 13.9, 13.7, 13.6, 12.5, 11.5, 6.7, 5.1, 5.0, −3.9, −4.7; HRMS (Q-TOF) m/z calcd 

for (M+Na)+ C44H78O10NaSi: 817.5262; found: 817.5232. 
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 (3E,5E,7E,9R,10R,11E,13E,18R,20S)-20-

(((2S,3R,4S,5R,6R)-6-((R)-2-(tert-

butyldimethylsilyloxy)-3-methoxypropyl)-4-hydroxy-2-

methoxy-3,5-dimethyltetrahydro-2H-pyran-2-

yl)methyl)-10-hydroxy-18-methoxy-3,5,7,9,13-

pentamethyloxacycloicosa-3,5,7,11,13-pentaen-2-one 

(77b):  To an ambient temperature solution of 25.0 mg of seco-acid 77 (0.0314 mmol, 1.0 equiv) 

in 7.44 mL of THF was added 0.174 mL of NEt3 (1.25 mmol, 4.0 equiv), followed by 19.5 µL of 

2,4,6-trichlorobenzoyl chloride (0.125 mmol, 40.0 equiv) dropwise.  The reaction was stirred in a 

foil-covered flask at ambient temperature for 15 hours, whereupon it was diluted with 7.44 mL 

of toluene, and added to 930 mL of toluene containing 0.767 g of DMAP (6.28 mmol, 200 

equiv).  The addition took place via syringe pump over 1 hour [followed by two rinses of toluene 

(1.0 and 0.5 mL) added over 20 and 10 minutes respectively].  The reaction was then allowed to 

stir at ambient temperature for 24 hours, covered in foil, before being concentrated to 

approximately 200 mL via rotovap.  The toluene solution was then quenched with NH4Cl (200 

mL) and extracted with EtOAc (3 x 200 mL).  The combined organic layers were dried with 

Na2SO4, filtered, and concentrated.  The crude mixture was purified by flash column 

chromatography on IATRO beads with 2% MeOH in CH2Cl2 yielding 13.9 mg (57%) of the 

desired lactone based on HMQC, HMBC, and cosy correlations.  The reaction also yielded 2.0 

mg (8%) of a minor product believed to be macrolactonization on the pyran oxygen. [α]21
D   +10.2 

(c 0.23, CHCl3). IR (thin film): 3409, 2925, 1693, 1460, 1384, 1248, 1096 cm-1; 1H NMR (500 

MHz, CDCl3) δ 7.36 (d, J = 4.2 Hz, 1H), 7.11 (s, 1H), 6.08 (app. d, J = 15 Hz, 1H), 6.07 (app. s, 

1H), 5.51 (app. t, J = 7.2 Hz, 1H), 5.34 (dd, J = 15.6, 8.4 Hz, 1H), 5.13 (d, J = 9.6 Hz, 1H), 5.04 
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(app. t, J = 10.2 Hz, 1H), 3.95-3.89 (m, 2H), 3.86-3.81 (m, 2H), 3.37 (dd, J = 10.2, 4.2 Hz, 1H), 

3.35 (s, 3H), 3.33-3.28 (m, 1H), 3.27 (s, 3H), 3.12 (s, 3H), 2.92 (br. q, J = 7.2 Hz, 1H), 2.55-2.50 

(m, 1H), 2.27-2.21 (m, 1H), 2.12 (s, 3H), 2.10 (app. d, J = 5.4 Hz, 1H), 2.07 (s, 3H), 2.10-1.90 

(m, 3H), 1.88 (s, 3H), 1.86-1.80 (m, 2H), 1.78-1.72 (m, 2H), 1.67-1.63 (m, 4H), 1.46 (ddd, J = 

14.4, 7.2, 3.6 Hz, 2H), 1.39 (app. d, J = 5.4 Hz, 1H), 1.35-1.25 (m, 2H), 1.14 (d, J = 6.6 Hz, 3H), 

1.11 (d, J = 6.6 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H), 0.87 (s, 9H), 0.06 (s, 3H), 0.06 (s, 3H); 13C 

NMR (75 MHz, CDCl3) δ 168.7, 145.1, 144.5, 140.3, 137.3, 133.0, 132.8, 132.1, 131.8, 128.3, 

128.2, 127.1, 123.8, 101.5, 79.7, 79.0, 77.8, 72.4, 70.6, 70.0, 68.5, 58.8, 57.3, 47.2, 41.3, 39.5, 

38.9, 38.4, 37.0, 33.5, 29.7, 28.0, 26.7, 25.9 (3C), 18.2, 17.5, 17.3, 16.3, 13.7, 12.0, 11.3, 4.9,  

−3.8, −4.7; HRMS (ES) m/z calcd for C44H76O9SiNa (M + Na)+: 799.5156; found: 799.5152. 

 

(3E,5E,7E,9R,10R,11E,13E,18R,20S)-20-

(((2S,3R,4S,5R,6R)-2,4-dihydroxy-6-((R)-2-hydroxy-3-

methoxypropyl)-3,5-dimethyltetrahydro-2H-pyran-2-

yl)methyl)-10-hydroxy-18-methoxy-3,5,7,9,13-

pentamethyloxacycloicosa-3,5,7,11,13-pentaen-2-one 

(3b):  Protected aglycone 77b (7.5 mg; 0.00965 mmol, 1.0 

equiv) was dissolved in 1.37 mL of acetonitrile and cooled to −35° C in a refrigerator.  To this 

solution was added ~34.7 mg of H2SiF6 (~154 mg of a 20-25% solution in H2O; 0.2413 mmol, 

25 equiv.; measured as 10 drops from a 20 gauge needle).  The solution remained in the 

refrigerator for 46 hours before being quenched at −35 °C with 0.200 mL of NEt3.  The resulting 

mixture was allowed to sit for 30 minutes at −35° C before quenching with sat. aq. NaHCO3 (3 

mL) and extracting with EtOAc (5 x 5.0 mL).  The organic layer was combined and dried over 
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Na2SO4, before being purified by flash chromatography (5% MeOH/CH2Cl2 on IATRO beads), 

yielding 4.0 mg (64%) of the aglycone as a white solid in 90.6% purity as determined by HPLC 

analysis (20% isopropanol/hexane, 1ml/min).  [α]19
D   + 56.1 (c 0.15, CHCl3). IR (thin film): 3385, 

2924, 1670, 1457, 1250, 1095 cm-1; 1H NMR (700 MHz, MeOD) δ 7.16 (s, 1H), 6.10-6.08 (m, 

2H), 5.54 (dd, J = 9.1, 5.6 Hz, 1H), 5.31 (dd, J = 16.1, 9.1 Hz, 1H), 5.18-5.15 (m, 2H), 4.18 

(broad d, J = 10.5 Hz, 1H), 3.84-3.81 (m, 1H), 3.78-3.75 (m, 2H), 3.38-3.34 (m, 5H), 3.29-3.25 

(m, 4H), 2.91 (broad q, J = 7.0 Hz, 1H), 2.48-2.43 (m, 1H), 2.33-2.28 (m, 1H), 2.13 (s, 3H), 

2.12-2.09 (m, 1H), 2.06 (s, 3H), 1.98-1.93 (m, 2H), 1.88 (s, 3H), 1.82-1.74 (m, 5H), 1.73-1.68 

(m, 2H), 1.65 (s, 3H), 1.62-1.57 (m, 1H), 1.38-1.31 (m, 5H), 1.13 (d, J = 6.3 Hz, 3H), 1.04 (d, J = 

6.3 Hz, 3H), 0.89 (d, J = 7.0 Hz, 3H); 13C NMR (175 MHz, MeOD) δ 170.9, 147.1, 146.0, 142.5, 

137.9, 134.4, 133.4, 133.0, 132.9, 129.4, 124.7, 100.2, 80.9, 80.4, 78.6, 73.6, 71.3, 68.4, 68.3, 

59.3, 57.4, 46.0, 43.0, 41.0, 40.8, 38.6, 38.1, 34.3, 28.8, 28.0, 17.9, 17.8, 16.7, 14.1, 12.4, 12.2, 

5.6; HRMS (ES) m/z calcd for C37H60O9Na (M + Na)+: 671.4135; found: 671.4108. 

 

(R)-4-methyloxetan-2-one (89): 

Trimethylsilyl quinidine (0.500 g, 1.26 mmol) dissolved in 25 mL CH2Cl2 was added 

to LiClO4 (0.400 g, 3.77 mmol) in 12.5 Et2O and the resulting suspension was cooled to −78 °C 

before sequential addition of iPr2Net (5.50 mL, 31.6 mmol) and acetaldehyde (0.950 g, 17.0 

mmol).  To the solution was added acetyl chloride (1.78 mL, 25.2 mmol) dissolved in 6.25 mL 

CH2Cl2 dropwise over 3 h via syringe pump and the resulting reaction mixture was stirred for 14 

h before dilution with Et2O (10 mL) and  the entire contents was passed through a plug of SiO2 

eluting with Et2O to yield 2.95 g (88%) of the crude title compound, used in the next step 
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without further purification.  1H NMR (300 MHz, CDCl3) δ 4.69 (app q, J = 5.7 Hz, 1H), 3.57 

(dd, J = 5.7, 16.2 Hz, 1H), 3.06 (dd, J = 4.2, 16.2 Hz, 1H), 1.57 (d, J = 6.0 Hz, 3H). 

 

(R)-3-Hydroxy-N-methoxy-N-methylbutanamide (89b): 

Dimethylaluminum chloride (33.9 mL, 33.9 mmol, 1 M in hexanes) was added 

to N,O-dimethylhydroxylamine hydrochloride (3.39 g, 34.9 mmol) in 121 mL CH2Cl2 and the 

resulting mixture was stirred for 30 min before cooling to −45 °C.  Crude -lactone 89 (1.46 g, 

17.0 mmol) was added and the resulting reaction mixture was allowed to stir for ~14h before 

quenching with Rochelle’s salt (150 mL) and extracting with CH2Cl2 (3x 150 mL).  The 

combined organic portions were dried (MgSO4) and the volatiles removed to obtain 2.50 g of the 

crude alcohol, used in the next step without further purification. 

 To a −78 °C solution of 2,6-lutidine (5.40 mL, 46.4 mmol) and the crude alcohol (2.30 g, 

15.64 mmol) in 32 mL CH2Cl2 was added TBSOTf (4.70 mL, 20.5 mmol) and the resulting 

reaction mixture was allowed to stir for 3 h before quenching with saturated aqueous NaHCO3 

(30 mL) and extracting with CH2Cl2 (3x 30 mL).  The combined organic portions were washed 

with 1 M aqueous NaHSO4 (90 mL), dried (MgSO4), and the resulting crude product purified via 

flash column chromatography (30% EtOAc/hexanes) to yield 2.95 g (66% over 3 steps) of the 

title compound.  1H NMR (300 MHz, CDCl3) δ 4.35 (app sextet, J = 6.3 Hz, 1H), 3.70 (s, 3H), 

3.17 (s, 3H), 2.76 (dd, J = 6.9, 14.1 Hz, 1H), 2.35 (dd, J = 5.4, 14.7 Hz, 1H), 1.21 (d, J = 6.0 Hz, 

3H), 0.86 (s, 9H), 0.07 (s, 3H), 0.04 (s, 3H). 

 

(R)-3-((tert-Butyldimethylsilyl)oxy)butanal (90): 

To a −78 °C solution of weinreb amide 89b (2.95 g, 11.3 mmol) was added 
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iPr2AlH (13.6 mL, 13.6 mmol, 1 M in hexanes) and the resulting reaction mixture was allowed to 

stir for 20 min before quenching with saturated aqueous Rochelle’s salt (100 mL).  The emulsion 

was allowed to stir vigorously over 2 h and the resulting mixture was extracted with Et2O (3x 

100 mL).  The combined organic portions were died (MgSO4) and the crude product was purified 

via flash column chromatography (NEt3 treated SiO2, 5% EtOAc/hexanes) to yield 2.02 g (88%) 

of the title compound.  1H NMR (300 MHz, CDCl3) δ 9.80 (dd, J = 2.1, 2.7 Hz, 1H), 4.35 (app 

sextet, J = 6.3 Hz, 1H), 2.55 (ddd, J = 3.0, 6.9, 15.6 Hz, 1H), 2.46 (ddd, J = 2.1, 4.8, 15.6 Hz, 

1H), 1.23 (d, J = 6.0 Hz, 3H), 0.87 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H). 

 

(2S,3R)-3-((tert-Butyldimethylsilyl)oxy)-2-((phenylamino)oxy)butan-1-ol 

(91): 

L-Proline (4.83 mg, 0.042 mmol) was added to a solution of aldehyde 90 (0.05 g, 0.25 mmol) 

and nitrosobenzene (22.5 mg, 0.21 mol) in 0.42 mL DMSO and the resulting green reaction 

mixture stirred until the color changed to orange whereupon the reaction mixture was pipeted 

into a solution of NaBH4 (31.5 mg, 0.830 mmol) in 0.21 mL EtOH.  The resulting reaction 

mixture was stirred for 1 h before quenching with saturated aqueous NaHCO3 (2 mL) and 

extracting with CH2Cl2 (3x 3 mL).  The organic portions were combined, dried (MgSO4), and the 

crude product was purified via flash column chromatography (20% EtOAc/hexanes) to yield 

16.0 mg (20%; 72% BRSM) of the title compound.  1H NMR (300 MHz, CDCl3) δ 7.39-7.33 (m, 

2H), 7.12-7.04 (m, 3H), 4.31-4.25 (m, 1H), 4.07-4.06 (m, 2H), 3.80 (dd, J = 3.6, 7.5 Hz, 1H), 

3.05 (t, J = 5.4 Hz, 1H), 1.37 (d, J = 6.3 Hz, 3H), 1.01 (s, 9H), 0.21 (s, 3H), 0.20 (s, 3H). 
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(2R,3R)-3-Hydroxy-2,4-bis((triisopropylsilyl)oxy)butanal (92): 

Aldehyde 83 (0.790 g, 3.66 mmol) and L-proline (41.3 mg, 0.359 mmol) were 

stirred in 15.6 mL DMF for 36 h before dilution with EtOAc (50 mL) and quenching with H2O 

(30 mL).  The separated organic portion was washed with brine (30 mL), dried (MgSO4), and the 

crude product was purified via flash column chromatography (2.5% Et2O/hexanes) to yield 574 

mg (72%) of the title compound as a 3:1 mixture of diastereomers.  1H NMR (300 MHz, CDCl3) 

δ 9.74 (d, J = 0.9 Hz, 1H), 9.69 (d, J = 2.1 Hz, 1H), 4.29-4.24 (m, 2H), 4.01-3.95 (m, 2H), 3.87-

3.75 (m, 4H), 2.75 (d, J = 9.6 Hz, 1H), 2.38 (d, J = 5.7 Hz, 1H), 1.08-1.05 (m, 84 H).  

 

(2R,3R)-3-((Triethylsilyl)oxy)-2,4-bis((triisopropylsilyl)oxy)butanal (93): 

To a −78 °C solution of 2,6-lutidine (0.540 mL, 4.67 mmol) and alcohol 92 

(0.500 g, 1.15 mmol) in 3.9 mL CH2Cl2 was added TBSOTf (0.390 mL, 1.73 mmol) and the 

resulting reaction mixture was allowed to stir for 2.5 h before quenching with saturated aqueous 

NaHCO3 (10 mL) and extracting with CH2Cl2 (3x 10 mL).  The combined organic portions were 

washed with 1 M aqueous NaHSO4 (30 mL), dried (MgSO4), and the resulting crude product was 

purified via flash column chromatography (30% EtOAc/hexanes) to yield 0.469 mg (74.7%) of 

the title compound.  1H NMR (300 MHz, CDCl3) δ 9.61 (d, J = 1.8 Hz, 1H), 4.23 (t, J = 1.8 Hz, 

1H), 4.01 (ddd, J = 1.5, 4.8, 9.9 Hz, 1H), 3.87 (t, J = 9.0 Hz, 1H), 3.52 (dd, J = 4.8, 9.0 Hz, 1H), 

1.13-1.04 (m, 42H), 0.97 (t, J = 8.1 Hz, 9H), 0.61 (q, J = 7.5 Hz, 6H). 

 

(3R,4S,5R)-5-((Triethylsilyl)oxy)-4,6-bis((triisopropylsilyl)oxy)-3-

((trimethylsilyl)oxy)hexanal (97): 

To a −70 °C solution of silyl enol ether 96 (1.15 g, 6.35 mmol) and 
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aldehyde 93 (0.538 g, 0.980 mmol) in 6.46 mL THF was added NO2C6H4ONBu4 (0.52 mL, 0.26 

mmol, 0.5 M in DMF) and the resulting reaction mixture was stirred for 15 h before dilution with 

Et2O (20 mL).  The entire reaction contents were then passed through a plug of SiO2 eluting with 

Et2O and the crude product was purified via flash column chromatography (1% EtOAc/hexanes) 

to yield 0.636 g (89%) of the title compound.  1H NMR (300 MHz, CDCl3) δ 7.35 (s, 2H), 6.27 

(t, J = 2.1 Hz, 2H), 4.54 (d, J = 8.4, 1H), 4.17 (s, 1H), 3.91 (dt, J = 1.2, 5.7 Hz, 1H), 3.68 (dd, J = 

10.2, 21.3 Hz, 1H), 3.66 (dd, J = 10.2, 19.2 Hz, 1H), 3.40 (dd, J = 1.8, 15.6 Hz, 1H), 3.10 (dd, J 

= 8.7, 15.6 Hz, 1H), 1.16-1.07 (m, 42H), 0.92 (t, J = 7.8 Hz, 9H), 0.57 (q, J = 7.8, 6H), −0.02 (s, 

6H). 

 

(4R,5S,6R)-4-Hydroxy-5-((triisopropylsilyl)oxy)-6-

(((triisopropylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-one (99): 

Trifluoroacetic acid (30.0 L, 0.392 mmol) was added to amide 97 (0.288 g, 

0.313 mmol) in 8 mL CH2Cl2:MeOH (1:1) and the resulting reaction mixture was stirred for 3.5 

h before adding an additional aliquot of trifluoroacetic acid (15.0 L, 0.196 mmol).  The reaction 

mixture stirred for 30 min before addition of MeONa (0.222 g, 4.10 mmol) in four aliquots over 

3 h.  The reaction was quenched with pH 7 phosphate buffer (12 mL), extracted with EtOAc (3x 

12 mL), and the combined organic portions were washed with brine and dried (Na2SO4).  The 

crude product was purified via flash column chromatography (10-20% EtOAc/hexanes) to yield 

120 mg (81%) of the title compound.  1H NMR (300 MHz, CDCl3) δ 4.78 (d, J = 5.7 Hz, 1H), 

4.37 (d, J = 8.4 HZ, 1h), 3.86 (dd, J = 3.9, 9.9 Hz, 1H), 3.81 (dd, J = 4.5, 9.9 Hz, 1H), 3.48-3.42 

(m, 1H), 2.82 (dd, J = 6.0, 18.0 Hz, 1H), 2.46 (d, J = 17.7 Hz, 1H), 1.12-1.03 (m, 42H). 
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(4R,5S,6R)-5-((Triisopropylsilyl)oxy)-6-

(((triisopropylsilyl)oxy)methyl)tetrahydro-2H-pyran-2,4-diol (99b): 

To a −78 °C solution of lactone 99 (0.089 g, 0.163 mmol) in 1.9 mL CH2Cl2 

was added iPr2AlH (0.465 mL, 0.465 mmol, 1 M in heptanes) and the resulting reaction mixture 

was allowed to stir for 2 h before quenching with Rochelle’s salt (3 mL).  The resulting emulsion 

was allowed to stir for an additional 2 h before extracting with CH2Cl2 (3x 3 mL).  The organic 

portions were combined, dried (MgSO4) and the crude product was purified via flash column 

chromatography (10-15% EtOAc/hexanes) to yield 88 mg (76%) of the title compound.  1H 

NMR (300 MHz, CDCl3) δ 5.4 (bs, 1H), 4.53 (dd, J = 1.5, 3.3 Hz, 1H), 4.29 (d, J = 5.7 Hz, 1H), 

3.78 (dd, J = 4.8, 10.2 Hz, 2H), 3.60 (dd, J =  6.0, 10.5 Hz, 1H), 3.49 (dd, J = 6.0, 10.5 Hz, 1H), 

3.49 (dd, J = 5.7, 10.5 Hz, 1H), 2.04-2.03 (m, 2H), 1.09-1.05 (m, 42H), −0.10 (s, 9H). 

 

(2R,3S,4R)-6-(Benzyloxy)-3-((triisopropylsilyl)oxy)-2-

(((triisopropylsilyl)oxy)methyl)tetrahydro-2H-pyran-4-ol (100): 

Pyridinium p-toluenesulfonate (27.0 mg, 0.108 mmol) was added to a 

solution of diol 99b (330 mg, 0.693 mmol) and benzyl alcohol (0.326 mL, 3.16 mmol) in 5.4 mL 

CH2Cl2 and the resulting reaction mixture was stirred for 48 h before passing the entire reaction 

contents through a plug of SiO2 eluting with 20% EtOAc/hexanes.  The volatiles were removed 

and the crude product was purified via flash column chromatography (5-10% EtOAc/hexanes) to 

yield 348 mg (86%) of the title compound.  1H NMR (300 MHz, CDCl3), mixture of 

:anomers (~2:1 ) δ 7.35-7.28 (m, 10H), 5.39 (dd, J = 4.2, 5.4 Hz, 1H), 5.22 (dd, J = 1.5, 5.7 

Hz, 1H), 4.79 (d, J = 12.3 Hz, 1H), 4.72 (d, J = 11.7 Hz, 1H), 4.58 (dt, J = 3.3, 6.9 Hz, 1H), 4.49 

(d, J = 12.0, 1H), 4.49 (d, J = 12.3, 1H), 4.02 (d, J = 6.6 Hz, 1H), 4.01 (d, J = 6.9, 1H), 3.84-3.79 
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(m, 4H), 3.59-3.52 (m, 2H), 2.79 (d, J = 6.0 Hz, 1H), 2.63 (d, J = 5.1 Hz, 1H), 2.32-2.19 (m, 2H), 

2.04 (dq, J = 1.5, 13.8 Hz, 1H), 1.08-1.05 (m, 84H).   

 

(((2R,3S,4R)-6-(Benzyloxy)-4-methoxy-2-

(((triisopropylsilyl)oxy)methyl)tetrahydro-2H-pyran-3-

yl)oxy)triisopropylsilane (100b): 

Sodium hydride (20.8 mg, 0.518, 60% in mineral oil) was added to a solution of alcohol 100 

(118 mg, 0.208 mmol) in 0.78 mL THF at 0 °C and the solution was warmed to ambient 

temperature and stirred for 1 h.  The solution was cooled to 0 °C, MeI (64.7 L, 1.04 mmol) was 

added and the resulting reaction mixture was stirred for 2 h at ambient temperature before 

quenching with saturated aqueous NH4Cl (2 mL) and extracting with Et2O (3x 2 mL).  The 

organic portions were combined, dried (Na2SO4) and the crude product was purified via flash 

column chromatography (2-4% EtOAc/hexanes) to yield 85 mg (72%) of the title compound.  1H 

NMR (300 MHz, CDCl3), mixture of :anomers (~4:1 ) only major anomer tabulated δ 7.38-

7.29 (m, 5H), 5.25 (dd, J = 1.5, 5.7 Hz, 1H), 4.82 (d, J = 12.3 Hz, 1H), 4.51-4.45 (m, 2H), 4.12 

(t, J = 3.6 Hz, 1H), 3.83 (dd, J = 4.8, 10.8 Hz, 1H), 3.77 (dd, J = 6.0, 10.5 Hz, 1H), 3.48 (s, 3H), 

3.40 (dd, J = 4.5, 6.0 Hz, 1H), 2.29 (ddd, J = 6.0, 7.5, 13.5 Hz, 1H), 2.00 (dt, J = 2.7, 13.5 Hz, 

1H), 1.07-1.05 (m, 42H). 

 

(2R,3S,4R)-6-(Benzyloxy)-2-(hydroxymethyl)-4-methoxytetrahydro-2H-

pyran-3-ol (101): 

tetra-n-Butylammonium fluoride (3.88 mL, 3.88 mmol, 1 M in THF) was added 

to a 0 °C solution of silyl ether 100b (564 mg, 0.970 mmol) in 9.7 mL THF and the resulting 
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reaction mixture was allowed to stir for 2 h before quenching with saturated aqueous NH4Cl (20 

mL) and extracting with CH2Cl2 (3x 30 mL).  The organics were combined, dried (MgSO4) and 

the crude product was purified via flash column chromatography (85% EtOAc/hexanes) to yield 

241 mg (93%) of the title compound.  1H NMR (300 MHz, CDCl3), mixture of :anomers 

(~1:1 ) δ 7.38-7.29 (m, 10H), 5.27 (d, J = 4.5 Hz, 1H), 5.24 (d, J = 5.4 Hz, 1H), 4.78 (d, J = 12.0 

Hz, 1H), 4.70 (d, J = 11.7 Hz, 1H), 4.60 (dd, J = 7.2, 13.5 Hz, 1H), 4.52 (d, J = 11.7 Hz, 1H), 

4.47 (d, J = 12.0 Hz, 1H), 4.28 (bs, 1H), 4.11-4.09 (m, 1H), 3.93 (dd, J = 3.6, 12.0 Hz, 1H), 3.87 

(d, J = 6.6 Hz, 1H), 3.82 (dd, J = 6.0, 14.1 Hz, 1H), 3.73-3.68 (m, 2H), 3.49 (s, 3H), 3.47 (s, 3H), 

3.34-3.26 (m, 2H), 2.34 (dd, J = 6.9, 13.2 Hz, 1H), 2.26-2.07 (m, 4H).  

 

O-(((2R,3S,4R)-6-(Benzyloxy)-3-hydroxy-4-methoxytetrahydro-2H-

pyran-2-yl)methyl) O-phenyl carbonothioate (101b): 

o-Phenyl chlorothionoformate (132 L, 0.900 mmol) was added to a 

solution of diol 101 (241 mg, 0.900 mmol) in 1.8 mL CH2Cl2 and the 

resulting solution was allowed to stir for 30 min before the addition of pyridine (90 L, 1.13 

mmol).  The reaction mixture was allowed to stir ~14 h before quenching with H2O (10 mL), 

extracting with CH2Cl2 (3x 10 mL), and washing with brine (10 mL).  The combined organic 

portions were dried (Na2SO4) and the crude product was purified via flash column 

chromatography (20-25% EtOAc/hexanes) to yield 227 mg (62%) of the title compound.  1H 

NMR (300 MHz, CDCl3) δ 7.45-7.27 (m, 8H), 7.14-7.11 (m, 2H), 5.31 (d, J = 4.2 Hz, 1H), 4.79 

(d, J = 11.7 Hz, 1H), 4.76 (dd, J = 4.8, 11.7 Hz, 1H), 4.59 (dd, J = 5.7, 11.7 Hz, 1H), 4.52 (d, J = 

12.0 Hz, 1H), 4.43-4.29 (m, 1H), 4.18 (dd, J = 2.1, 5.4 Hz, 1H), 3.56-3.51 (m, 1H), 3.50 (s, 3H), 

2.84 (d, J = 9.9 Hz, 1H), 2.20 (ddd, J = 4.8, 6.3, 13.8 Hz, 1H), 2.09 (d, J = 13.2 Hz, 1H). 
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(2R,3R,4R)-6-(Benzyloxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-ol 

(102): 

Tributyltin hydride (0.451 mL, 1.68 mmol) was added to a solution of thionoformate 101b (227 

mg, 0.560 mmol) and AIBN (26.2 mg, 0.160 mmol) in 33 mL toluene and the resulting reaction 

mixture was heated to ~115 °C and was stirred at that temperature for 3 h.  The volatiles were 

removed and the crude product was purified via flash column chromatography (0-20-30% 

EtOAc/hexanes) to yield 102 mg (72%) of the title compound.  1H NMR (300 MHz, CDCl3) δ 

7.35-7.28 (m, 5H), 5.30 (d, J = 4.2 Hz, 1H), 4.78 (d, J = 12.0 Hz, 1H), 4.51 (d, J = 12.0 Hz, 1H), 

4.19 (ddt, J = 2.1, 6.6, 10.2 Hz, 1H), 3.99 (dd, J = 2.1, 4.5 Hz, 1H), 3.37 (dd, J = 4.2, 6.3 Hz, 

1H), 3.35 (s, 3H), 2.81 (d, J = 10.2 Hz, 1H), 2.13 (ddd, J = 4.8, 6.3, 13.8 Hz, 1H), 2.04 (dd, J = 

0.9, 13.5 Hz, 1H), 1.19 (d, J = 6.6 Hz, 3H). 

 

(2S,3S)-2,4-Bis((4-methoxybenzyl)oxy)-3-((triethylsilyl)oxy)butanal 

(107): 

Triethylsilyltrifluoromethane sulfonate (1.91 mL, 8.46 mmol) was added to a solution of diol 106 

(2.6 g, 7.2 mmol) and 2,6-lutidine (2.49 mL, 25.1 mmol) in 14.3 mL CH2Cl2 at 0 C.  The 

reaction mixture was stirred for 30 min before quenching with saturated aqueous NaHCO3 (20 

mL) and extracting with CH2Cl2 (3x 20 mL).  The combined organic portions were then washed 

with 1 M NaHSO4 (60 mL), dried (MgSO4) and purified via flash column chromatography (5-

15% EtOAc/hexanes) to yield 2.75 g (81%) of the title compound.  [α]D +3 (c 1.04, CHCl3); IR 

(thin film): 2999, 2954, 2875, 2836, 1732, 1613, 1586, 1514, 1463, 1442, 1415, 1364, 1302, 

1248, 1174, 1105, 1036, 821, 744 cm-1; 1H NMR (400 MHz, CDCl3) δ 9.59 (d, J = 1.6 Hz, 1H), 

7.22 (dd, J = 8.8, 16.8 Hz, 4H), 6.87-6.84 (m, 4H), 4.61 (s, 2H), 4.41 (s, 2H), 4.18 (ddd, J = 3.6, 
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5.2, 2.4 Hz, 1H), 3.81 (dd, J = 3.6, 2.4 Hz, 1H), 3.80 (s, 3H), 3.80 (s, 3H), 3.60 (dd, J = 7.6, 9.6 

Hz, 1H), 3.44 (dd, J = 5.2, 9.6 Hz, 1H), 0.92 (t, J = 8.0 Hz, 9H), 0.59 (q, J = 7.6 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 202.8, 159.6, 159.4, 130.2, 129.9, 129.8, 129.5, 114.0, 113.9, 84.8, 

77.4, 73.2, 73.2, 73.0, 55.5, 7.0, 4.9; HRMS (ES) m/z calcd for C26H38O6Si (M + Na)+: 497.2329; 

found: 497.2335. 

 

(3S,4S)-3,5-Bis((4-methoxybenzyl)oxy)-4-((triethylsilyl)oxy)pentan-2-

one (108): 

Methylmagnesium bromide (1.26 mL, 3.78 mmol, 3 M in Et2O) was added to aldehyde 107 

(0.895 g, 1.89 mmol) in 35.2 mL Et2O at −78 C.  The reaction mixture was stirred for 45 min 

before quenching with saturated aqueous NH4Cl (40 mL) and extracting with Et2O (3x 40 mL).  

The combined organic portions were dried (Na2SO4) and the solvents were removed in vacuo to 

yield 0.926 g of a crude alcohol that was used in the following reaction without further 

purification. 

 Solid sodium bicarbonate (0.317 g, 3.77 mmol) followed by DMP (1.22 g, 2.88 mmol) 

was added to the crude alcohol (0.926 g, 1.89 mmol) in 11.7 mL CH2Cl2.  The reaction mixture 

was stirred for 4 h before diluting with CH2Cl2 (30 mL), quenching with H2O (40 mL) and 

extracting with CH2Cl2 (3x 40 mL).  The combined organic portions were dried (MgSO4) and 

purified via flash column chromatography (5-15% EtOAc/hexanes) to yield 0.778 g (85%)  of 

the title compound.  [α]D −3.0 (c 1.04, CHCl3); IR (thin film): 2999, 2954, 2837, 1715, 1613, 

1586, 1514, 1462, 1417, 1353, 1302, 1249, 1175, 1096, 1036, 822, 743 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.22 (dd, J = 5.6, 8.4 Hz, 4H), 6.86 (dd, J = 2.8, 8.8 Hz, 4H), 4.52 (d, J = 2 Hz, 

2H), 4.4 (d, J = 4 Hz, 2H), 4.19 (m, 1H), 3.88 (d, J = 4.4 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.56 
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(dd, J = 6.4, 9.6 Hz, 1H), 3.40 (dd, J = 5.2, 10 Hz, 1H), 2.15 (s, 3H), 0.92 (t, J = 8.4 Hz, 9H, 0.58 

(q, J = 7.6 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 210.5, 159.5, 159.3, 130.4, 130.0, 129.7, 

129.5, 114.0, 113.9, 85.6, 73.3, 73.1, 73.0, 70.7, 55.5, 55.5, 28.1, 7.0, 5.0; HRMS (ES) m/z calcd 

for C27H40O6Si (M + Na)+: 511.2492; found: 511.2479. 

 

(4S,5S,6S)-5,7-Bis((4-methoxybenzyl)oxy)-4-methyl-6-

((triethylsilyl)oxy)hept-1-en-4-ol (109): 

Ketone 108 (1.52 g, 3.16 mmol) as a solution in 3.12 mL CH2Cl2 was added to a solution of 

MgBr2•Et2O (1.26 g, 4.88 mmol) in 7.02 mL CH2Cl2 at 0 C.  The suspension was stirred for 5 

min before being cooled to −78 C and allyltributylstannane (0.975 mL, 3.63 mmol) was added.  

The dry ice/acetone bath was allowed to slowly dissipate (over ~6 h) and the reaction stirred an 

additional 34 h before quenching with H2O (20 mL) and extracting with CH2Cl2 (3x 20 mL).  

The combined organic portions were dried (MgSO4) and purified via flash column 

chromatography (6-10% EtOAc/hexanes) to yield 1.2 g (72%) of the title compound.  [α]D −11.0 

(c 1.0, CHCl3); IR (thin film): 3476, 2954, 2911, 2876, 1613, 1514, 1462, 1302, 1249, 1174, 

1085, 1036, 1007 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.24-7.20 (m, 2H), 7.14 (d, J = 8.8 Hz, 

2H), 6.82 (app t, J = 8.4 Hz, 4H), 5.89-5.79 (m, 1H), 5.06-5.00 (m, 2H), 4.58 (d, J = 10.8 Hz, 

1H), 4.51 (d, J = 10.8 Hz, 1H), 4.45 (d, J = 11.6 Hz, 1H), 4.39 (d, J = 11.6 Hz, 1H), 4.10 (app q, J 

= 5.2 Hz, 1H), 3.77 (s, 3H), 3.77 (s, 3H), 3.71 (dd, J = 4, 10 Hz, 1H), 3.68 (s, 1H), 3.48 (dd, J = 

5.6, 10 Hz, 1H), 3.40 (d, J = 5.2 Hz, 1H), 2.32-2.30 (m, 2H), 1.16 (s, 3H), 0.93 (t, J = 8 Hz, 9H), 

0.61 (q, J = 7.6, 6H); 13C NMR (100 MHz, CDCl3) δ 159.2, 159.2, 134.5, 130.5, 129.9, 129.5, 

129.5, 129.3, 117.6, 113.7, 113.7, 84.3, 74.5, 74.1, 73.6, 72.9, 71.4, 55.2, 55.2, 43.0, 24.2, 6.8, 

5.0; HRMS (ES) m/z calcd for C30H47O6Si (M + Na)+: 531.3142; found: 531.3132. 
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(2S,3S,4S)-1,3-Bis((4-methoxybenzyl)oxy)-4-methylhept-6-ene-2,4-diol 

(110): 

Tetrabutylammonium fluoride (4.5 mL, 4.5 mmol, 1 M in THF) was added to a solution of silyl 

ether 109 (1.20 g, 2.26 mmol) in 22.6 mL THF at 0 C and the reaction mixture was stirred for 

45 min before quenching with saturated aqueous NH4Cl (25 mL) and extracting with EtOAc (3x 

25 mL).  The combined organic portions were dried (MgSO4) and the crude product was purified 

via flash column chromatography (40-50% EtOAc/hexanes) to yield 0.876 g (93%) of the title 

compound.  [α]D −27.5 (c 1.0, CHCl3); IR (thin film): 3582, 3430, 2912, 1612, 1514, 1462, 1302, 

1249, 1175, 1078, 1034 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.28-7.25 (m, 2H), 7.17-7.14 (m, 

2H), 6.90-6.85 (m, 4H), 5.95-5.86 (m, 1H), 5.12-5.06 (m, 2H), 4.58-4.45 (m, 4H), 4.04-4.00 (m, 

1H), 3.81 (s, 3H), 3.81 (s, 3H), 3.70 (dd, J = 3.2, 9.6 Hz, 1H), 3.61 (dd, J = 6.0, 9.6 Hz, 1H), 3.41 

(d, J = 7.2 Hz, 1H), 3.16 (s, 1H), 3.04 (d, J = 4.4 Hz, 1H), 2.38 (d, J = 6.8 Hz, 2H), 2.05 (s, 1H), 

1.22 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.4, 159.2, 134.2, 130.2, 129.8, 129.6, 129.4, 

117.9, 113.9, 113.8, 83.2, 74.9, 74.8, 73.1, 71.5, 70.8, 55.2, 42.5, 24.0; HRMS (ES) m/z calcd for 

C24H32O6 (M + Na)+: 439.2097; found: 439.2113. 

 

(4S,5S,6S)-5-((4-Methoxybenzyl)oxy)-6-(((4-methoxybenzyl)oxy)methyl)-

4-methyltetrahydro-2H-pyran-2,4-diol (111): 

2,6-lutidine (0.51 mL, 4.4 mmol), OsO4 (0.431 g, 0.043 mmol, 2.5 wt. % in 

tBuOH), and NaIO4 (1.83 g, 8.58 mmol) were added to a solution of enol 110 (0.876 g, 2.11 

mmol) in 20.8 mL dioxane/H2O (3:1) and the resulting reaction mixture was stirred for 2 h 

before quenching with H2O (20 mL) and extracting with CH2Cl2 (4x 40 mL).  The combined 

organic portions were dried (MgSO4) and the product was purified via flash column 
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chromatography (60-80% EtOAc/Hexanes) to yield 0.697 g (79%) of the title compound as a 

yellow oil.  [α]D −21.8 (c 1.0, CHCl3); IR (thin film): 3582, 3407, 2918, 1612, 1514, 1461, 1249, 

1096, 1034 cm-1; 1H NMR (400 MHz, CDCl3), mixture of :anomers (~1:1 ) δ 7.27-7.25 (m, 

4H), 7.17-7.12 (m, 4H), 6.86-6.82 (m, 8H), 5.33 (s, 1H), 4.75 (t, J = 6.8 Hz, 1H), 4.62 (d, J = 

11.2, 1H), 4.61 (d, J = 11.2 Hz, 1H), 4.55-4.43 (m, 6H), 4.30 (d, J = 6.8, 1H), 3.96-3.92 (m, 1H), 

3.79 (s, 6H), 3.78 (s, 6H), 3.67 (dd, J = 2.0, 10 Hz, 1H), 3.64-3.59 (m, 4H), 3.44 (ddd, J = 2.0, 

4.8, 10 Hz, 1H), 3.40 (d, J = 3.2 Hz, 1H), 3.38 (d, J = 3.2 Hz, 1H), 1.95 (dd, J = 2.0, 7.6 Hz, 1H), 

1.91 (dd, J = 2.0, 8.4 Hz, 1H), 1.87 (s, 1H), 1.82 (dd, J = 3.6, 13.6 Hz, 1H), 1.68 (dd, J = 9.6, 

12.4 Hz, 1H), 1.44 (s, 3H), 1.23 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.2, 130.5, 130.4, 

129.7, 129.7, 129.5, 129.4, 113.8, 113.7, 93.6, 91.6, 81.3, 80.7, 74.5, 74.3, 74.3, 73.0, 72.5, 72.3, 

70.0, 69.3, 69.3, 55.2, 55.2, 46.1, 42.9, 23.5, 21.4; HRMS (ES) m/z calcd for C23H30O7 (M + 

Na)+: 441.1889; found: 441.1879. 

 

(2S,3S,4S)-6-(Allyloxy)-3-((4-methoxybenzyl)oxy)-2-(((4-

methoxybenzyl)oxy)methyl)-4-methyltetrahydro-2H-pyran-4-ol (112): 

Silver (I) oxide (0.348 g, 1.50 mmol) and allyl bromide (119 L, 1.30 mmol) 

were added to a solution of diol 111 (0.210 g, 0.500 mmol) in 3.48 mL DMF and the resulting 

reaxtion mixture was stirred for 36 h before being passed through a plug of SiO2 eluting with 

EtOAc.  The product was purified via flash column chromatography (20-40% EtOAc/Hexanes) 

to yield 0.148 g (65%) of the title compound. IR (thin film): 3465, 2934, 2867, 1612, 1513, 

1462, 1399, 1372, 1302, 1248, 1174, 1090, 1034, 930, 821 cm-1; 1H NMR (400 MHz, CDCl3) δ 

7.28 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 6.89-6.84 (m, 4H) 5.97-5.87 (m, 1H), 5.27 (dd, 

J = 1.6, 17.6 Hz, 1H), 5.18 (dd, J = 1.6, 10.4 Hz, 1H), 4.61-4.49 (m, 5H), 4.36 (ddt, J = 1.2, 4.8, 
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12.8 Hz, 1H), 4.04 (dd, J = 6.0, 12.8 Hz, 1H), 3.80 (m, 6H), 3.71 (dd, J = 2.4, 10.4 Hz, 1H), 3.67 

(dd, J = 4.8, 10.8 Hz, 1H), 3.48 (ddd, J = 2.4, 4.4, 14.8 Hz, 1H), 3.43 (d, J = 8.8 Hz, 1H), 1.98 

(dd, J = 2.4, 13.2 Hz, 1H), 1.85 (s, 1H), 1.77 (dd, J = 8.8, 13.2 Hz), 1.28 (s, 3H);  13C NMR (100 

MHz, CDCl3) δ 159.3, 159.2, 134.1, 130.5, 130.3, 129.5, 129.5, 117.2, 113.9, 113.7, 98.4, 80.9, 

74.7, 74.2, 73.1, 72.3, 69.6, 69.5, 55.2, 44.2, 22.1; HRMS (ES) m/z calcd for C26H34O7 (M + 

Na)+: 481.2202; found: 481.2224. 

 

(2S,3S,4S)-6-(Allyloxy)-2-(hydroxymethyl)-4-methyltetrahydro-2H-pyran-

3,4-diol (114): 

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.138 g, 0.608 mmol) was added to 

a solution of PMB ester 112 (0.90 g, 0.20 mmol) in 5.9 mL CH2Cl2/pH 7 phosphate buffer (2:1) 

at 0 C and the resulting reaction mixture stirred for 1 h before being warmed to ambient 

temperature and stirred for an additional 2.5 h.  The reaction was quenched with saturated 

aqueous NaHCO3 (2 mL), extracted with CH2Cl2 (4x 2 mL), and the combined organic portions 

were dried (MgSO4) and used crude in the next reaction without further purification. 

 2.25 mL Acetic acid/water (4:1) were added to crude PMP acetal 113 from the previous 

reaction and the resulting mixture was stirred for 24 h.  Approximately ½ the reaction volume 

was removed at reduced pressure and the resulting solution was loaded directly onto a flash 

column and eluted (0-10% MeOH/CH2Cl2) to yield 0.031 g (70%) of the title compound as a 

white solid.  [α]D +58.6 (c 1.0, CHCl3); IR (thin film): 3416, 2933, 1455, 1385, 1199, 1102, 

1039, 990 cm-1; 1H NMR (500 MHz, CDCl3) mixture of :anomers (~10:1) major anomer 

tabulated δ 5.92-5.84 (m, 1H), 5.27 (dd, J = 1.5, 7.0 Hz, 1H), 5.17 (dd, J = 1.0, 10.5 Hz, 1H), 

4.56 (dd, J = 1.5, 10 Hz, 2H), 4.32 (dd, J = 5.0, 13 Hz, 1H), 4.03 (dd, J = 6.0, 13 Hz, 1H), 3.90-
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3.80 (m, 3H), 3.62 (d, J = 18 Hz, 1H), 3.23 (d, J = 10 Hz, 1H), 2.00-1.98 (m, 1H), 1.76 (dd, J = 

10, 12.5 Hz, 1H), 1.25 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 134.2, 133.9, 117.5, 116.5, 98.9, 

98.8, 96.8, 75.0, 73.0, 70.8, 69.9, 67.9, 61.9, 44.7, 42.7, 21.7, 20.0; HRMS (ES) m/z calcd for 

C10H18O5Na (M + Na)+: 241.1052; found: 241.1055. 

 

O-(((2S,3S,4S)-6-(Allyloxy)-3,4-dihydroxy-4-methyltetrahydro-2H-

pyran-2-yl)methyl) O-phenyl carbonothioate (114b): 

O-Phenyl chlorothionoformate (180 L, 1.34 mmol) was added to a solution 

of triol 114 (270 mg, 1.34 mmol) in 2.5 mL CH2Cl2 at 0 C and the resulting reaction mixture 

was stirred at ambient temperature for 30 min.  The reaction mixture was cooled to 0 C, 

pyridine (124 L, 1.54 mmol) was added and the reaction mixture was stirred for 18 h at ambient 

temperature before quenching with H2O (5 mL) and extracting with CH2Cl2 (3x 5 mL).  The 

combined organic portions were dried (MgSO4) and the product was purified via flash column 

chromatography (40-60% EtOAc/hexanes) to yield 0.276 g (61%) of the title compound as a 

white foam.  [α]D +37.3 (c 1.0, CHCl3); IR (thin film): 3426, 1644, 1291, 1204, 1075 cm-1; 1H 

NMR (400 MHz, CDCl3) mixture of :anomers (~2:1 ) δ 7.44-7.37 (m, 4H), 7.31-7.23 (m, 

2H), 7.20-7.11 (m, 4H), 5.96-5.87 (m, 2H), 7.12 (d, J = 8.0 Hz, 1H), 6.0-5.88 (m, 2H), 5.33-5.30 

(m, 2H), 5.23-5.20 (m, 2H), 4.84 (dd, J = 2.0, 11.6 Hz, 1H), 4.74 (dd, J = 5.6, 11.6 Hz, 1H), 

4.64-4.62 (m, 2H), 4.55 (s, 1H), 4.53 (d, J = 4.0 Hz, 1H),  4.40-4.35 (m, 2H), 4.09-4.04 (m, 2H), 

4.07-4.04 (m, 2H), 3.65 (ddd, J = 2.0, 5.2, 9.6 Hz, 1H), 3.60-3.53 (m, 2H), 3.11 (bs, 1H), 3.0 (bs, 

1H), 2.53 (bs, 1H), 2.06 (dd, J = 2.0, 13.2 Hz, 1H), 2.05 (dd, J = 2.0, 12.8 Hz, 1H), 1.84-1.78 (m, 

2H), 1.32 (s, 3H), 1.31 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.3, 154.2, 153.3, 151.0, 133.8, 

133.8, 129.5, 129.5, 126.6, 126.2, 121.9, 121.0, 117.7, 117.7, 73.7, 73.6, 73.0, 72.8, 72.0, 71.9, 
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69.8, 69.8, 68.2, 53.4, 44.4, 20.4, 20.4; HRMS (ES) m/z calcd for C17H22O6S (M + Cl)−: 

389.0826; found: 389.0863. 

 

(2S,3S,4S)-6-(Allyloxy)-2,4-dimethyltetrahydro-2H-pyran-3,4-diol (115): 

Azobisisobutyronitrile (36.7 mg, 0.224 mmol) then nBu3SnH (0.63 mL, 2.3 

mmol) were added to a solution of thionoformate 114b (276 mg, 0.817 mmol) in 

46 mL toluene and the resulting reaction mixture was stirred for 3 h at 110-120 C.  The volatiles 

were removed under reduced pressure and the product was purified via flash column 

chromatography (50-70% EtOAc/hexanes) to yield 0.140 g (93%) of the title compound as a 

yellow oil.  [α]D +23.8 (c 1.0, CHCl3); IR (thin film): 3411, 2978, 2933, 1647, 1453, 1380, 1313, 

1118, 1072, 998 cm-1; 1H NMR (400 MHz, CDCl3) mixture of :anomers only major anomer 

tabulated (~10:1 ) δ 5.94-5.83 (m, 1H), 5.27 (dd, J = 1.6, 14.8 Hz, 1H), 5.18 (dd, J = 0.8, 10.4 

Hz, 1H), 4.52 (dd, J = 2.0, 10.0 Hz, 1H), 4.33 (dd, J = 5.2, 12.8 Hz, 1H), 4.02, (dd, J = 6.4, 12.8 

Hz, 1H), 3.36-3.29 (m, 1H), 3.22 (d, J = 9.6 Hz, 1H), 1.99 (dd, J = 2.0, 12.8 Hz, 1H), 1.74 (dd, J 

= 10.0, 12.0 Hz, 1H), 1.30 (d, J = 6.0 Hz, 3H), 1.25 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 

134.3, 133.9, 117.5, 116.5, 98.3, 96.4, 79.5, 79.2, 72.1, 71.8, 71.0, 69.7, 67.8, 66.7, 45.0, 43.0, 

29.6, 22.0, 20.3, 18.3, 18.0; HRMS (ES) m/z calcd for C10H18O4 (M + Na)+: 225.1103; found: 

225.1076. 

 

(2R,3R)-2,4-Bis(benzyloxy)-3-((triethylsilyl)oxy)butanal (116): 

Triethylsilyltrifluoromethane sulfonate (0.178 mL, 0.788 mmol) was added to 

a solution of diol 105 (0.200 g, 0.670 mmol) and 2,6-lutidine (0.230 mL, 1.99 mmol) in 1.32 mL 

of CH2Cl2 at 0 C.  The reaction mixture was stirred for 30 min before quenching with saturated 
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aqueous NaHCO3 (2 mL mL) and extracting with CH2Cl2 (3x 2 mL).  The combined organic 

portions were then washed with 1 M NaHSO4 (8 mL), dried (MgSO4) and purified via flash 

column chromatography to yield 171 g (72%) of the title compound as a 2.8:1 mixture of 

diastereomers.  [α]D +3.8 (c 1.0, CHCl3); IR (thin film): 3031, 2954, 2912, 2876, 1733, 1455, 

1105, 735 cm-1; 1H NMR (300 MHz, CDCl3) mixture of diastereomers (~2.8:1 ) δ 9.74 (d, J = 

1.2 Hz, 1H), 9.64 (d, J = 1.5 Hz, 1H), 7.34-7.26 (m, 20H), 4.75 (d, J = 12.0 Hz, 1H), 4.70 (s, 

2H), 4.57 (d, J = 11.7 Hz, 1H), 4.49 (s, 2H), 4.47 (d, J = 8.4 Hz, 2H), 4.25-4.11 (m, 2H), 3.92 

(dd, J = 1.5, 3.3 Hz, 1H), 3.87 (dd, J = 0.9, 3.9 Hz, 1H), 3.65 (dd, J = 7.5, 9.6 Hz, 1H), 3.60 (dd, J 

= 6.0, 9.6 Hz, 1H), 3.51 (dd, J = 4.8, 8.1 Hz, 1H), 3.47 (dd, J = 5.1, 9.6 Hz, 1H), 0.99-0.87 (m, 

16H), 0.65-0.51 (m, 12H); 13C NMR (75 MHz, CDCl3) δ 195.9, 195.3, 130.9, 130.5, 130.4, 

121.4, 121.4, 121.3, 121.2, 121.0, 120.9, 120.9, 120.6, 120.6, 78.0, 77.0, 66.3, 66.2, 66.0, 65.3, 

63.4, 63.2, −0.3, −2.3; HRMS (ES) m/z calcd for C24H34O4Si (M + Na)+: 4372124; found: 

437.2172. 

 

(4R,5S,6R)-5,7-Bis(benzyloxy)-6-((triethylsilyl)oxy)hept-1-en-4-ol (116b): 

Aldehyde 116 (0.171 g, 0.413 mmol) as a solution in 0.41 mL CH2Cl2 was 

added to a solution of MgBr2•Et2O (0.167 g, 0.647 mmol) in 0.94 mL CH2Cl2 at 0 C.  The 

suspension was stirred for 5 min before being cooled to −78 C and allyltributylstannane (0.130 

mL, 0.419 mmol) was added.  The dry ice/acetone bath was allowed to slowly dissipate (over ~6 

h) and the reaction stirred an additional 17 h before quenching with H2O (3 mL) and extracting 

with CH2Cl2 (3x 3 mL).  The combined organic portions were dried (Na2SO4) and purified via 

flash column chromatography (3-7% EtOAc/hexanes) to yield 0.106 g (87%) of the title 

compound.  [α]D  −3.0 (c 1.17, CHCl3); IR (thin film): 3502, 3066, 3031, 2953, 2911, 2876, 
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1496, 1455, 1414, 1365, 1324, 1239, 1208, 1100, 1007, 915, 780, 738 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.34-7.28 (m, 10H), 5.80 (ddt, J = 7.2, 8.4, 16.4 Hz, 1H), 5.07 (s, 1H), 5.03 (d, J = 5.6 

Hz, 1H), 4.71 (d, J = 11.2 Hz, 1H), 4.54 (d, J = 12.8 Hz, 1H), 4.52 (s, J = 2H), 4.11 (q, J = 4.8 

Hz, 1H), 3.89-3.84 (m, 1H), 3.59 (ddd, J = 4.8, 10, 16.8 Hz, 1H), 3.49 (dd, J = 2.4, 5.2 Hz, 1H), 

2.38-2.24 (m, 2H), 0.95 (t, J = 8.0 Hz, 1H), 0.63 (q, J = 7.6 Hz, 1H); 13C NMR (125 MHz, 

CDCl3) δ 138.1, 137.8, 135.2, 128.3, 128.1, 127.9, 127.7, 127.7, 117.1, 80.0, 73.6, 73.4, 72.3, 

71.4, 70.4, 38.6, 6.8, 4.8; HRMS (ES) m/z calcd for C27H40O4Si (M + Na)+: 479.2594; found: 

479.2578. 

 

(((2R,3S,4R)-1,3-Bis(benzyloxy)-4-methoxyhept-6-en-2-

yl)oxy)triethylsilane (117): 

Proton sponge (14.7 g, 68.5 mmol) followed by Me3OBF4 (9.09 g, 61.4 mmol) were added to 

alcohol 116b (7.05, 15.4 mmol) in 153 mL CH2Cl2.  The resulting reaction mixture was stirred 

for 48 h before loading the entire contents onto a flash column and eluting (5% EtOAc/hexanes) 

to yield 5.6 g (58% based on pure material present) of ~75% pure product that was inseparable 

from the 25% impurity.  [α]D  −32.4 (c 1.0, CHCl3); IR (thin film): 3458, 3066, 3031, 2954, 

2911, 2876, 1641, 1496, 1455, 1414, 1362, 1239, 1207, 1097, 1006, 914, 735 cm-1; 1H NMR 

(400 MHz, CDCl3) δ 7.32-7.23 (m, 10H), 5.81-5.69 (m, 1H), 5.05-5.03 (m, 1H), 5.01-5.00 (m, 

1H), 4.60 (q, J = 11.6 Hz, 1H), 4.48 (s, 1H), 3.99-3.92 (m, 1H), 3.69-3.64 (m, 1H), 3.52-3.43 (m, 

1H), 3.36 (s, 1H), 2.40-2.30 (m, 2H), 0.94 (app q, J = 8.4 Hz, 1H), 0.60 (t, J = 7.6 Hz, 1H); 13C 

NMR (125 MHz, CDCl3) δ 139.0, 138.4, 138.4, 135.3, 134.5, 128.5, 128.5, 128.4, 128.3, 128.2, 

128.0, 127.9, 127.8, 127.6, 117.5, 117.4, 82.1, 81.6, 80.9, 80.6, 77.4, 74.9, 73.6, 73.1, 72.4, 72.2, 
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72.1, 71.2, 58.3, 38.1, 34.8, 7.2, 7.0, 5.3, 5.0; HRMS (ES) m/z calcd for C28H42O4Si (M + Na)+: 

493.2750; found: 493.2717. 

 

(3R,4S,5R)-4,6-Bis(benzyloxy)-3-hydroxy-5-((triethylsilyl)oxy)hexanal 

(117b): 

2,6-lutidine (1.1 mL, 9.5 mmol), OsO4 (0.957 g, 0.09 mmol, 2.5 wt% in tBuOH), and NaIO4 

(4.05 g, 18.9 mmol) were added to a solution of enol 117 (2.20 g, 4.68 mmol, 66% pure) in 46 

mL dioxane/H2O (3:1) and the resulting reaction mixture was stirred for 14 h before quenching 

with H2O (25 mL) and extracting with CH2Cl2 (4x 75 mL).  The combined organic portions were 

dried (MgSO4) and the product was purified via flash column chromatography (5-20% 

EtOAc/Hexanes) to yield 1.0 g (66%) of the title compound as a yellow oil.  [α]D +13.8 (c 1.0, 

CHCl3); IR (thin film): 3437, 2998, 1642, 1454, 1095 cm-1; 1H NMR (400 MHz, CDCl3) δ 9.66 

(dd, J = 1.6, 2.8 Hz, 1H), 7.31-7.20 (m, 10H), 4.60 (d, J = 11.2 Hz, 1H), 4.49 (s, 1H), 4.48 (d, J = 

10.8 Hz, 1H), 4.08-4.04 (m, 1H), 3.97 (dt, J = 3.6, 9.6 Hz, 1H), 3.66 (dd, J = 3.2, 10.0 Hz, 1H), 

3.59 (dd, J = 4.4, 10.0 Hz, 1H), 3.54 (dd, J = 3.6, 6.4 Hz, 1H), 3.35 (s, 3H), 2.62 (ddd, J = 1.2, 

5.2, 16.4 Hz, 1H), 2.55 (ddd, J = 2.8, 6.0, 16.4 Hz, 1H), 0.93 (t, J = 8.0 Hz, 9H), 0.60 (q, J = 7.6 

Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 201.1, 138.0, 137.9, 128.3, 128.3, 128.0, 127.7, 127.7, 

81.6, 76.0, 74.1, 73.4, 71.9, 71.6, 58.1, 45.0, 6.9, 5.1; HRMS (ES) m/z calcd for C27H40O5Si (M 

+ Na)+: 495.2543; found: 495.2536. 

 

(2R,3S,4R)-6-(Allyloxy)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-

methoxytetrahydro-2H-pyran (118): 

Pyridinium p-toluenesulfonate (62.6 mg, 0.249 mmol) was added to a solution of 
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aldehyde 117b (0.596 g, 1.26 mmol) in 11.3 mL allyl alcohol and stirred for 48 h at 55-60 C 

before being passed through a plug of SiO2 eluting with 20% EtOAc/hexanes.  The volatiles 

(allyl alcohol) were removed under reduced pressure and the product was purified via flash 

column chromatography (6-10% EtOAc/hexanes) to yield 0.400 g (80%) of the title compound.  

[α]D +43.8 (c 1.0, CHCl3); IR (thin film): 3063, 3030, 2932, 1496, 1454, 1367, 1305, 1268, 1202, 

1029, 925, 738 cm-1; 1H NMR (400 MHz, CDCl3) mixture of :anomers (~2:1 ) δ 7.39-7.23 

(m, 20H), 5.32 (dd, J = 1.2, 9.2, 1H), 5.28 (dd, J = 1.2, 9.2 Hz, 1H), 5.23-5.17 (m, 2H), 5.03 (d, J 

= 2.8 Hz, 1H), 4.87 (d, J = 10.8 Hz, 2H), 4.67 (d, J = 12.4, 1H), 4.65 (d, J = 12.4 Hz, 1H), 4.60-

4.50 (m, 6H), 4.41 (dd, J = 4.8, 12.4 Hz, 1H), 4.15 (dd, J = 5.2, 12.8 Hz, 1H), 4.09 (dd, J = 6.0, 

12.4 Hz, 1H), 3.95 (dd, J = 6.4, 13.2 Hz, 1H), 3.80-3.67 (m, 6H), 3.55 (t, J = 9.2 Hz, 1H), 3.47 (s, 

3H), 3.45 (s, 3H), 3.4 (m, 1H), 2.40-2.36 (m, 1H), 2.30 (dd, J = 4.8, 12.8 Hz, 1H), 1.72-1.56 (m, 

2H); 13C NMR (100 MHz, CDCl3) δ 138.5, 138.4, 138.2, 138.1, 134.0, 128.3, 128.2, 127.8, 

127.8, 127.8, 127.7, 127.5, 127.5, 117.3, 117.1, 98.8, 96.6, 81.4, 79.0, 78.1, 77.8, 75.0, 74.7, 

74.7, 73.4, 70.6, 69.6, 69.3, 68.7, 67.6, 57.2, 56.8, 35.9, 34.7; HRMS (ES) m/z calcd for 

C24H30O5 (M + Na)+: 421.1991; found: 421.1990. 

 

(2R,3S,4R)-6-(Allyloxy)-2-(hydroxymethyl)-4-methoxytetrahydro-2H-pyran-

3-ol (119): 

Lithium-4,4’-di-t-butylbiphenylide (1.1 mL, 1.1 mmol, 1 M in THF) was added 

via cannula to a solution of benzyl ether 118 (0.015 g, 0.038 mmol) in 1.57 mL freshly distilled, 

degassed THF at −78 C and the resulting solution was stirred for 90 min.  NOTE: If the dark 

green/blue color of the reaction mixture faded to red/brown during the course of the reaction, 

additional LiDBB was added until the dark green/blue color persisted.  The reaction mixture was 
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quenched with saturated aqueous NH4Cl (2 mL) and extracted with EtOAc (3x 2 mL).  The 

combined organic portions were dried (Na2SO4) and the product was purified via flash column 

chromatography (0-5% MeOH/CH2Cl2) to yield 4 mg (57%) of the title compound. 

 1 M LiDBB was prepared as follows: 4,4’-di-tert-Butylbiphenyl (12.7 g, 47.6 mmol) then 

piecemeal, polished Li Metal (0.297 g, 42.4 mmol) was added to 47.6 mL recently distilled, 

degassed THF and the resulting suspension was sonicated without allowing the temperature to 

rise above 25 C until the Li metal had fully dissolved (~3-4 h).  [α]D +15.0 (c 1.0, CHCl3); IR 

(thin film): 3465, 2934, 2867, 1612, 1513, 1461, 1399, 1372, 1302, 1248, 1174, 1090, 1034, 930, 

821 cm-1; 1H NMR (400 MHz, CDCl3) isolated in ~80% purity mixture of :anomers only 

major anomer tabulated (~10:1 ) δ 5.93-5.83 (m, 1H), 5.26 (dd, J = 1.6, 17.2 Hz, 1H), 5.17 (dd, J 

= 1.2, 10 Hz, 1H), 4.96 (d, J = 3.2 Hz, 1H), 4.11 (ddt, J = 1.6, 5.2, 13.2 Hz, 1H), 3.91 (dd, J = 

6.0, 12.8 Hz, 1H), 3.81-3.80 (m, 2H),  3.64-3.47 (m, 3H), 3.39 (s, 3H), 2.72 (t, J = 6.4 Hz, 1H), 

2.26 (ddd, J = 0.8, 4.4, 12.8 Hz, 1H), 1.49 (ddd, J = 3.6, 11.2, 12.8, 1H); 13C NMR (100 MHz, 

CDCl3) δ 133.9, 133.8, 117.5, 117.3, 99.1, 96.7, 80.5, 78.2, 75.3, 71.5, 70.8, 70.5, 69.9, 67.8, 

62.5, 62.3, 56.6, 56.4, 35.0, 33.8; HRMS (ES) m/z calcd for C10H17O5 (M − H)−: 217.1076; 

found: 217.1083. 

 

O-(((2R,3S,4R)-6-(Allyloxy)-3-hydroxy-4-methoxytetrahydro-2H-pyran-

2-yl)methyl) O-phenyl carbonothioate (119b): 

O-Phenyl chlorothionoformate (0.295 mL, 2.13 mmol) was added to a 

solution of diol 119 (0.440 g, 2.02 mmol) in 4.1 mL CH2Cl2 at 0 C and the resulting reaction 

mixture was stirred at ambient temperature for 30 min.  The reaction mixture was cooled to 0 C, 

pyridine (0.204 mL, 2.54 mmol) was added and the reaction mixture was stirred for 14 h at 
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ambient temperature before quenching with H2O (8 mL) and extracting with CH2Cl2 (3x 12 mL).  

The combined organic portions were dried (Na2SO4) and the product was purified via flash 

column chromatography (20-30% EtOAc/hexanes) to yield 0.480 g (67%) of the title compound 

as a white foam.  [α]D +24.0 (c 1.0, CHCl3); IR (thin film): 3443, 3076, 2936, 2360, 1763, 1591, 

1490, 1455, 1385, 1334, 1291, 1204, 1102, 1043, 1004, 969, 930, 878, 848, 826, 773, 734 cm-1; 

1H NMR (400 MHz, CDCl3) mixture of :anomers only major anomer tabulated (~5:1 ) δ 

7.43-7.39 (m, 2H), 7.29 (tt, J = 1.2, 7.2 Hz, 1H), 7.13-7.11 (m, 2H), 5.97-5.87 (m, 1H), 5.31 

(ddd, J = 2.0, 3.6, 17.2 Hz, 1H), 5.22 (ddd, J = 1.2, 2.8, 10.4 Hz, 1H), 5.04 (d, J = 2.8 Hz, 1H), 

4.79 (dd, J = 2.4, 11.6 Hz, 1H), 4.74 (dd, J = 5.2, 12.0 Hz, 1H), 4.16 (ddt, J = 1.6, 5.2, 12.8 Hz, 

1H), 4.00-3.94 (m, 2H), 3.66-3.45 (m, 2H), 3.42 (s, 3H), 2.74 (d, J = 2.0 Hz, 1H), 2.32 (ddd, J = 

1.2, 4.4, 12.8 Hz, 1H), 1.57 (ddd, J = 3.6, 11.2, 12.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 

195.2, 153.4, 133.8, 133.8, 129.5, 129.4, 126.5, 121.9, 121.0, 117.7, 117.5, 99.0, 96.8, 80.5, 78.2, 

77.3, 73.1, 70.5, 69.3, 67.9, 56.6, 56.4, 34.8, 33.6; HRMS (ES) m/z calcd for C17H22O6SNa (M + 

Na)+: 377.1035; found: 377.1032. 

 

(2R,3R,4R)-6-(Allyloxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-ol (120): 

Azobisisobutyronitrile (13.3 mg, 0.081 mmol) then nBu3SnH (0.23 mL, 0.86 

mmol) were added to a solution of thionoformate 119b (0.103 g, 0.291 mmol) in 

16.8 mL toluene and the resulting reaction mixture was stirred for 3 h at 110-120 C.  The 

volatiles were removed under reduced pressure and the product was purified via flash column 

chromatography (20-40% EtOAc/hexanes) to yield 48 mg (82%) of the title compound as a 

yellow oil.  [α]D +62.2 (c 1.0, CHCl3); IR (thin film): 3457, 3081, 2971, 2934, 2902, 1741, 1647, 

1452, 1384, 1349, 1300, 1242, 1200, 1107, 1050, 986, 921, 869, 830, 767, 734 cm-1; 1H NMR 
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(400 MHz, CDCl3) δ 5.96-5.86 (m, 1H), 5.29 (ddd, J = 2.0, 3.6, 17.3 Hz, 1H), 5.19 (dd, J = 1.2, 

10.0 Hz, 1H), 4.93 (d, J = 3.2 Hz, 1H), 4.14 (ddt, J = 1.6, 5.2, 12.0 Hz, 1H), 3.94 (ddt, J = 1.2, 

6.0, 12.8 Hz, 1H), 3.70 (ddd, J = 6.0, 9.2, 12.4 Hz, 1H), 3.54 (ddd, J = 4.8, 8.8, 11.2 Hz, 1H), 

3.39 (s, 3H), 3.17 (dt, J = 1.6, 9.2 Hz, 1H), 2.45 (d, J = 2.0 Hz, 1H), 2.29 (ddd, J = 1.2, 4.8, 12.8 

Hz, 1H), 1.51 (ddd, J = 3.6, 11.4, 12.6 Hz, 1H), 1.29 (d, J = 6.4 Hz, 3H); 13C NMR (125 MHz, 

CDCl3) δ 134.2, 117.1, 96.6, 78.3, 76.2, 67.7, 67.6, 56.4, 33.9, 17.8; HRMS (ES) m/z calcd for 

C11H20O4 (M + Na)+: 239.1259; found: 239.1240. 

 

(((2R,3R,4R)-6-(Allyloxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-

yl)oxy)(tert-butyl)dimethylsilane (121): 

2,6-Lutidine (73 L, 0.63 mmol) then TBSOTf (73 L, 0.32 mmol) was added 

to a solution of alcohol 120 in 2.1 mL CH2Cl2 at 0 C and the resulting reaction mixture was 

stirred for 2h before quenching with saturated aqueous NaHCO3 (2 mL) and extracting with 

CH2Cl2 (4x 3 mL).  The combined organic portions were dried (Na2SO4) and the product was 

purified via flash column chromatography (5% EtOAc/hexanes) to yield 0.052 g (78%) of the 

title compound as a yellow oil.  [α]D +70.8 (c 1.0, CHCl3); IR (thin film): 2957, 2932, 2897, 

2857, 1463, 1388, 1251, 1104, 1077, 1040, 987, 922, 893, 837, 777 cm-1; 1H NMR (400 MHz, 

CDCl3) mixture of :anomers only major anomer tabulated (~10:1 ) δ 5.95-5.86 (m, 1H), 5.28 

(ddd, J = 1.6, 3.2, 17.2, 1H), 5.17 (ddd, J = 1.2, 2.8, 10.4 Hz, 1H), 4.87 (d, J = 2.8, 1H), 4.11 

(ddt, J = 1.2, 5.2, 12.8 Hz, 1H), 3.91 (ddd, J = 1.2, 6.0, 12.8 Hz, 1H), 3.43-3.36 (m, 1H), 3.30 (s, 

3H), 3.13 (t, J = 8.8 Hz, 1H), 2.28 (ddd, J = 1.6, 5.2, 13.2 Hz, 1H), 1.47 (ddd, J = 3.6, 11.2, 12.8 

Hz, 1H), 0.88 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 134.3, 117.4, 
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117.1, 98.6, 96.4, 81.0, 78.5, 77.1, 76.6, 72.7, 69.6, 68.4, 67.7, 56.3, 56.1, 34.4, 26.0, 18.4, 18.3, 

−4.0, −4.8; HRMS (ES) m/z calcd for C16H32O4Si (M + Na)+: 339.1968; found: 339.2020. 

 

(4R,5R,6R)-5-((tert-Butyldimethylsilyl)oxy)-4-methoxy-6-

methyltetrahydro-2H-pyran-2-ol (95): 

Quinaldic acid (3.00 mg, 0.017 mmol) as a solution in 0.5 mL MeOH was added to a suspension 

of [CpRu(MeCN)3]PF6 (7.40 mg, 0.017 mmol) in 0.5 mL MeOH and the resulting reaction 

mixture was stirred for 30 min before addition of allyl ether 121 (0.052 g, 0.165 mmol) as a 

solution in 0.2 mL CH2Cl2.  The resulting reaction mixture was stirred for 6 h before being 

diluted with Et2O and passed through a plug of florasil eluting with Et2O.  The product was 

purified via flash column chromatography (5-20% EtOAc/hexanes) to yield 0.032 g (70%) of the 

title compound.  [α]D +29.8 (c 1.0, CHCl3); IR (thin film): 3409, 2956, 2932, 2891, 2857, 1463, 

1388, 1252, 1150, 1107, 993, 893, 837, 777 cm-1; 1H NMR (400 MHz, CDCl3) mixture of 

:anomers (~2:1 ) δ 5.33 (d, J = 2.8 Hz, 1H), 4.78 (d, J = 9.6 Hz, 1H), 3.87 (ddd, J = 6.4, 12.8, 

15.6 Hz, 1H), 3.74 (bs, 1H), 3.45 (ddd, J = 5.2, 8.8, 11.6 Hz, 1H), 3.31 (s, 3H), 3.31 (s, 3H), 3.13 

(t, J = 8.8 Hz, 1H), 3.12 (t, J = 5.2 Hz, 1H), 3.06 (bs, 1H), 2.41 (ddd, J = 2.0, 4.4, 12.8 Hz, 1H), 

2.29 (ddd, J = 1.2, 4.8, 13.2 Hz, 1H), 1.50-1.31 (m, 2H), 1.26 (d, J = 10.4 Hz, 3H), 1.22 (d, J = 

6.4 Hz, 3H), 0.88 (s, 9H), 0.87 (s, 9H), 0.09-0.07 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 94.0, 

92.0, 80.8, 78.1, 77.2, 76.3, 72.9, 68.6, 56.4, 56.2, 37.0, 34.3, 26.0, 26.0, 18.5, 18.4, 18.3, 18.3, 

−4.0, −4.8, −4.8; HRMS (ES) m/z calcd for C13H29O4Si (M + Na)+: 277.1835; found: 277.1865. 
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(2S,3S,4S)-6-(Allyloxy)-3-(((4R,5R,6R)-5-((tert-

butyldimethylsilyl)oxy)-4-methoxy-6-methyltetrahydro-2H-

pyran-2-yl)oxy)-2,4-dimethyltetrahydro-2H-pyran-4-ol (122): 

Bromotrimethylsilane (25.0 L, 0.190 mmol) was added to a solution of alcohol 95 (41.0 mg, 

0.149 mmol) in 0.50 mL of benzene and the reaction mixture was allowed to stir for 5 min before 

removing the volatiles.  The resulting crude anomeric bromide was dissolved in 0.5 mL CH2Cl2 

and added to a suspension of diol 115 (82.0 mg, 0.406 mmol), 4 Å MS (50 mg) and Ag2O-SiO2
74, 

75 (250 mg, 0.856 mmol) in 1.5 mL CH2Cl2 at 0 C and the resulting reaction mixture was 

allowed to stir for 30 min before quenching with NEt3.  The quenched reaction mixture was 

loaded directly onto a flash column and eluted (20% EtOAc/Hexanes) to give 26.2 mg (38%) of 

the title compound and 12.4 mg (18%) of what is believed to be alkylation at the tertiary alcohol. 

[α]D +86.6 (c 1.0, CHCl3); IR (thin film): 3437, 2932, 2858, 1462, 1387, 1103, 1074, 990 cm-1
; 

1H NMR (500 MHz, CDCl3) mixture of 4 diastereomers from :anomers only major anomer 

tabulated  δ 5.96-5.88 (m, 1H), 5.27 (d, J = 1.5, 17 Hz, 1H), 5.24 (d, J = 3.0 Hz, 1H), 5.20-5.16 

(m, 1H), 4.56 (dd, J = 2.0, 10.0 Hz, 1H), 4.35 (ddd, J = 1.5, 3.5, 13.0 Hz, 1H), 4.13 (s, 1H), 4.04 

(dd, J = 6.0, 13.0 Hz, 1H), 3.85-3.79 (m, 1H), 3.39-3.32 (m, 3H), 3.3 (s, 3H), 3.19 (d, J = 9.5 Hz, 

1H), 3.13 (t, J = 8.5 Hz, 1H), 2.17 (dd, J = 8.0Hz, 1H), 1.99 (dd, J = 1.5, 8.0 Hz, 1H), 1.78 (t, J = 

10.5 Hz, 1H), 1.33 (d, J = 6.0 Hz, 3H), 1.29 (s, 3H), 1.22 (d, J = 6.0 Hz, 3H), 0.89 (s, 9H), 0.09 

(s, 3H), 0.07 (s, 3H); mixture of 4 diastereomers from :anomers 13C NMR (150 MHz, CDCl3) 

δ 134.3, 134.1, 134.1, 134.0, 117.4, 117.4, 117.0, 98.5, 98.4, 98.3, 98.1, 93.9, 92.5, 91.7, 90.8, 

81.0, 79.6, 78.9, 78.3, 78.1, 78.0, 75.1, 72.8, 70.9, 70.8, 70.4, 70.4, 70.3, 70.2, 70.2, 69.8, 69.7, 

69.7, 69.4, 68.6, 56.4, 56.3, 56.2, 45.1, 43.8, 41.6, 36.3, 35.3, 34.4, 31.9, 26.0, 26.0, 20.5, 19.8, 
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18.6, 18.6, 18.6, 18.5, 18.5, 18.3, 18.3, 18.2, 18.2, 16.0, −4.0, −4.8; HRMS (ES) m/z calcd for 

C23H44O7Si (M + Na)+: 483.2754; found: 483.2760. 
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