Implementation of Catalytic, Asymmetric Technology Toward the Total Synthesis of Apoptolidin C

by
James S. Hale
Bachelor of Science, University of Cincinnati, 2006

Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment
of the requirements for the degree of Doctor of Philosophy

University of Pittsburgh

UNIVERSITY OF PITTSBURGH

Dietrich School of Arts and Sciences

This dissertation was presented
by

James S. Hale

It was defended on
March $30^{\text {th }}, 2012$
and approved by
Craig S. Wilcox, Ph.D., Professor
Kazunori Koide, Ph.D., Associate Professor

Barry Gold, Ph.D., Professor and Chair, Pharmaceutical Sciences
Dissertation Advisor: Scott G. Nelson, Ph.D., Professor, Department of Chemistry

Copyright © by James S. Hale
2012

Implementation of Catalytic, Asymmetric Technology Toward the Total Synthesis of Apoptolidin C

James S. Hale, PhD

University of Pittsburgh, 2012

The total synthesis of apoptolidin C (3), a highly selective cytotoxic macrolide, has been under investigation in our lab. Work completed includes the synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment 29, the macrocyclic core $\mathbf{3 b}$, and the disaccharide subunit 31. These goals have been realized utilizing catalytic, asymmetric reaction methodology including the acyl halide-aldehyde cyclocondensation (AAC) and proline catalyzed dimerization of simple aldehyde starting materials 33-38.

TABLE OF CONTENTS

PREFACE XIII
1.0 INTRODUCTION 1
1.1 BIOLOGICAL ACTIVITY AND STRUCTURAL FEATURES. 1
1.2 PREVIOUS SYNTHESES OF APOPTOLIDIN A 3
1.3 RETROSYNTHETIC ANALYSIS OF APOPTOLIDIN C 8
2.0 COMPLETION OF THE MACROCYCLE 10
$2.1 \quad \mathrm{C}_{1}-\mathrm{C}_{11}$ EXPLORATORY SYNTHESES 10
2.2 $\mathrm{C}_{1}-\mathrm{C}_{11}$ FINALIZED ROUTE 22
2.3 MACROCYCLE SYNTHESIS 26
3.0 COMPLETION OF THE DISACCHARIDE 30
3.1 DISACCHARIDE EXPLORATORY ROUTES 30
3.2 DISACCHARIDE FINAL ROUTE 36
4.0 EXPERIMENTAL 42
APPENDIX: SPECTRA 94
BIBLIOGRAPHY 160

LIST OF TABLES

Table 1. Growth inhibition assay results with H292 cells .. 2
Table 2. Attempted isomerization conditions ... 17

LIST OF FIGURES

Figure 1. Apoptolidin A-D 1
Figure 2. 1,1-Disubstituted olefin stability towards isomerization. 18
Figure 3. N -Tosyl hydrazine diazine rearrangement 18
Figure 4. Analysis of retroene transition state 21
Figure 5. Stereochemical outcome of Mukaiyama aldol 34

LIST OF SCHEMES

Scheme 1. Nicolou's retrosynthetic analysis 4
Scheme 2. Koert's retrosyntheic analysis 5
Scheme 3. Crimmins' retrosynthetic analysis 6
Scheme 4. Sulikowski's retrosynthetic analysis 7
Scheme 5. Our retrosynthetic analysis of apoptolidin C 9
Scheme 6. First generation retrosynthetic approach to apoptolidinone C 11
Scheme 7. $\mathrm{C}_{7}-\mathrm{C}_{11}$ fragment synthesis 12
Scheme 8. $\mathrm{C}_{1}-\mathrm{C}_{6}$ fragment synthesis 13
Scheme 9. Desired isomerization and its precedent. 14
Scheme 10. Literature example of olefin isomerization 16
Scheme 11. $\mathrm{C}_{1}-\mathrm{C}_{11}$ second aproach retrosynthesis 19
Scheme 12. $\mathrm{C}_{1}-\mathrm{C}_{11}$ second approach forward synthesis 20
Scheme 13. Hydrazone formation and rearrangement 20
Scheme 14. Final $\mathrm{C}_{1}-\mathrm{C}_{11}$ retrosynthetic analysis. 22
Scheme 15. $\mathrm{C}_{1}-\mathrm{C}_{6}$ Fragment synthesis 23
Scheme 16. Attempted borane construction 24
Scheme 17. Completion of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment 25
Scheme 18. Completion of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment 26
Scheme 19. Retrosynthesis of apoptolidinone C 26
Scheme 20. Synthesis of apoptolidinone C. 27
Scheme 21. Recent breakthroughs in organocatalyzed aldol reactions 30
Scheme 22. Initial disaccharide retrosynthetic analysis 31
Scheme 23. Attempts at proline catalyzed cross aldol chemistry 32
Scheme 24. Proline catalyzed α-oxidation of aldehydes 32
Scheme 25. Proline catalyzed dimerization and incorporation into synthesis. 33
Scheme 26. Disaccharide forward synthesis 35
Scheme 27. Disaccharide forward synthesis 36
Scheme 28. Disaccharide retrosynthesis 37
Scheme 29. L-Proline derived sugar forward synthesis 38
Scheme 30. L-Proline derived sugar forward synthesis. 39
Scheme 31. D-Proline derived sugar and disaccharide synthesis 40
Scheme 32. D-Proline derived sugar and disaccharide synthesis 40

LIST OF EQUATIONS

Equation 1. Suzuki coupling 13
Equation 2. Attempted $\operatorname{Ir}(\mathrm{I})$ isomerization 15

LIST OF ABBREVIATIONS

AIBN AzobisisobutyronitrilePinacolboraneBBN.Borabicyclo[3.3.1]nonane
\qquadDCE1,2-Dichloroethane
DCM .Dichloromethane
dppf. 1,1`-Bis(diphenylphosphino)ferrocene
DIPEA N, N-Diisopropylethylamine
DMAP .4-Dimethylaminopyridine
DMF . N, N-Dimethylformamide
DMSO Dimethylsulfoxide
de. .Diastereomeric excess
dr..Diastereomeric ratio
ee.
\qquad.Enantiomeric excess
equiv Equivalents
EtOAc. .Ethyl acetate
imid Imidazole
HRMS High resolution mass spectrum
HWE Horner-Wadsworth-Emmons
GI_{50}Growth inhibition 50
LDA. Lithium diisopropylamide
NaHMDSSodium bis(trimethylsilyl)amide
PCC Pyridinium chlorochromate
pyr. Pyridine
RT. Room temperature
SM. .Starting material
TBStert-Butyldimethylsilyl
TBSCl..tert-Butyldimethylsilyl chlorideTBSOTf..tert-Butyldimethylsilyl triflate
THF
Tetrahydrofuran
TLCThin-layer chromatography
TMS Trimethylsilyl
TMSBr. Bromotrimethylsilane
TMSCl Trimethylsilyl chloride
Tf.Trifluoromethanesulfonate
Ts. Tosyl
TsCl. Tosyl chloride

PREFACE

Thanks to God, without whom nothing is possible or meaningful.
Thanks to Professor Nelson for having me in his lab and for providing a challenging project with valued guidance towards its completion. I would not be nearly the chemist I am without his insistence on excellence and fostering of a positive learning environment. Thanks to my committee members Professor Koide, Wilcox, and Gold as well as my proposal mentor Professor Floreancig for their part in the completion of this degree.

Thanks to Nelson group members, past and present, for camaraderie and advice. The lack of your presence would have made five years seem like fifty. An extra nod goes to Tom Vargo for being a source of aid and commiseration during our united efforts. Thanks to my peers in CSC for all of the same things and additionally for chemicals borrowed.

Thanks to friends and family for their support and understanding, especially my wife, Alison Hale, whom by marrying I performed my only greater accomplishment.

1.0 INTRODUCTION

1.1 BIOLOGICAL ACTIVITY AND STRUCTURAL FEATURES

Apoptolidin A (1) was first discovered by Seto in 1997, isolated from the soil bacteria Nocardiopsis sp. ${ }^{1,2}$ Structural derivatives apoptolidin B (2) and C (3) were isolated in 2005 from the same bacteria by Wender (Figure 1). ${ }^{3}$ Wender also isolated the most recent addition to this family of natural products, apoptolidin D (4), in 2007.4 This family of natural products has garnered interest in the scientific community for both its cytotoxic profile and structural complexity. Although a more complete biological profile has been built for apoptolidin A due to its relative ease of isolation, biochemical studies have also focused on B through D as well as other, synthetic derivatives.

Figure 1. Apoptolidin A-D

Cytotoxicity studies have shown the apoptolidins to be highly potent against various resistant cancer cell lines. $\mathrm{A} \mathrm{GI}_{50}$ of 24 nM has been reported for apoptolidin C in a cell proliferation assay with H292 cancer cells (Table 1). ${ }^{1}$ Apoptolidin A displays similar efficiency with apoptolidin C, while data suggest that apoptolidin B is more active. Impressively, apoptolidin A has also been shown to be extremely selective and is detrimental to healthy cells only at high concentrations $(>1 \mu \mathrm{M})$. This potency and selectivity has caught the attention of many members of the scientific community, causing the formulation of synthetic strategies that allow variability in substrate diversity to be a high priority.

Table 1. Growth inhibition assay results with H292 cells

Apoptolidin	$\mathrm{GI} 50(\mu \mathrm{M})$
A	0.032 ± 0.003
B	0.007 ± 0.004
C	0.024 ± 0.005

The work of the Khosla in 2001 was the first documented attempt to elucidate the mechanism of action of the apoptolidins. These data suggested that the cytotoxicity is due to apoptolidin A's inhibition of mitochondrial $\mathrm{F}_{0} \mathrm{~F}_{1}$-ATP synthase. ${ }^{5}$ This analysis was later applied to a wide range of analogs including apoptolidin C. . $^{6-9}$ Despite these studies, the structure-activity-relationship responsible for this inhibition remains elusive. These preliminary investigations by Wender suggest that the conformation of the macrocyclic core, as well as variation of the C_{20} and C_{21} functionalization, have a direct and considerable impact on levels of inhibition.

In addition the apoptolidins' impressive biological profile, these natural products are abundant in interesting structural features. This document will focus on the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment of
the macrocycle, the completion of the macrocycle, and the completion of the disaccharide moiety. In total, apoptolidin C contains twenty five stereocenters, five geometrically defined olefins, and a twenty member macrolactone, presenting researchers with a target abundant in opportunities to apply novel, expedient methodology.

1.2 PREVIOUS SYNTHESES OF APOPTOLIDIN A

Previous total syntheses of apoptolidin A have been reported by Nicolaou ${ }^{10-13}$, Koert $^{14-17}$ and Crimmins. ${ }^{19-22}$ Sulikowski ${ }^{23-28}$ has also reported a synthesis of the aglycone, apoptolidinone. Because the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment of apoptolidin A is identical to that of apoptolidin C , a brief inspection of this derivative's syntheses is useful.

Nicolaou's work on apoptolidin A has been distributed in four reports. ${ }^{10-13}$ These works have culminated in the retrosynthetic analysis displayed in Scheme 1, in which the molecule was dissected into four major fragments: the C_{9} appended sugar 5, the C_{27} appended hexose $\mathbf{6}$, the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment of the aglycone 7, and the $\mathrm{C}_{12}-\mathrm{C}_{28}$ fragment 8. Both the sugar 5 and the hexose 6 were joined to their respective fragments prior to the construction of the macrocyclic core. The two major disconnections of this macrocyclic core come from an intermolecular Stille coupling between the organostannane 7 and the vinyl iodide $\mathbf{8}$ followed by Yamaguchi macrolactonization to complete the macrocyle.

Scheme 1. Nicolou's retrosynthetic analysis

The $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment was assembled in two ways. In the pathway preferred by the author, vinyl boronate $\mathbf{9}$ was joined to diene 10 via a Suzuki cross-coupling reaction. The C_{8} and C_{9} stereocenters of the vinyl boronate were set utilizing Brown's crotylation method. The boronate was installed from the hydroboration of the alkynyl product of an Ohira-Bestmann homologation. The diene $\mathbf{1 0}$ was constructed from a tandem oxidation-Wittig sequence from a known alcohol.

Koert's major disconnections were similar to that of Nicolaou (Scheme 2). ${ }^{14-17}$ Similar major building blocks were employed: sugar 11, hexose 12, and the same two halves of the aglycone. A Stille cross-coupling reaction was used to couple the two halves together. In this case, however, the organostannane was appended to the $\mathrm{C}_{12}-\mathrm{C}_{28}$ framework $\mathbf{1 3}$ and the vinyl
iodide to the $\mathrm{C}_{1}-\mathrm{C}_{11}$ 14. Yamaguchi macrolactonization was utilized to complete the macrocycle.

Scheme 2. Koert's retrosyntheic analysis

The C_{8} and C_{9} stereocenters were set from known β-hydroxylactone 15 , which was easily accessed from a commercially available β-hydroxylactone. ${ }^{18}$ The triene moiety of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragments was constructed from a sequence of contiguous Wittig olefinations after consecutive reductive ring opening and oxidation of lactone $\mathbf{1 5}$. The C_{9} appended sugar $\mathbf{1 1}$ was joined to the $\mathrm{C}_{3}-\mathrm{C}_{11}$ fragment 16 immediately prior to the final olefination.

Crimmins has taken a different approach with respect to the construction of the aglycone (Scheme 3). ${ }^{19-21}$ A cross-metathesis reaction was employed to join the two major fragments of the macrocycle instead of opting for the previously discussed cross-coupling reactions.

Macrolactonization under the Yamaguchi conditions was again proven highly efficient. Formation of the $\mathrm{C}_{12}-\mathrm{C}_{28}$ coupling partner was accomplished through a Horner-WadsworthEmmons olefination between aldehyde 17 and phosphonate 18.

Scheme 3. Crimmins' retrosynthetic analysis

Similar to the synthesis of Koert, the triene fragment 19 was formed via three sequential Wittig olefinations from aldehyde 20. Stereocenters C_{8} and C_{9} were installed from methodology developed in the Crimmins group. ${ }^{22}$ These transformations involve the titanium mediated cross aldol reaction of aldehyde $\mathbf{2 1}$ and the chiral auxiliary appended thiazolidinethione enolate $\mathbf{2 2}$.

Sulikowski has taken a highly convergent approach in the formation of the aglycone (Scheme 4). ${ }^{23-28}$ The aglycone was formed from a series of reactions involving vinyl boronate 23, diene 24 and the product of two consecutive aldol reactions between vinyl iodide 25, ketone 26, and aldehyde 27. The product of these aldol reactions were then joined with vinyl boronate 23 in a Suzuki cross-coupling reaction. Subsequent appendage of diene 24 was accomplished
under Yamaguchi esterification conditions. Ring closure was successfully completed via intramolecular Suzuki coupling between the C_{5} iodide and the C_{6} boronate, produced from a cross metathesis, hydroboration sequence employed post esterafication.

Scheme 4. Sulikowski's retrosynthetic analysis

The C_{8} and C_{9} stereocenters were set by the implementation of Roush's crotylation protocol ${ }^{29}$ utilizing diisopropyl tartrate derived crotylboronates. The crotylation was executed on a known pinacol ester to furnish coupling partner 23. ${ }^{30,31}$ The $\mathrm{C}_{1}-\mathrm{C}_{5}$ fragment $\mathbf{2 4}$ was produced through an oxidation, Wittig olefination sequence starting with a known alcohol.

In addition to these major syntheses, other investigations into the synthesis of smaller fragments have been reported. ${ }^{32-39}$ Many elements of these partial syntheses mirror the aforementioned syntheses.

1.3 RETROSYNTHETIC ANALYSIS OF APOPTOLIDIN C

Our retrosynthetic analysis follows literature precedent for reliable major disconnections (Scheme 5). The $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment 29 will be joined with $\mathrm{C}_{11}-\mathrm{C}_{28}$ fragment $\mathbf{3 0}$ via Stille cross coupling followed by Yamaguchi's macrolactonization conditions to complete the macrocyclic core of apoptolidin C. For a synthesis of the natural product, disaccharide $\mathbf{3 1}$ will be coupled via glycosylation to the $\mathrm{C}_{12}-\mathrm{C}_{28}$ fragment $\mathbf{3 0}$ followed by Stille cross coupling to the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment 29 and finally glycosylation of sugar subunit 32 prior to macrolactonization to complete the synthesis. The major halves of the macrocycle were constructed from simple achiral acyl halide and aldehyde building blocks 33-36 in acyl halide-aldehyde cyclocondensations (AACs) to set every stereocenter in apoptolidinone C in a catalytic, asymmetric fashion. ${ }^{40-42}$ The disaccharide moiety was constructed from proline catalyzed asymmetric aldol dimerizations of simple, protected acetoxyacetaldehydes $\mathbf{3 7}$ and $\mathbf{3 8} .{ }^{43,44}$ This document will focus on the completion of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment, the macrocyclic core, and the disaccharide moiety.

Scheme 5. Our retrosynthetic analysis of apoptolidin C

2.0 COMPLETION OF THE MACROCYCLE

$2.1 \quad \mathrm{C}_{1}-\mathrm{C}_{11}$ EXPLORATORY SYNTHESES

Toward the total synthesis of apoptolidin C, investigations have been completed in our laboratory regarding the construction of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment 7 of the macrocyclic core. Three major approaches have been attempted, all of which will be covered in this document. Investigations began with exploratory routes that were not incorporated into the final, preferred synthesis. Our primary goals were to set relevant stereocenters from achiral starting materials utilizing catalytic methodology and to generate an efficient, convergent final route. To accomplish this directive, it was decided to set the C_{8} and C_{9} stereocenters with acyl halidealdehyde cyclocondensation (AAC) chemistry, ${ }^{40-42}$ laying the foundation for the $\mathrm{C}_{7}-\mathrm{C}_{11}$ fragment 39 of the molecule. To maximize convergency, it was initially anticipated that the $\mathrm{C}_{1}-\mathrm{C}_{6}$ triene 40 would be constructed as one piece and then coupled to the $\mathrm{C}_{7}-\mathrm{C}_{11}$ fragment (Scheme 6). The final triene 7 would be produced after isomerization of Suzuki cross coupling product 41. Cross coupling partners 39 and 40 would be constructed from the AAC substrate 42 and acteol (43), respectively.

Scheme 6. First generation retrosynthetic approach to apoptolidinone C

The first-generation synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment began with a triamine 44 catalyzed acyl halide-aldehyde cyclocondensation between propargylic aldehyde $\mathbf{3 4}$ and propionyl bromide (35) to generate β-lactone 42 in 81% yield, $>95: 5 \mathrm{dr}\left(93 \% e e\right.$, assayed by comparison of $\left.\alpha_{D}\right)$ (Scheme 7). ${ }^{45}$ Reductive ring opening with DIBAl-H followed by selective protection of the crude diol produced the tosylated product $\mathbf{4 5}$ in 46% yield over two steps. The modest yield in this sequence is attributed to over-tosylation of the diol, a consequence of the secondary alcohol being propargylic and relatively unhindered. Tosyl-protected product $\mathbf{4 5}$ was then converted to the fully protected iodide 39 by silyl ether formation followed by a Finkelstein reaction with NaI to generate the coupling fragment 39 in 77% yield over two steps.

Scheme 7. $\mathrm{C}_{7}-\mathrm{C}_{11}$ fragment synthesis

a) $10 \mathrm{~mol} \% 44, \mathrm{AlMe}_{3} i \mathrm{Pr}_{2} \mathrm{Net}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$. b) $i \mathrm{Bu} \mathrm{L}_{2} \mathrm{AlH}, \mathrm{THF},-78^{\circ} \mathrm{C}$. c) $\mathrm{TsCl}, \mathrm{pyr}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
d) TBSCl, imid, DMF. e) NaI, acetone

Having completed a synthesis of fragment 39, silyl protection of acetol (43) initiated construction of triene precursor 40, affording protected product 46 in 81% yield (Scheme 8). Ketone 46 was then converted to allene 47 via addition of ethynylmagnesium bromide, homologation of the alkyne to the allenol with paraformaldehyde, CuBr , and $i \mathrm{PrNH}$, and finally acyl protection of the alcohol to produce allene 47 in 62% yield over three steps. An interesting $\mathrm{Pd}(\mathrm{II})$-catalyzed rearrangement ${ }^{46}$ of allene 47 produced diene 48 in $78 \%(9: 1 \mathrm{E}: Z)$ after LiI addition to the π-allyl complex formed from acyl displacement via catalytic $\mathrm{Pd}(\mathrm{OAc})_{2}$. Diene 48 was then homologated to triene 40 after silyl deprotection, Swern oxidation, and HWE olefination with phosphine oxide 49 in $68 \%(\sim 9: 1 E: Z)$ over three steps. It is important to note that the polyenes in this final sequence are extremely thermo- and acid-sensitive and must be handled with care. The conjugated aldehyde, for example, decomposed within an hour if left at room temperature and the final triene $\mathbf{4 0}$ was prone to olefin isomerization in CDCl_{3} or upon exposure to light.

Scheme 8. $\mathrm{C}_{1}-\mathrm{C}_{6}$ fragment synthesis

a) TBSCl , imid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) ethynylmagnesium bromide, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF},-78^{\circ} \mathrm{C}$. c) $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}, \mathrm{CuBr}, i \mathrm{PrNH}$, dioxane, Δ. d) $\mathrm{Ac}_{2} \mathrm{O}$, pyr, DMAP. e) LiI, $\mathrm{Pd}(\mathrm{OAc})$, $\mathrm{AcOH}, 40^{\circ} \mathrm{C}$. f) $\mathrm{HF} \bullet$ pyr, pyr/THF. g) oxalyl chloride, DMSO, $\mathrm{NEt}_{3},-78^{\circ} \mathrm{C}$ to RT. h) 49, LDA, THF, $-78^{\circ} \mathrm{C}$.

Some optimization was required in formulating conditions for the $s p^{2}-s p^{3}$ cross coupling reaction (Equation 1). Alkyl iodide 39 was treated with $t-\mathrm{BuLi}$ and $9-\mathrm{MeOBBN}$ to form the borane coupling partner in situ. This substrate was then subjected to vinyl iodide $\mathbf{4 0}$ utilizing $\mathrm{PdCl}_{2}(\mathrm{dppf})$ as a precatalyst, AsPh_{3} for its ligand, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base to generate coupling product 41 in 47% yield. ${ }^{47}$ While the yield is modest, $s p^{3}$ coupling reactions are considered difficult because of β-hydride elimination, requiring more active Pd species with large bite angles and electron rich ligands such as AsPh_{3} to improve reaction rates to make reductive elimination more facile than the competing β-hydride elimination.

Having obtained triene 41, efforts were directed toward performing the requisite isomerization to generate the structural core of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment (Scheme 9). Our initial efforts focused on cationic iridium-catalyzed isomerization, based on precedent set in similar
systems. ${ }^{48}$ This reaction is known to proceed via $\operatorname{Ir}(\mathrm{I})$ insertion into the allylic C-H bond, rearrangement via an η^{3} complex placing $\mathrm{Ir}-\mathrm{H}$ at the desired carbon, and finally reductive elimination to generate the product. Literature examples do not directly match our system, the least reactive substrates being monosubstituted olefins and 1,1-disubstituted vinyl ethers. It was decided, however, that the mechanism involved should apply to 1,1 -disubstituted alkyl systems as well, promoting formation of the more thermodynamically favored trisubstituted alkene $\mathbf{5 0}$.

Scheme 9. Desired isomerization and its precedent

Unfortunately, attempts to incorporate this chemistry into the synthesis of apoptolidin C were ultimately unsuccessful (Equation 2). Utilizing a catalyst loading of $2 \mathrm{~mol} \%\left[\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{3} \mathrm{Ir}\right]^{+}$ with three equivalents of PCy_{3} ligand per $\operatorname{Ir}(\mathrm{I})$ resulted in no reaction at ambient temperature. In subsequent isomerization attempts, a higher catalyst loading was used (3.6 and $10 \mathrm{~mol} \%$) as well as an increase in temperature (40 and $70{ }^{\circ} \mathrm{C}$) using dichloroethane as a solvent. These
modifications resulted in the lack of reactivity seen previously with some decomposition occurring at extended reaction times and higher temperatures. Attempts to use only two equivalents of PCy_{3} ligand per Ir^{+}for a more reactive cationic catalyst gave no reaction at low temperatures and decomposition in refluxing dicholoroethane.

The observed lack of reactivity seen in this system could be attributed to steric hindrance at the vinylogous methylene $\left(\mathrm{C}_{7}\right)$. As mentioned previously, these cationic metal isomerizations are dependent on initial C - H insertion at C_{7}. The vinylogous carbon in this system is relatively hindered from the α-methyl, β-silyl ether, and triene moieties, especially considering the methyl group from the triene is probably pointing directly at the $-\mathrm{CH}_{2}-\left(\mathrm{C}_{7}\right)$ in order to maintain orbital alignment and, thus, resonance. Considering the relative bulk of the ligands used in this chemistry $\left(\mathrm{PCy}_{3}\right)$, it is feasible to conclude that this methylene is too sterically encumbered to allow for the required $\mathrm{C}-\mathrm{H}$ insertion to occur.

Having attempted a number of reaction conditions within the Ir^{+}system, alternate reaction pathways were considered involving a variety of metals and reagents. Multiple conditions attempted involved a RuH or RhH catalyst. Incorporation of both premade and in situ generated catalysts were was attempted (Scheme 10). These systems were thought to succeed where $\operatorname{Ir}(\mathrm{I})$ had proven insufficient, considering the mechanism involves insertion across the alkene itself followed by β-hydride elimination to regenerate the catalyst. The π-bond involved
in the first step of this reaction sequence was thought to be less sterically hindered than the methylene. The RuH catalyst generated from Grubbs II (51) and vinyl TMS ether $\mathbf{5 2}$ is known to isomerize 1,1-disubstituted olefin $\mathbf{5 3}$ to fully substituted olefin $\mathbf{5 4}{ }^{49}$

Scheme 10. Literature example of olefin isomerization

A number of conditions were attempted, some of which on a test substrate where $\mathrm{R}=$ isovaleryl to convert test substrate 55 to isomerized product 56. All conditions attempted resulted in recovery of starting material or decomposition to unisolable materials under harsher reaction conditions (Table 2). Subjecting the triene to RuH generated in situ (vinyloxytrimethylsilane, Grubbs II) led to recovery of starting material at lower temperatures and decomposition at higher temperatures. Considering that a more aggressive catalyst may be useful, the triene was reacted with RhH formed from refluxing RhCl_{3} in EtOH^{50} to less successful results, rapidly decomposing the starting material. Preformed RhH^{51} and RuH hydride catalysts $\left(\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right)$ were not effective and led to recovery of starting material; similar results were obtained from attempts at base catalyzed isomerization (NaHMDS).

Table 2. Attempted isomerization conditions

		 50; $R=$ OOTBS $56 ; R=$ isovaleryl
Entry	Conditions	Result
1	10 equiv. vinyloxytrimethylsilane, $5 \mathrm{~mol} \%$ Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DCE}$, or toluene 40,83 , or $110^{\circ} \mathrm{C}$	SM, decomposition at higher temperature
2	RhCl_{3}, reflux in EtOH	Decomposition
3	$\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, toluene, 70 or $110^{\circ} \mathrm{C}$	Majority SM after 2.5 hrs
4	NaHMDS, THF, $-78{ }^{\circ} \mathrm{C}$	No reaction

The lack of reactivity seen in all these metal isomerizations could be attributed to the large steric bulk presented by these catalysts (Figure 2). Inability to access the vinyl C-H bond for C-H insertion explains the observed lack of reactivity in the case of the iridium catalyzed isomerizations. While the alkene is not as sterically hindered as the vinylogous methylene, the C_{6} olefin in this triene system is fairly sterically hindered, contributing to lack of M-H insertion into the π-bond. Deactivation of the alkene via resonance with the triene/ether system should also be taken into account as a less electron-rich olefin would be less susceptible to react with the electron-deficient RuH and RhH species. The results of these studies have shown that bulky, metal based isomerization catalysts are even more susceptible to deactivation via steric hindrance and electronic deactivation than initially anticipated.

Figure 2. 1,1-Disubstituted olefin stability towards isomerization

Unwilling to completely abandon this synthetic route, efforts were focused on implementing a slightly altered key intermediate that would allow for adjustment in the key isomerization step while retaining a considerable amount of the synthesis. Investigations into diazene rearrangement of allylic diazenes (Figure 3) suggested that this type of reaction could be integrated into the synthesis of apoptolidinone C. ${ }^{52}$

Figure 3. N-Tosyl hydrazine diazine rearrangement

This diazene rearrangement to final triene $\mathbf{5 7}$ would require access to vinylogous N-tosyl hydrazone intermediate 58, necessitating adjustments to the synthetic scheme (Scheme 11). Hydrazone intermediate 58 would be constructed from the ketone product of Stille cross coupling between acid chloride 59 and vinyl stannane 60. The coupling partners will be accessed from β-lactone 42 and acetol (43), starting materials used in the previous approach.

Scheme 11. $\mathrm{C}_{1}-\mathrm{C}_{11}$ second aproach retrosynthesis

Construction of ketone $\mathbf{6 1}$ began with ring opening of β-lactone $\mathbf{4 2}$ with lithium peroxide and subsequent reduction to the carboxylic acid 62 in 69% yield (Scheme 12). Direct ring opening with various hydroxides resulted in TMS deprotection while the peroxide nucleophile was soft enough to promote ring opening while leaving the silane intact. Protecting the secondary alcohol as the TBS ether followed by acid chloride formation with oxalyl chloride gave coupling partner $\mathbf{5 9}$ that was used crude in the coupling sequence. Generating the stannane coupling partner $\mathbf{6 0}$ was accomplished by metal-halide exchange, treating vinyl iodide $\mathbf{4 8}$ with $\mathrm{Sn}_{2} \mathrm{Me}_{6}$ and catalytic $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(78 \%)$. Coupling of stannane $\mathbf{6 0}$ and acid chloride $\mathbf{5 9}$ with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ as the palladium source proceeded in good yield (75% over 3 steps) to produce ketone intermate 61.

Scheme 12. $\mathrm{C}_{1}-\mathrm{C}_{11}$ second approach forward synthesis

a) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}$, then $\mathrm{Na}_{2} \mathrm{SO}_{3}$, THF/ $\mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$ to RT. b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$. c) oxalyl chloride, benzene. d) $\mathrm{Sn}_{2} \mathrm{Me}_{6}, \mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}$, DIPEA, benzene, $80^{\circ} \mathrm{C}$ to RT. e) $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, DIPEA, Benzene.

Ketone 61 was then subjected to hydrazone formation conditions with little initial success towards formation of rearrangement precursor 58. Preliminary attempts to aminate the ketone $(\mathrm{EtOH}, \Delta ; \mathrm{AcOH} ; \mathrm{EtOH}, \mathrm{HCl})$ resulted in either no reaction or decomposition (Scheme 13). The terminal unsaturated enone was found to be considerably unstable. Somewhat counterintuitively, harsher conditions for a shorter period of time were found to be most effective. TFA catalysis was found to generate hydrazone 58 at an acceptable level of efficiency (23\%) to then test the key rearrangement. Subjecting hydrazone $\mathbf{5 8}$ to catecholborane and then NaOAc buffer and heat ${ }^{52}$ lead to formation of the rearrangement product 63 in moderate yield and $E: Z$ selectivity (51\%; 2:1 E:Z).

Scheme 13. Hydrazone formation and rearrangement

a) $\mathrm{H}_{2} \mathrm{NNHTs}$, TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) catecholborane, $\mathrm{SiO}_{2}, \mathrm{CHCl}_{3}$, then $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \Delta ; 2: 1(E: Z)$.

The result of moderate $E: Z$ selectivity was unexpected considering an analysis of the transition state (Figure 4). After reduction of the hydrazone to the diazene, the retroene reaction may occur from one of two transition states, one in which the two large alkyl groups $\left(\mathrm{R}, \mathrm{R}_{\mathrm{L}}\right)$ are eclipsing one another and one in which they are anti. Reaction from the enthalpically lower transition state would be expected, producing the desired olefin geometry as the major product. Unfortunately, experimental evidence disproves this analysis, likely due to the high degree of planarity in these large R groups with $s p^{2}$ and $s p$ centers alpha and beta to the reactive sites. The discovery that this rearrangement generated less than optimal results coupled with the low yields from working with sensitive intermediates leading up to the rearrangement, it was decided that another approach to this fragment may be appropriate.

Figure 4. Analysis of retroene transition state

$2.2 \quad \mathrm{C}_{1}-\mathrm{C}_{11}$ FINALIZED ROUTE

Having attempted to implement isomerization of a C_{6} terminal olefin to the desired isomer in two different routes, our thoughts shifted to the possibility of incorporating a synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment 29 in which the C_{6} olefin was already in the correct position prior to coupling (Scheme 14). A convergent retrosynthetic analysis was devised in which dibromide $\mathbf{6 4}$ and vinyl borane 65 would be joined via regioselective Suzuki cross coupling, placing the C_{6} olefin in the correct orientation. Dibromide coupling partner 64 would be constructed from a Corey-Fuchs reaction after setting the requisite stereocenters utilizing an AAC reaction involving aldehyde $\mathbf{3 4}$ and propionyl chloride (33). The vinyl borane coupling partner 65 would be generated from propargyl alcohol (66) after carboalumination and an oxidation, Wittig reaction sequence.

Scheme 14. Final $C_{1}-C_{11}$ retrosynthetic analysis.

Synthesis of dibromide fragment $\mathbf{6 4}$ commenced with a cinchona alkaloid catalyzed AAC reaction between aldehyde 34 and propionyl chloride (33) (Scheme 15). Upon reaction of these cycloaddition partners with cinchona alkaloid catalyst $67, \mathrm{MgCl}_{2}$ and $i \mathrm{Pr}_{2} \mathrm{NEt}, \beta$-lactone $\mathbf{4 2}$ was obtained in 92% yield $(98 \% \mathrm{ee})$. In previous routes, this reaction was completed with the triamine Lewis acidic catalyst. Propargylic aldehydes are often not compatible with the cinchona
alkaloid procedure due to their rapid reactivity and lack of steric bias in the transition state, promoting poor diastereoselectivity. It was assumed that the use of the less reactive MgCl_{2} as a Lewis acidic additive rather than the more traditional LiI used in these reactions would allow for shorter coordinative bond lengths in the transition state and a slower rate of reaction allowing for the use of propargylic aldehydes. The β-lactone 42 ring was then opened and the resulting alcohol protected in an efficient one-pot procedure. KHMDS catalyzed the nucleophilic attack of ethane thiol that was followed by in situ silyl trapping of the free alcohol (TBSOTf, 2,6lutidine) to give the crude thioester. The thioester was then reduced to aldehyde $\mathbf{6 8}(76 \%, 2$ steps) with $i \mathrm{Bu}_{2} \mathrm{AlH}$ and subjected to the ylide formed from CBr_{4} and PPh_{3}, converting the aldehyde to dibromide 64 in 80% yield.

Scheme 15. $\mathrm{C}_{1}-\mathrm{C}_{6}$ Fragment synthesis

a) $10 \mathrm{~mol} \% 67, \mathrm{EtCOCl}, \mathrm{MgCl}_{2}, i \mathrm{Pr}_{2} \mathrm{NEt},-78{ }^{\circ} \mathrm{C}$. b) $10 \mathrm{~mol} \%$ KHMDS, EtSH, THF then TBSOTf, 2,6-lutidine. c) $i \mathrm{Bu}_{2} \mathrm{AlH}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}$. d) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{KHMDS}=$ potassium hexamethyldisilazide.

Integration of dibromide $\mathbf{6 4}$ into the $\mathrm{C}_{1}-\mathrm{C}_{11}$ portion of the molecule required a synthesis of Suzuki coupling partner vinyl borane $\mathbf{6 5}$ beginning with commercially available propargyl alcohol (66) (Scheme 16). The alkyne was halogenated in a modification of a known
carboalumination procedure ${ }^{53}\left(\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, \mathrm{AlMe}_{3}, \mathrm{H}_{2} \mathrm{O}\right.$ then $\left.\mathrm{I}_{2}\right)$ to afford vinyl iodide $69(59 \%)$. The water additive in this reaction was not used in literature procedures and the 20% increase in yield is attributed to increased basicity of the aluminum methoxide. A more basic aluminum species allowed the propargyl alcohol to be fully deprotonated prior to formation of a protonsensitive carboaluminum intermediate. Vinyl iodide 69 was then converted to alkynol 70 via $\operatorname{Pd}\left[(\mathrm{PPh})_{3}\right]_{4}$-catalyzed cross coupling with 1-(trimethylsilyl)-alkyne followed by TBAF deprotection to liberate alkyne 70. Attempts to incorporate another carboalumination into the synthesis to generate diene 71 at this point led to mediocre results and poor yields. The unsatisfactory results were attributed to formation of sensitive intermediates related to the reactive alkyne being in conjugation with an olefin.

Scheme 16. Attempted borane construction

a) $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, \mathrm{AlMe}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$, then THF, I_{2}. b) 1-(Trimethylsilyl)-alkyne, $i \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{CuI}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. c) TBAF, THF, $0^{\circ} \mathrm{C}$ to RT. d) $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, \mathrm{AlMe}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$.

To avoid the second, low yielding carboalumination, the route to vinyl borane $\mathbf{6 5}$ was slightly modified to generate diene 72 directly from carboaluminated propargyl alcohol (66) (Scheme 17). A one-pot oxidation, Wittig reaction was carried out on the carboalumination product 69 with MnO_{2} as the oxidant and the appropriate triphenylphosphine ylide to give homologated diene 72 in 83% yield. ${ }^{54}$ Performing these reactions sequentially resulted in a slightly improved yield over two steps (89%) but the convenience of the one pot procedure
secured its position as the reaction of choice for material throughput. To complete the Suzuki coupling partner, vinyl borane $\mathbf{6 5}$ was obtained via metal-halogen exchange of the iodide (bis(pinacolato)diboron, $\left.\left[\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right], \mathrm{KOAc} ; 97 \%\right) .{ }^{55}$

Scheme 17. Completion of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment

a) $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, \mathrm{AlMe}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$, then THF, I_{2}. b) $\mathrm{MnO}_{2}, \mathrm{PPh}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2}{\left.\mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {. c) (pinB }\right)_{2}, 3 \mathrm{~mol} \% \mathrm{~m}}^{2}$ $\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$, KOAc, DMSO, $85^{\circ} \mathrm{C}$. Dppf = 1,1`-bis(diphenylphosphino)ferrocenyl, pin = pinacol $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)$.

Regioselective coupling of borane $\mathbf{6 5}$ and dibromide $\mathbf{6 4}$ proceeded smoothly by reaction at the less sterically hindered bromine to generate the "all- E " triene fragment 73 in 66% yield (Scheme 18). This coupling reaction was optimized when using TlOEt and catalytic $\left[\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right] ;{ }^{56}$ the use of bases lacking Thallium's halide affinity lead to slow reaction times, incomplete conversion and poor regioselectivity. Methylation at C_{6} required some optimization; attempts to append the methyl group via Suzuki coupling with various methyl boranes such as trimethylboroxine and $9-\mathrm{MeBBN}$ produced decomposition or no reaction. Implementing a fairly exotic palladium catalyst with a large bite angle, $\left[\mathrm{Pd}\left(\mathrm{P}_{t} \mathrm{Bu}_{3}\right)_{2}\right]$, in a Negishi coupling with ZnMe_{2} resulted in 90% yield of triene 74 product ($6.6: 1 E: Z$) ${ }^{57}$ The modest $E: Z$ selectivity is attributed to residual $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ from the previous step; $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ is known to give the Z olefin under these conditions. ${ }^{58}$ Triene 74 was then functionalized appropriately for Stille coupling by silyl removal (TBAF) to furnish alcohol 75 and hydrostannation ${ }^{59}\left(n \mathrm{Bu}_{3} \mathrm{SnH}, 3 \mathrm{~mol} \%\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\right)$ of the terminal alkyne ($57 \%, 2$ steps) to complete the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment $\mathbf{2 9}$ of the aglycone.

Scheme 18. Completion of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment

a) 64, $10 \mathrm{~mol} \%\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$, TlOEt, aq THF. b) $\mathrm{ZnMe}_{2}, 7 \mathrm{~mol} \%\left[\mathrm{Pd}\left(\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}\right]$, THF; $\mathrm{C}_{6}-\mathrm{C}_{7} E: Z=6.6: 1$. c) $n \mathrm{Bu} u_{4} \mathrm{NF}$, THF. d) $n \mathrm{Bu}_{3} \mathrm{SnH}, 3 \mathrm{~mol} \%\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, THF; $\mathrm{C}_{10}-\mathrm{C}_{11} E: Z=3.4: 1$.

2.3 MACROCYCLE SYNTHESIS

Following completion of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ fragment $\mathbf{2 9}$, our attention was turned to completion of the macrocyclic core of apoptolidin C (Scheme 19). The two major fragments would be joined in a Stille cross coupling reaction to construct the $\mathrm{C}_{11}-\mathrm{C}_{12}$ bond, generating an intermediate that could be saponified to the seco-acid. The seco-acid would then be closed to the macrocycle via lactonizating followed by global deprotection to give the final product.

Scheme 19. Retrosynthesis of apoptolidinone C

We initially anticipated implementing cross coupling conditions from previous syntheses of apoptolidin A to complete the aglycone synthesis (Scheme 20). ${ }^{10-13}$ Our particular system, however, required further optimization than was present in the literature. After extensive experimentation, treating the coupling partners 29 and $\mathbf{3 0}$ with $\left[\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}\right]$ and phosphine salt $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{~N}(n \mathrm{Bu})_{4}{ }^{60}$ was found to consistently produce the coupling product in 75% yield with 12:1 ($E: Z$) enantiopurity across the $\mathrm{C}_{10}-\mathrm{C}_{11}$ bond. Without the phosphine additive, complex mixtures $(\sim 1: 1 ; E: Z)$ of olefin isomers were obtained; other palladium sources produced similar results. ${ }^{61} \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{~N}(n-\mathrm{Bu})_{4}$ is thought to maintain olefin geometry by scavenging tin halide byproducts that could otherwise isomerize weak π-bonds via a metathesis pathway.

Scheme 20. Synthesis of apoptolidinone C

a) 0.25 equiv 30, $10 \mathrm{~mol} \% \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$, 5 equiv $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{~N}(n \text { - } \mathrm{Bu})_{4}$, $\mathrm{DMF} ; \mathrm{C}_{10}-\mathrm{C}_{11} E: Z=12: 1$. b) LiOH , THF:MeOH: $\mathrm{H}_{2} \mathrm{O}(6: 2: 1)$. c) 1 equiv TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH},-15{ }^{\circ} \mathrm{C}$. d) NEt_{3}, DMAP, 2,4,6-trichlorobenzoyl chloride, THF:Toluene. e) $\mathrm{H}_{2} \mathrm{SiF}_{6}(\mathrm{aq}), \mathrm{MeCN},-35^{\circ} \mathrm{C}$. TFA = Trifluoroacetic acid, DMAP = 4-Dimethylaminopyridine.

Saponification of the ethyl ester under basic conditions (LiOH) lead to conversion of the ester moiety to the carboxylic acid along with non-selective partial TES removal at the C_{19} and C_{23} alcohols to afford a complex mixture of products 76 ($\sim 78 \%$ of the mixture). The mixture of partially deprotected compounds 76 was treated with TFA in MeOH to selectively remove the remaining TES groups while leaving the TBS ether intact to generate seco-acid 77 (61\%). It was anticipated that macrolaconization would occur preferentially at the desired proximal $\left(\mathrm{C}_{19}\right)$ alcohol rather than at the more remote position $\left(\mathrm{C}_{23}\right)$. Yamaguchi's conditions ${ }^{62}$ generated the protected aglycone, with the majority of lactonization occurring on the C_{19} alcohol ($\sim 10: 1$). The rigidity of the highly unsaturated $\mathrm{C}_{1}-\mathrm{C}_{13}$ framework was thought to play a major role in this regioselectivity. ${ }^{63}$ Deprotection of the anomeric methoxy and TBS ether was not trivial. Various conditions including HF•pyridine, TBAF followed by aqueous acid, and TASF either failed to remove the protecting groups or lead to decomposition. Concomitant silyl deprotection/anomeric hydrolysis was ultimately achieved using aqueous $\mathrm{H}_{2} \mathrm{SiF}_{6}$ in acetonitrile at $-35{ }^{\circ} \mathrm{C}$, completing the synthesis of apoptolidinone $\mathrm{C}(\mathbf{3 b})(36 \%, 2$ steps $) .{ }^{14-17}$ The lower yield in this step is attributed to some decomposition at necessarily elevated reaction temperature; lower temperatures lead to incomplete conversion while higher temperatures lead to decomposition.

This synthesis of apoptolidinone C displays the efficacy of the acyl halide-aldehyde cyclocondensation (AAC) as well as a highly efficient, convergent route to the $\mathrm{C}_{1}-\mathrm{C}_{11}$ triene portion of the molecule. The derivation of 10 of 10 stereocenters catalytically, 8 directly 2 indirectly, illustrates the reality that asymmetric synthesis of complex targets does not necessitate stoichiometric and/or auxiliary based methodology. To expand upon our success in catalytic,
asymmetric synthesis, a route to the disaccharide portion of the natural product has been developed, heavily utilizing organocatalysis.

3.0 COMPLETION OF THE DISACCHARIDE

3.1 DISACCHARIDE EXPLORATORY ROUTES

Upon completing the aglycone, our efforts were focused on devising a synthetic route for the disaccharide moiety of the molecule, to be integrated into the total synthesis of apoptolidin C . Similar to our fragment synthesis for the aglycone, our goal in the disaccharide synthesis was to provide an expedient route to each sugar subunit utilizing interesting and efficient catalytic methods to set requisite stereocenters. Toward that goal, it was decided that the increasingly prolific work on organocatalyzed aldol products could potentially be assimilated into the synthesis of the apoptolidin disaccharide (Scheme 21). Of particular interest were these crossaldol reactions being performed by a number of laboratories, giving high yields of enantioenriched polyols, polyethers, and polypropionate subunits. ${ }^{64,65}$

Scheme 21. Recent breakthroughs in organocatalyzed aldol reactions

With this chemistry in mind, our retrosynthetic analysis from disaccharide $\mathbf{7 8}$ began with glycosidic bond formation between the sugars derived from cyclization of aldol products 79 and 80 (Scheme 22). The cyclization precursors are being built from a Mukaiyama aldol onto organocatalyzed cross-aldol products $\mathbf{8 1}$ and $\mathbf{8 2}$. The core of our initial analysis of this synthesis was the formation of these cross-aldol products, thought to be obtainable through proline catalysis between simple aldehyde starting materials $\mathbf{3 7}, \mathbf{3 8}, \mathbf{8 3}$ and $\mathbf{8 4}$.

Scheme 22. Initial disaccharide retrosynthetic analysis

Preliminary studies focusing on utilization of L-proline met with little success (Scheme 23-3, 23-4). Our ambition was to incorporate acetoxyacetaldehyde-based nucleophile 38 and electrophile 84 into cross-aldol systems in the absence of literature examples. ${ }^{64,65}$ It was discovered that application of proline catalysis resulted in a complex mixture of products, with no desired product $\mathbf{8 5}$ found (3). Very low yields of product $\mathbf{8 6}$ were obtained (15\%) when using nucleophile 38 and non-enolizable aldehyde 87 (4). The inductive effects of the benzyl ether moiety results in excellent electrophilicity at the aldehyde position and poor enolate nucleophilicty, making this compound a poor candidate as a nucleophile in cross-aldol additions.

Scheme 23. Attempts at proline catalyzed cross aldol chemistry

Maintaining a desire to incorporate proline catalysis into the dissacharide synthesis, a potential opportunity presented itself in the α-oxidation of aldehydes ${ }^{66}$ that could be made from our group's AAC chemistry (Scheme 24). Cinchona alkaloid-catalyzed cyclocondensation between acetaldehyde $\mathbf{8 4}$ and acetyl chloride $\mathbf{8 8}$ resulted in β-lactone $\mathbf{8 9}$ followed by a ring opening (Weinreb amine), protection (TBSOTf), reduction sequence $\left(i \mathrm{Pr}_{2} \mathrm{AlH}\right)$ to generate aldehyde 90. α-Oxidation of the aldehyde with proline and nitrosobenzene resulted in only 48% conversion and 20% isolated yield of the oxidized product 91 . Realizing that the literature substrate scope of this reaction is limited to unsubstituted propionate aldehydes, it is likely that bulky β-substitution of the TBS ether prevents an efficient rate of conversion.

Scheme 24. Proline catalyzed α-oxidation of aldehydes

a) LiClO_{4}, TMSQd, DIPEA, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-7{ }^{\circ} \mathrm{C}$. b) $\mathrm{Me}_{2} \mathrm{AlCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-45^{\circ} \mathrm{C}$. c) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}$. d) $i \mathrm{Pr}_{2} \mathrm{AlH}$, THF, $-78{ }^{\circ} \mathrm{C}$. e) PhNO, L-proline, DMSO, then NaBH_{4}, EtOH.

With setbacks in attempting to make innovations in cross-aldol chemistry and other organocatalyzed considerations, it seemed prudent to consider more analogous literature examples going forward. Proline-catalyzed dimerization of the acetoxyacetaldehyde ethers we had been working with are known, ${ }^{43,44}$ the drawback in this chemistry being that the methyl
group of the electrophilic aldehyde is one oxidation state too high for direct incorporation into our sugar synthesis (Scheme 25). The dimerization chemistry is, however, sufficiently efficient to allow for the necessary additional steps involved in deoxygenating the methyl group. After formation of dimer $\mathbf{9 2}$ and protection to silyl ether $\mathbf{9 3}$, aldehyde $\mathbf{9 4}$ could be obtained via a Lewis base catalyzed substrate controlled Mukaiyama aldol that has been implemented in other syntheses in our labs. ${ }^{67}$ From aldehyde 94, cyclization and functional group manipulations would provide access to sugar 95 .

Scheme 25. Proline catalyzed dimerization and incorporation into synthesis

Before continuing with the forward synthesis, an analysis of the Lewis base catalyzed Mukaiyama aldol's transition state made us wary of the potential diastereoselective outcome of this reaction (Figure 5). In previous applications of this chemistry, the OTIPS group was replaced with the much smaller, electron donating methyl group. Under these conditions, addition occurred Felkin with respect to the alkyl group being R_{L}, providing the correct, desired product for the synthesis of the apoptolidin sugars. In our example, however, there was a recognized possibility that the OTIPS group is sufficiently large and electron withdrawing enough to occupy the R_{L} position in the Felkin model, leading to the undesired diastereomer.

Figure 5. Stereochemical outcome of Mukaiyama aldol

With aldehyde 92 only a few steps from a known enantiopure material, ${ }^{19}$ the most expedient way to deduce relative stereochemistry was to construct the known material. Dimerization of TIPS-protected acetoxyacetaldehyde $\mathbf{8 3}$ to dimer $\mathbf{9 2}$ followed by silyl protection (TESOTf, 2,6-lutidine) gave fully silated triol 93 in 58% yield over two steps (Scheme 26). Achiral Lewis base tetra- n-butylammonium p-nitrophenoxide-catalyzed Mukaiyama aldol addition of enol silane $\mathbf{9 6}$ to aldehyde $\mathbf{9 3}$ gave amide $\mathbf{9 7}$ as a single diastereomer in 89% yield, ${ }^{67}$ relative stereochemistry currently unknown but represented as the desired isomer in this scheme. Attempts to cyclize the resulting straight chain to produce the sugar core was more problematic than anticipated. Direct acidic cyclization failed to produce the cyclization product when reacting the amide or the aminol resulting from reduction with catalytic acid. During the course of these attempts it was found that the TES and TMS groups could be deprotected with 1 M HCl and from intermediate diol 98 and the cyclization to lactone 99 would occur under basic conditions. Ultimately a one pot procedure in which simultaneous acidic cleavage of both the TMS and TES silanes followed by in situ base promoted cyclization was devised to generate the 6-membered lactone 99 in good yield (81\%).

Scheme 26. Disaccharide forward synthesis

a) D-proline, DMF. b) TESOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$. c) $20 \mathrm{~mol} \mathrm{H}^{\circ} \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ONBu}, \mathbf{9 6}, \mathrm{THF},-70{ }^{\circ} \mathrm{C}$. d) 1 $\mathrm{M} \mathrm{HCl}, \mathrm{MeOH}$. e) $\mathrm{NaOMe}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ f) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 0^{\circ} \mathrm{C}$ then NaOMe .

The cyclization product 99 was then reduced to the lactol with $i \operatorname{Pr}_{2} \mathrm{AlH}$ and subsequently benzyl protected at the anomeric center with benzyl alcohol and catalytic PPTS to afford benzyl ether 100 in moderate yield over 2 steps (68\%) (Scheme 27). Alcohol 100 was then methylated (MeI, NaH) prior to silyl ether deprotection (TBAF) to yield diol 101 (48\%). Interestingly, attempts to methylate or desilate lactone 99 directly lead to decomposition suggesting that this intermediate is base sensitive, probably due to retroaldol tendencies. Barton deoxygenation of diol 101 proceeded in moederate yield (45\%) through selective formation of the primary o phenylthionoformate and subsequent radical initiation with catalytic AIBN in the presence of $\mathrm{Bu}_{3} \mathrm{SnH} .{ }^{68}$ Enough material was obtained at this stage to compare the product to a known literature sample of $\mathbf{1 0 2}$.

Scheme 27. Disaccharide forward synthesis

a) $i \mathrm{Pr}_{2} \mathrm{AlH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$. b) PPTS, $\mathrm{BnOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. c) MeI, NaH, THF, $0^{\circ} \mathrm{C}$ to RT. d) TBAF, THF, $0^{\circ} \mathrm{C}$ to RT. e) PhOCSCl, pyr, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. f) AIBN, $\mathrm{Bu}_{3} \mathrm{SnH}$, toluene, Δ.

Unfortunately, our sample's spectra showed enough incongruence between the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR of the literature sample ${ }^{19}$ to suggest that we had obtained the wrong diastereomer. All chemical shifts were accounted for, with major alteration in the position of the proton and carbon formed in the Mukaiyama aldol addition. 2D experimentation also supported the probability of having generated the incorrect isomer. With this data in hand it was necessary to develop some alterations in the route while maintaining as much of the core synthesis as possible.

3.2 DISACCHARIDE FINAL ROUTE

Advancement of the disaccharide synthesis required some alteration in our approach in order to incorporate an appropriate substrate controlled addition to the dimer product (Scheme 28). The disaccharide 78 would still be accessed via the glycosidation of cyclized, deoxygenated precursors 103 and 104. The C_{4} stereocenter in aldehydes 103 and $\mathbf{1 0 4}$ would be set in a chelate controlled allylation of dimers $\mathbf{1 0 5}$ and $\mathbf{1 0 6}$ rather than the Lewis base catalyzed Mukaiyama aldol attempted previously, which proceeded via an open transition state. Utilizing substrate controlled chelation required incorporation of a different dimerizing aldehyde, $\mathbf{3 7}$ or $\mathbf{3 8}$, so that the α-center would contain a coordinating group for the transition state. This scheme allows all

6 fixed stereocenters to be derived from a single reaction in which commercially available proline (100 g, \$63.50; Sigma-Aldrich) is the only additional reagent.

Scheme 28. Disaccharide retrosynthesis

Application of the proline catalyzed aldol dimerization on $\mathbf{3 7}$ yielded the PMB dimer $\mathbf{1 0 6}$ (4:1 anti:syn, $98 \% e e)^{43,44}$ that was protected as the TES silyl ether 107 (TESOTf, 2,6-lutidine; $52 \% 2$ steps) (Scheme 29). This silyl protection was less trivial than anticipated; decomposition related to Lewis acid induced retroaldol was found to be a major contributor to the reported modest yield. The reaction necessitated the use of TESOTf in lieu of TBSOTf and higher reaction temperatures so that the hydroxyl group was protected immediately upon addition of the silating reagent, restricting the possibility of undesired decomposition pathways. Aldehyde $\mathbf{1 0 7}$ was then alkylated (MeMgBr) and directly oxidized (DMP) to generate ketone $\mathbf{1 0 8}$ in 85% yield over 2 steps. Chelate controlled allylation of the ketone $\left(n \mathrm{Bu}_{3} \mathrm{SnAllyl} \mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ gave alcohol product 109 in 72% yield ($>95: 5 \mathrm{dr}$). ${ }^{69}$

Scheme 29. L-Proline derived sugar forward synthesis

a) $10 \mathrm{~mol} \%$ L-proline, DMF; $4: 1$ (anti:syn), 98% ee. b) TESOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; 2.8:1. c) MeMgBr , $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$. d) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;>95: 5 \mathrm{dr}$. e) $n \mathrm{Bu}_{3} \mathrm{SnAllyl}^{2}, \mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}-\mathrm{RT}$. DMP $=$ DesMartin periodinane.

Continuing from silyl ether 109, Basic fluoride conditions effected silyl ether cleavage to give diol 110 in 93% yield (Scheme 30). Cyclization of alkene 110 to pyran core 111 was accomplished using a one pot dihydroxylation/oxidative cleavage/cyclization $\left(\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}\right)$ in the presence of 2,6-lutidine, acting as a buffer for potential carboxylic acids/peroxides that may be formed during oxidative cleavage. ${ }^{70}$ Allyl protection of the resulting anomeric alcohol of $\mathbf{1 1 1}$ $\left(\mathrm{Ag}_{2} \mathrm{O}\right.$, allyl bromide; $48 \%, 2$ steps $)$ generated the fully protected pyran core $112 .{ }^{71}$ Attempts to directly deprotect bisPMB ether $\mathbf{1 1 2}$ lead to formation of the PMP acetal or decomposition under more aggressive reaction conditions (CAN). A compromise in which $\mathbf{1 1 2}$ was transformed into the PMP acetal 113 under oxidizing conditions (DDQ) followed by hydrolysis to the triol (aq $\mathrm{AcOH})$ furnished 114 in good yield $(70 \%, 2$ steps). It is also noted that this substrate was also constructed with benzyl protecting groups in exchange for PMB. Various methods failed to successfully deprotect the benzyl ethers with acceptable efficiency (LiDBB; Na Naphthalenide; $\mathrm{ClO}_{2} \mathrm{SNCO}$). Selective formation of the primary xanthate (pyridine, phenyl chlorothionoformate) followed by radical deoxygenation $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right.$, AIBN) completed the synthesis of the appropriately functionalized glycosyl donor 115 (57%, 2 steps).

Scheme 30. L-Proline derived sugar forward synthesis

a) TBAF, THF, $0{ }^{\circ} \mathrm{C} ; 1: 1(\alpha: \beta)$. b) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, 2,6$-lutidine, dioxane: $\mathrm{H}_{2} \mathrm{O}$ (3:1). c) AllylBr, $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{DMF} ;>95: 5$ $(\alpha: \beta)$. d) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{pH} 7$ buffer. e) $80 \% \mathrm{AcOH}$. f) pyridine, phenyl chlorothionoformate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. g) $n \mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, Δ. TBAF $=$ tetra- n-butylammonium fluoride.

Opting for benzyl protecting groups in the synthesis of the D-Proline derived sugar, dimerization ${ }^{43,44}$ of benzyl protected acetoxyacetaldehyde $\mathbf{3 8}$ followed by silyl ether formation afforded the TES protected dimer 116 in 53% yield (Scheme 31). The C_{4} stereocenter was set under the same chelate controlled allylation conditions ${ }^{69}$ seen previously ($n \mathrm{Bu}_{3} \mathrm{SnAllyl}$, $\left.\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ and methylation ($\mathrm{Me}_{3} \mathrm{OBF}_{4}$, proton sponge) of the resulting alcohol, avoiding a hard alkoxide and TES migration, yielded alkene 117 in 51% over 2 steps. Replication of the oxidative cleavage conditions ${ }^{70}$ on alkene 117 followed by simultaneous silyl ether cleavage/cyclization/anomeric allyl protection under acidic conditions (PPTS, allyl alcohol) furnished the cyclized product $\mathbf{1 1 8}$ ($53 \% 2$ steps). Reductive deprotection of dibenzyl ether $\mathbf{1 1 8}$ with LiDBB afforded diol 119 in moderate yield (57\%).

Scheme 31. D-Proline derived sugar and disaccharide synthesis

a) $10 \mathrm{~mol} \%$ D-proline, DMF; $4: 1$ (anti:syn), 98% ee. b) TESOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; 2.8:1. c) $n \mathrm{Bu}_{3} \mathrm{SnAllyl}^{2}$, $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$-RT. d) $\mathrm{Me}_{3} \mathrm{OBF}_{4}$, proton sponge, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. e) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, 2,6$-lutidine, dioxane: $\mathrm{H}_{2} \mathrm{O}$ (3:1). f) $\mathrm{HOCH}_{2} \mathrm{C}_{2} \mathrm{H}_{3}$, PPTS, $55^{\circ} \mathrm{C}$. g) $\mathrm{LiDBB}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}$. PPTS $=$ pyridinium p-toluenesulfonate, $\mathrm{LiDBB}=$ lithium 4,4`-ditertbutylbiphenylide.

To continue the synthesis, the C_{6} position of $\mathbf{1 1 9}$ was then deoxygenated under Barton's conditions to generate alcohol 120 ($54 \% 2$ steps; Scheme 32). TBS protection (2,6-lutidine, TBSOTf) to $\mathbf{1 2 1}$ (84%) followed by nucleophilic allyl deprotection mediated by a ruthenium species generated from $\left[\mathrm{CpRu}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}$ and quinaldic acid gave the glycoside accepter precursor 95 ($72 \% ; 80 \%$ conv).72 Formation of disaccharide $\mathbf{1 2 2}$ was ultimately accomplished by conversion of anomeric alcohol $\mathbf{9 5}$ to the bromide followed by treatment with alcohol 115 and lewis acidic activation via $\mathrm{Ag}_{2} \mathrm{O}-\mathrm{SiO}_{2}^{73,74}$ (38\%) with a nontrivial quantity of glycosidation occurring at the tertiary alcohol (18\%). ${ }^{19}$

Scheme 32. D-Proline derived sugar and disaccharide synthesis

a) pyridine, phenyl chlorothionoformate, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) $n \mathrm{Bu}_{3} \mathrm{SnH}$, AIBN , toluene, Δ. c) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. d) $\left[\mathrm{CpRu}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}$, quinaldic acid, MeOH . e) $\mathrm{TMSBr}, \mathrm{C}_{6} \mathrm{H}_{6}$ then $115, \mathrm{Ag}_{2} \mathrm{O}-\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$. $\mathrm{AIBN}=$ azobisisobutyronitrile, $\mathrm{TMSBr}=$ bromotrimethylsilane.

Implementation of the proline-catalyzed dimerization into the synthesis of the apoptolidin C sugar substructures has been realized. All 6 non-anomeric stereocenters present in the disaccharide have been set by a single catalytic reaction. With completion of the sugar moieties and aglycone, future work involves their mergence into the natural product synthesis. Integration of these substructures into the preexisting aglycone synthesis would involve glycosidation of the $\mathrm{C}_{1}-\mathrm{C}_{11}$ and $\mathrm{C}_{12}-\mathrm{C}_{29}$ fragment prior to coupling. It is anticipated that the endgame synthesis of the natural product will be closely related to that of the aglycone.

4.0 EXPERIMENTAL

General Information: Optical rotations were measured in chloroform obtained directly from a bottle purchased from Sigma-Aldrich and measured on a Perkin-Elmer 241 digital polarimeter with a sodium lamp at ambient temperature and are reported as follows: $[\alpha]_{\lambda}(c \mathrm{~g} / 100 \mathrm{~mL})$. Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. NMR spectra were recorded on a Bruker Avance-300 (300 MHz) spectrometer with chemical shifts reported relative to residual $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}, \mathrm{CHCl}_{3}(77.00 \mathrm{ppm})$ for ${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(5.30 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(53.52 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ spectra. Unless otherwise stated, all reactions were carried out in dry glassware under a nitrogen atmosphere using standard inert atmosphere techniques for the manipulation of solvents and reagents. Anhydrous solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}\right.$, DMF, diethyl ether, pentane and toluene) were obtained by passage through successive alumina and Q5 reactant-packed columns on a solvent purification system. N, N-Diisopropylethylamine, $\mathrm{N}, \mathrm{N}-$ diisopropylamine and triethylamine were distilled under nitrogen from CaH_{2}. Flash chromatography was performed as previously described on EM silica gel 60 (230-240 mesh).
 3-(S)-Methyl-4-(S)-(trimethylsilylethynyl)oxetan-2-one (42): ${ }^{45}$

Dimethylaluminum chloride ($0.79 \mathrm{~mL}, 0.79 \mathrm{mmol}, 1 \mathrm{M}$) was added to a solution of triamine $44(0.48 \mathrm{~g}, 0.79 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient
temperature and stirred for 2 h . The reaction was cooled to $-50^{\circ} \mathrm{C}$ and DIPEA $(2.74 \mathrm{~mL}, 15.8$ $\mathrm{mmol})$ and propionyl bromide $(1.40 \mathrm{~mL}, 15.8 \mathrm{mmol})$ was added in succession. The reaction was stirred 3 min prior to the addition of aldehyde $34(1.0 \mathrm{~g}, 7.9 \mathrm{mmol})$. The reaction stirred for 12 h at $-50{ }^{\circ} \mathrm{C}$ and was quenched at that temperature with 40 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was allowed to come to ambient temperature and the aqueous and organic portions were separated. The aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 40 \mathrm{~mL})$ and the organics were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. $1.16 \mathrm{~g}(81 \%)$ of the title compound was isolated after purification of the crude oil via flash chromatography ($5-15 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $) .[\alpha]_{\mathrm{D}}$ $+12.6\left(c 1.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.12(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.81(\mathrm{dq}, \mathrm{J}=$ $6.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, \mathrm{~J}=7.5,3 \mathrm{H}), 0.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,98.9$, 97.1, 64.8, 49.9, 10.6, -0.2; $\operatorname{HRMS}(E I) \mathrm{m} / \mathrm{z}$ calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Si}: 167.0530$; found: 167.0528.

(2R,3S)-2-Methyl-5-(trimethylsilyl)pent-4-yne-1,3-diol (42b):

Diisobutylaluminum hydride $(11 \mathrm{~mL}, 11 \mathrm{mmol}, 1 \mathrm{M})$ was added to a $-50{ }^{\circ} \mathrm{C}$ solution of β-lactone $42(0.644 \mathrm{~g}, 3.54 \mathrm{mmol})$ in 25 mL of THF over 30 min . The resulting reaction mixture was stirred for 30 min at $-50{ }^{\circ} \mathrm{C}$, was removed from the cold bath and was stirred an additional 30 min prior to being quenched with 30 mL saturated aqueous Rochelle's salt. The mixture was stirred for 2 h and was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 30 \mathrm{~mL})$ and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting crude product was routinely used crude in the next step; a small sample was further purified via column chromatography (20% EtOAc/hexanes) for characterization purposes. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.50(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, \mathrm{J}=8.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=4.2,10.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 104.6,91.3,67.1,65.9,40.2,12.4,-0.1 ; \operatorname{HRMS}(E I) \mathrm{m} / \mathrm{z}$ calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Si}$: 168.0970; found: 168.0965 .

(2R,3S)-3-Hydroxy-2-methyl-5-(trimethylsilyl)pent-4-ynyl 4-

 methylbenzenesulfonate (45):Pyridine ($0.71 \mathrm{~mL}, 8.7 \mathrm{mmol}$), DMAP ($0.084 \mathrm{~g}, 0.77 \mathrm{mmol}$), and $\mathrm{TsCl}(0.985 \mathrm{~g}, 5.22 \mathrm{mmol})$ were added successively a solution of diol $\mathbf{4 2 b}(0.644 \mathrm{~g}, 3.48 \mathrm{mmol})$ in 19 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature. The resulting reaction mixture was allowed to stir for 20 h and was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the organic and aqueous portions were separated. The aqueous portion was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and the resulting crude product was purified via column chromatography ($10-20 \% \mathrm{EtOAc} /$ hexanes $)$ to afford 0.554 g (46% over 2 steps) of the title compound. $[\alpha]_{\mathrm{D}}+8.2\left(c \quad 1.03, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3524,2962,1598,1361,1176 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 7.79(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=7.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, \mathrm{J}=6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.16(\mathrm{~m}, 1 \mathrm{H})$, $0.99(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.0,133.1,130.1,128.2$, $104.2,91.5,71.7,63.4,39.2,21.9,11.0,0.0 ; \operatorname{HRMS}(Q-T o f) \mathrm{m} / \mathrm{z}$ calcd for $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{SiSNa}: 363.1062$; found: 363.1041 .

Imidazole $(0.016 \mathrm{~g}, 0.24 \mathrm{mmol})$ was added to a mixture of alcohol $45(0.042 \mathrm{~g}, 0.12 \mathrm{mmol})$ and $\mathrm{TBSCl}(0.027 \mathrm{~g}, 0.18 \mathrm{mmol})$ in 0.5 mL of DMF and the resulting solution was allowed to stir for 24 h at ambient temperature. The crude reaction mixture was passed through a plug of silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was concentrated and was left under reduced pressure for about 12 h to yield $0.055 \mathrm{~g}(99 \%)$ of the title compound as a crude oil. Sample purified further via flash chromatography $\left(5 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$ for characterization purposes. $[\alpha]_{\mathrm{D}}+37.4(c 1.02$, CHCl_{3}); IR (thin film): 2957, 2858, 2175, 1599, 1468, $1252 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.79(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.1,2 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=6.6,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92(\mathrm{dd}, \mathrm{J}=6.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.4(\mathrm{~s}, 3 \mathrm{H}), 1.98-2.07(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.83$ $(\mathrm{s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,133.3$, $130.0,128.2,105.3,90.6,71.9,63.7,40.1,31.8,25.9,21.8,18.3,11.77,-0.1,-4.3,-5.0$; HRMS (Q-Tof) m / z calcd for $\left(\mathrm{M}^{+}+\mathrm{Na}\right) \mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{SNa}$ 477.1927; found: 477.1902.

TMS
 tert-Butyl((3S,4S)-5-iodo-4-methyl-1-(trimethylsilyl)pent-1-yn-3yloxy)dimethylsilane (39):

A solution of tosylate $\mathbf{4 5 b}(0.623 \mathrm{~g}, 1.37 \mathrm{mmol})$ and $\mathrm{NaI}(0.282 \mathrm{~g}, 1.88 \mathrm{mmol})$ was refluxed in 3 mL dry acetone for 10 h . The resulting reaction mixture was cooled to ambient temperature and passed through a plug of silica gel eluting with $\mathrm{Et}_{2} \mathrm{O}$. The volatiles were removed and the resulting crude product mixture was purified via column chromatography ($1-5 \% \mathrm{EtOAc} /$ hexanes) to yield $0.436 \mathrm{~g}(78 \%)$ of the title compound. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.42(\mathrm{~d}, \mathrm{~J}=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, \mathrm{J}=6.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, \mathrm{J}=6.6,9.6 \mathrm{~Hz}), 1.84-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=$
6.6 Hz, 3 H$), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}), 0.153(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H})$; HRMS $(E I) \mathrm{m} / \mathrm{z}$ calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{1} \mathrm{ISi}_{2}: 410.0958$; found: 410.0957 .

을
Acetol ($10.0 \mathrm{~g}, 0.135 \mathrm{~mol}$) was added to a mixture of $\operatorname{TBSCl}(22.4 \mathrm{~g}, 0.149 \mathrm{~mol})$ and imidazole $(18.0 \mathrm{~g}, 0.270 \mathrm{~mol})$ in 250 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ and the resulting reaction mixture was allowed to come to ambient temperature and stirred for 1 h . The resulting crude mixture was passed through a plug of silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The volatiles were removed and the resulting crude oil was purified via column chromatography ($5 \%-10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to yield 20.4 g (81%) of the title compound. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.15(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H}), 0.92(\mathrm{~s}$, 9H), $0.09(\mathrm{~s}, 6 \mathrm{H})$.

1-(tert-Butyldimethylsilyloxy)-2-methylbut-3-yn-2-ol (46b):

Ethynylmagnesium bromide ($58.3 \mathrm{~mL}, 28.2 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) was added dropwise to a $-78{ }^{\circ} \mathrm{C}$ solution of silyloxypropanone $46(4.86 \mathrm{~g}, 25.8 \mathrm{mmol})$ in 145 mL of THF: $\mathrm{Et}_{2} \mathrm{O}$ (2:1). The resulting mixture stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then was allowed to warm to ambient temperature and was stirred an additional 2 h prior to being quenched with 1 M citric acid (250 mL). The resulting aqueous and organic portions were separated. The aqueous layer was extracted with EtOAc (2 x 250 mL) and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and the resulting crude product was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.95(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$.

Dry dioxane (157 mL) was added to a mixture of $\mathrm{CuBr}(1.66 \mathrm{~g}, 11.7 \mathrm{mmol})$ and paraformaldehyde ($1.08 \mathrm{~g}, 37.2 \mathrm{mmol}$) in a 250 mL 3-neck round bottom flask equipped with a reflux condenser. DIPA ($3.92 \mathrm{~mL}, 27.4 \mathrm{mmol}$) and alkyne $\mathbf{4 6 b}(5.00 \mathrm{~g}, 23.5 \mathrm{mmol})$ were added successively to the mixture and the resulting suspension was heated at reflux for 14 h . The mixture was allowed to cool to ambient temperature and was diluted with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined organics were washed with cold 10% aqueous $\mathrm{NaCl}(5 \times 150 \mathrm{~mL})$. The organic portion was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and the resulting crude mixture was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.27(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$.

(47):

Allenol $46 \mathrm{c}(5.00 \mathrm{~g}, 21.8 \mathrm{mmol})$ was heated in a solution of acetic anhydride ($4.50 \mathrm{~mL}, 47.5$ $\mathrm{mmol})$, DMAP $(0.288 \mathrm{~g}, 21.8 \mathrm{mmol})$, and pyridine $(1.78 \mathrm{~mL}, 22.4 \mathrm{mmol})$ at $40^{\circ} \mathrm{C}$ for about 12 h. The crude reaction mixture was cooled to ambient temperature and loaded directly onto a flash column. The column was eluted $\left(10 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$ and the volatiles were removed to yield 3.7 g (62% over 3 steps) of the title compound as a translucent oil. IR (thin film): 2955, 2858, 1958, 1741, $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.55(\mathrm{t}, \mathrm{J}=6.9,1 \mathrm{H}), 4.89(\mathrm{dd}, \mathrm{J}=$ $6.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, \mathrm{J}=6.6,11.1 \mathrm{~Hz}), 3.83(\mathrm{~d}, \mathrm{~J}=10.2,1 \mathrm{H}), 3.67(\mathrm{~d}, \mathrm{~J}=10.2,1 \mathrm{H}), 1.99$ $(\mathrm{s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 207.5, 171.7,
$170.1,93.4,81.1,77.8,68.0,25.8,25.5,22.1,21.2,18.2,17.5,-5.0,-5.4 ;$ HRMS $(E I) m / z$ calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}: 270.1651$; found: 270.1650 .

(E)-tert-Butyl(4-iodo-2-methylpenta-2,4-dienyloxy)dimethylsilane (48):

Allenic ester $47(3.50 \mathrm{~g}, 13.0 \mathrm{mmol})$ was added to a mixture of LiI $(3.92 \mathrm{~g}$, 29.5 mmol) and palladium acetate ($0.042 \mathrm{~g}, 0.19 \mathrm{mmol}$) in 120 mL of acetic acid and the resulting reaction mixture was allowed to stir at $40{ }^{\circ} \mathrm{C}$ for about 8 h . Pentane and $\mathrm{H}_{2} \mathrm{O}$ were added to the solution and the resulting aqueous and organic portions separated. The aqueous portion was extracted with pentane (3x) and the combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{x}), \mathrm{NaHCO}_{3}(2 \mathrm{x})$, and brine (1x). The organic solution was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and the resulting crude oil was purified by flash chromatography ($1-3 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to yield $3.42 \mathrm{~g}(78 \%)$ of the title compound as a yellow oil. IR (thin film): 2930, 2857, 1723, 1468, $1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.2,131.1,128.3,128.0,103.2,67.1,26.1,18.6,14.8,-5.1 ;$ HRMS $(E I) \mathrm{m} / \mathrm{z}$ calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{12} \mathrm{H}_{23}$ OSiI: 338.0563; found: 338.0562 .

(E)-4-Iodo-2-methylpenta-2,4-dien-1-ol (48b):

HF $\operatorname{pyr}(2.15 \mathrm{~mL}, 70: 30)$ was added to a solution of TBS ether $48(0.650 \mathrm{~g}, 2.15$ mmol) in $50 \mathrm{~mL} \mathrm{THF} / \mathrm{pyr}(2: 1)$ at ambient temperature and the reaction mixture was allowed to stir for 20 h before being quenched with $1 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organics were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ followed by brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Purification of
the resulting crude oil via column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) yielded 0.420 g (98\%) of the title compound as a pale yellow oil. IR (thin film): $3315,2913,2854,1646,1067 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.16(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 139.3, 129.1, 128.5, 67.3, 15.0; HRMS $(E I) m / z$ calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{OI}: 223.9698$; found: 223.9694 .

(E)-4-Iodo-2-methylpenta-2,4-dienal (48c):

Oxalyl chloride $(0.030 \mathrm{~mL}, 0.33 \mathrm{mmol})$ was added dropwise to a $-78^{\circ} \mathrm{C}$ solution of DMSO ($0.050 \mathrm{~mL}, 0.69 \mathrm{mmol}$) in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 10 mL round bottom flask wrapped in aluminum foil. The reaction mixture was stirred for 30 min and a solution of dienol $\mathbf{4 8 b}$ (0.050 $\mathrm{g}, 0.21 \mathrm{mmol}$) in 2.5 mL of DCM was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h before the addition of $\mathrm{NEt}_{3}(0.10 \mathrm{~mL}, 0.69 \mathrm{mmol})$ and the resulting mixture was allowed to warm to ambient temperature and stirred an additional 25 min before being quenched with 3 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting aqueous and organic portions were separated. The aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} \mathrm{mL})$ and the combined organics were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The resulting crude dark yellow oil was immediately dissolved in THF and carried on to the next step.

Methyl 2-(diethoxyphosphoryl)propanoate (49): ${ }^{51}$

A mixture of 2-bromomethylpropionate ($6.7 \mathrm{~mL}, 66 \mathrm{mmol}$) and triethyl phosphite were heated at $140^{\circ} \mathrm{C}$ for 48 h and the undesired byproduct bromoethane was removed under reduced pressure. The resulting crude mixture was distilled under reduced pressure $\left(95^{\circ} \mathrm{C}\right.$, $1.0 \mathrm{~mm} \mathrm{Hg})$ to yield $7.69 \mathrm{~g}(52 \%)$ of the title compound. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.10-4.20$
$(\mathrm{m}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{dq}, \mathrm{J}=7.5,23.4 \mathrm{~Hz}, 1 \mathrm{H}) 1.44(\mathrm{dd}, \mathrm{J}=7.2,16.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.36(\mathrm{~m}$, $6 \mathrm{H})$.

(2E,4E)-Methyl 6-iodo-2,4-dimethylhepta-2,4,6-trienoate (40):

$n-B u L i(0.80 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added to a solution of phosphonate ester $49(0.280 \mathrm{~g}, 1.20 \mathrm{mmol})$ in 6 mL of THF at $0^{\circ} \mathrm{C}$ in a 10 mL round bottom flask wrapped in aluminum foil. The solution stirred for 15 min and was then cooled to $-78{ }^{\circ} \mathrm{C}$ before adding aldehyde $48 \mathrm{c}(0.100 \mathrm{~g}, 0.450 \mathrm{mmol})$ as a solution in 5 mL of THF. The mixture was stirred for 3 h , then was warmed to ambient temperature and was stirred an additional 30 min before being quenched with 6 mL saturated aqueous NaHCO_{3}. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 6 \mathrm{~mL})$ and the combined organics were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was purified via flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ Hexanes) to yield $0.078 \mathrm{mg}(69 \%)$ of the title compound as a yellow oil. IR (thin film): $2950,1714,1435,1256,1211,1119 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28$ $(\mathrm{s}, 0.33 \mathrm{H}), 7.05(\mathrm{~s}, 0.66 \mathrm{H}), 6.17(\mathrm{~s}, 0.66 \mathrm{H}), 6.17(\mathrm{q}, \mathrm{J}=1.5 \mathrm{~Hz}, 0.33 \mathrm{H}), 6.07(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}$, $0.66 \mathrm{H}), 6.03-6.04(\mathrm{~m}, 0.66 \mathrm{H}), 5.95(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 0.33 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 0.33 \mathrm{H}), 3.71(\mathrm{~s}$, $3 H), 2.00(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.5,137.3,137.1,135.4,135.3,129.6,129.1,51.9$, 22.7, 17.5, 14.3, 13.9.

(2E,4E, $\mathbf{8 R}, 9 S$)-Methyl 9-(tert-butyldimethylsilyloxy)-2,4,8-trimethyl-6-methylene-11-(trimethylsilyl)undeca-2,4-dien-10ynoate (41):
tert-Butyllithium ($0.70 \mathrm{~mL}, 1.1 \mathrm{mmol}, 1.5 \mathrm{M}$ in hexanes) was added to a $-78{ }^{\circ} \mathrm{C}$ solution of alkyl iodide $39(0.21 \mathrm{~g}, 0.50 \mathrm{mmol})$ in 7.5 mL of $\mathrm{Et}_{2} \mathrm{O}$. The reaction was stirred for 5 min before adding $9-\mathrm{MeOBBN}(1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1 \mathrm{M}$ in hexanes) and 7.5 mL of THF. The resulting mixture was stirred for 10 min , then allowed to warm to ambient temperature and stirred for an additional 1 h . A solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.50 \mathrm{~g}, 1.6 \mathrm{mmol})$ in 0.4 mL of $\mathrm{H}_{2} \mathrm{O}$ was added to the reaction followed by triene $40(0.088 \mathrm{~g}, 0.30 \mathrm{mmol})$ as a solution in 7.5 mL of DMF. $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.024 \mathrm{~g}, 0.030 \mathrm{mmol})$ was added to the reaction followed by $\mathrm{AsPh}_{3}(0.014 \mathrm{~g}$, 0.036 mmol) and the reaction mixture was allowed to stir for 18 h before being diluted with 15 $\mathrm{mL} \mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and the resulting crude product mixture was purified via column chromatography ($1 \%-6 \% \mathrm{EtOAc} /$ hexanes) to yield $0.063 \mathrm{~g}(47 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~s}, 0.2 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 0.8 \mathrm{H}), 5.91-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}$, $0.8 \mathrm{H}), 5.02(\mathrm{~s}, 0.2 \mathrm{H}), 4.99(\mathrm{~s}, 0.8 \mathrm{H}), 4.86(\mathrm{~s}, 0.2 \mathrm{H}), 4.2(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.71(\mathrm{~m}, 3 \mathrm{H})$, $2.45(\mathrm{dd}, \mathrm{J}=5.1,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-2.0(\mathrm{~m}, 7 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 0.6 \mathrm{H}), 0.88-0.91(\mathrm{~m}$, $11.4 \mathrm{H}), 0.08-0.13(\mathrm{~m}, 15 \mathrm{H})$.

(2S,3S)-3-Hydroxy-2-methyl-5-(trimethylsilyl)pent-4-ynoic acid (62):

A premixed solution of $0.2 \mathrm{~N} \mathrm{LiOH}(2.3 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(4.6 \mathrm{~mL})$ was added to a solution of β-lactone $42(0.050 \mathrm{~g}, 0.28 \mathrm{mmol})$ in 17 mL of THF at $0^{\circ} \mathrm{C}$ and the resulting reaction mixture was allowed to warm to ambient temperature and was stirred for 1.5 h .

The reaction was then cooled to $0{ }^{\circ} \mathrm{C}$ before quenching with $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}(15 \mathrm{~mL})$ dropwise and the mixture stirred for 30 min before adjustment to a pH of 3 with 1 M HCl . The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{x}, 20 \mathrm{~mL})$ and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the volatiles yielded $0.039 \mathrm{~g}(69 \%)$ of the title compound as a crude product that was used in the next step without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.68(\mathrm{~d}, \mathrm{~J}=3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.82(\mathrm{dq}, \mathrm{J}=3.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H})$.

(2S,3S)-tert-Butyldimethylsilyl 3-(tert-butyldimethylsilyloxy)-2-

 methyl-5-(trimethylsilyl)pent-4-ynoate (62b):A mixture of 2,6-lutidine ($2.2 \mathrm{~mL}, 19 \mathrm{mmol}$) and carboxylic acid $\mathbf{6 2}(0.656 \mathrm{~g}, 3.28 \mathrm{mmol})$ in 2 $\mathrm{mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was cooled to $-78{ }^{\circ} \mathrm{C}$. TBSOTf ($1.9 \mathrm{~mL}, 8.3 \mathrm{mmol}$) was added dropwise to the reaction mixture and the reaction was stirred for 3 h . The mixture was quenched at $-78{ }^{\circ} \mathrm{C}$ with saturated aqueous NaHCO_{3} and the resulting solution was allowed to warm to ambient temperature prior to separation of the aqueous and organic portions. The aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$ and the combined organics were washed with $1 \mathrm{M} \mathrm{NaHSO}_{4}$. The organics were then dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and purification of the crude oil by column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) yielded $0.660 \mathrm{~g}(47 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.71(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.67(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94$ $(\mathrm{s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~m}, 6 \mathrm{H}), 0.15-0.16(\mathrm{~m}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$.

(E)-tert-Butyldimethyl(2-methyl-4-(trimethylstannyl)penta-2,4dienyloxy)silane (60):
N, N-Diisopropylethylamine ($0.010 \mathrm{~mL}, 0.058 \mathrm{mmol}$), hexamethylditin (0.17
$\mathrm{mL}, 0.82 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.017 \mathrm{~g}, 0.014 \mathrm{mmol})$ were added successively to a solution of diene $48(0.100 \mathrm{~g}, 0.290 \mathrm{mmol})$ in 3 mL of benzene. The reaction was heated for 1 h at $80{ }^{\circ} \mathrm{C}$, then was allowed to cool to ambient temperature and was stirred an additional 2 h . The reaction mixture was quenched with 3 mL saturated aqueous CuSO_{4} and the resulting aqueous and organic portions were separated. The aqueous portion was extracted with hexanes (1 x 3 mL) and the combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and passed through a plug of Celite eluting with EtOAc. The volatiles were removed and purification of the resulting crude oil via column chromatography (1:5:100-1:0:25 EtOAc/toluene/hexanes) yielded 0.083 g (78%) of the title compound. IR (thin film): $3038,2930,2857,1463,1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.14(\mathrm{dd}, \mathrm{J}=1.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, \mathrm{J}=1.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, \mathrm{J}=1.2,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{~s}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 151.3, 134.1, 128.8, 127.3, 68.6, 26.2, 18.6, 14.8, $-5.0,-8.8$; HRMS $(E I) \mathrm{m} / \mathrm{z}$ calcd for $\left(\mathrm{M}-\mathrm{CH}_{3}{ }^{+}\right) \mathrm{C}_{14} \mathrm{H}_{29} \mathrm{OSiSn}: 361.1010$; found: 361.0994 .

(5S,6S,E)-2,2,3,3,6,10,13,13,14,14-Decamethyl-8-methylene-5-((trimethylsilyl)ethynyl)-4,12-dioxa-3,13-disilapentadec-9-en-7-one (61):

Oxalyl chloride ($0.27 \mathrm{~mL}, 3.2 \mathrm{mmol}$) was added to a solution of TBS ester $\mathbf{6 2 b}(0.695 \mathrm{~g}, 1.62$ mmol) in 15 mL benzene at ambient temperature. A catalytic amount of DMF ($15 \mu \mathrm{~L}$) was added to the reaction and the reaction mixture was stirred for 24 h and the volatiles were removed. The resulting crude oil was azeotroped with benzene ($3 \mathrm{x}, 15 \mathrm{~mL}$) and the resulting crude acid chloride was left under reduced pressure for 4 h . The acid chloride was then dissolved in 15 mL benzene and to the resulting solution was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.077 \mathrm{~g}, 0.084$
mmol), DIPEA ($0.090 \mathrm{~mL}, 0.45 \mathrm{mmol}$), and organostannne $60(0.714 \mathrm{~g}, 1.89 \mathrm{mmol})$, successively. The reaction stirred at ambient temperature for 30 min before the addition of another portion of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.077 \mathrm{~g}, 0.084 \mathrm{mmol})$. The reaction stirred an additional 1 h before passing the crude reaction mixture through a plug of silica gel eluting with EtOAc and the volatiles were removed. Purification of the crude oil via column chromatography ($0.5 \%-2.5 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes) yielded $0.622 \mathrm{~g}(75 \%)$ of the title compound. IR (thin film): 2931, 2858, 1680, 1463, $1252 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.24(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}$, $1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.41$ (quintet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09-0.13(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $203.3,144.7,140.5,125.4,119.5,106.3,68.3,66.1,65.0,48.7,26.2,26.0,18.6,18.5,15.5,15.4$, 13.8, -0.1, -4.3, -4.9, -5.1; HRMS $(E I) m / z$ calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{3}$: 508.3224; found: 508.3226.

(Z)- $N^{\prime}-((3 S, 4 R, E)-3,9-D i h y d r o x y-4,8-d i m e t h y l-6-m e t h y l e n e-1-~$
(trimethylsilyl)non-7-en-1-yn-5-ylidene)-4methylbenzenesulfonohydrazide (58):

Trifluoroacetic acid $(14.3 \mu \mathrm{~L}, 0.186 \mathrm{mmol})$ was added to a solution of ketone $\mathbf{6 1}(0.358 \mathrm{~g}, 0.690$ $\mathrm{mmol})$ and hydrazide $(0.158 \mathrm{~g}, 0.840 \mathrm{mmol})$ and the resulting reaction mixture was allowed to stir for 1.5 h before quenching with $\mathrm{H}_{2} \mathrm{O}$. The organic phase was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and the crude product was purified via flash column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to yield $110 \mathrm{mg}(23.5 \%)$ of the title compound. 1 H NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (d, J = 6.9 Hz, 2H), $5.90(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}$,
$2 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}$, $6 \mathrm{H}), 0.09-0.07(\mathrm{~m}, 12 \mathrm{H})$.

(2E,4E,6R,7S)-2,4,6-Trimethyl-9-(trimethylsilyl)nona-2,4-dien-8-yne-1,7-diol (63):

Catecholborane ($0.042 \mathrm{~mL}, 0.148 \mathrm{mmol}$) was added to a solution of hydrazone $58(0.050 \mathrm{mg}, 0.074 \mathrm{mmol})$ in $1 \mathrm{~mL} \mathrm{CHCl}{ }_{3}$ at $0{ }^{\circ} \mathrm{C}$ and the resulting solution stirred for 2 h . $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.150 \mathrm{mg}, 0.740 \mathrm{mmol})$ and $1 \mathrm{mLCHCl} \mathrm{CH}_{3}$ was added and the resulting suspension was refluxed for 14 h before being passed through a plug of SiO_{2} eluting with $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$. The volatiles were removed in vacuo and the crude product was purified via flash column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to yield $18 \mathrm{mg}(51.0 \%)$ of the title compound. 1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of $\mathrm{E}: \mathrm{Z}$ isomers ($\left.\sim 2: 1\right) \delta 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.20-5.17$ $(\mathrm{m}, 2 \mathrm{H}), 4.15-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.05(\mathrm{~m}, 4 \mathrm{H}), 2.73-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.90(\mathrm{~m}, 36 \mathrm{H})$, 0.15-0.05 (m, 42H).

(3S,4S)-3-Methyl-4-((trimethylsilyl)ethynyl)oxetan-2-one (42):

Magnesium(II) chloride ($1.90 \mathrm{~g}, 20.0 \mathrm{mmol}$) and TMSQd ($0.800 \mathrm{~g}, 2.00$
$\mathrm{mmol})$ were stirred in $20 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ for 5 min prior to the addition of 50 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resulting suspension was cooled to $-78^{\circ} \mathrm{C}$. To this suspension was added sequentially $i \operatorname{Pr}_{2} \operatorname{Net}(8.96 \mathrm{~mL}, 51.6 \mathrm{mmol})$, aldehyde $34(2.52 \mathrm{~g}, 20.0 \mathrm{mmol})$ and propionyl chloride ($3.44 \mathrm{~mL}, 39.2 \mathrm{mmol}$) dissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise over 1 h via syringe pump. The reaction mixture was allowed to stir for 10 h before dilution with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and
the entire reaction contents were passed through a plug of SiO_{2} eluting with $\mathrm{Et}_{2} \mathrm{O}$. The volatiles were removed in vacuo and the crude product was purified via flash column chromatography (5$15 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ to yield $3.35 \mathrm{~g}(92.0 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}+12.2\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.12(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.81(\mathrm{dq}, \mathrm{J}=6.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}$, $\mathrm{J}=7.5,3 \mathrm{H}), 0.21(\mathrm{~s}, 1 \mathrm{H})$.

TMS $\underbrace{\mathrm{Me}}_{\overline{\bar{O} T B S}}=0$
 (2S,3S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-5-(trimethylsilyl)pent-4ynal (68):

KHMDS ($0.11 \mathrm{~mL}, 0.060 \mathrm{mmol}$) was added to ethanethiol $(50.2 \mu \mathrm{~L}, 0.660 \mathrm{mmol})$ in 5.5 mL of THF at $0{ }^{\circ} \mathrm{C}$ and was stirred for 5 min prior to the addition of β-lactone $42(100 \mathrm{mg}, 0.550$ mmol). The reaction was warmed to ambient temperature and was stirred for 2 h before being cooled to $-78{ }^{\circ} \mathrm{C}$. 2,6 -Lutidine $(0.130 \mathrm{~mL}, 1.10 \mathrm{mmol})$ was added to the reaction mixture followed by TBSOTf $(0.22 \mathrm{~mL}, 0.94 \mathrm{mmol})$ and the reaction was stirred for 1 h before being quenched with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. The emulsion was warmed to ambient temperature and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic portions were combined and washed with 1 M $\mathrm{NaHSO}_{4}(\mathrm{aq})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the volatiles were removed in vacuo to yield 194 mg of the intermediate thioester $\mathbf{x x}$ that was used without further purification in the subsequent reaction.
$(i-\mathrm{Bu})_{2} \mathrm{AlH}(1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added to the crude thioester $(197 \mathrm{mg}$, 0.550 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ over 30 min and the resulting solution was stirred an additional 30 min . The reaction mixture was quenched with excess $\mathrm{MeOH}(6.5 \mathrm{~mL})$ dropwise over 15 min prior to the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ $10 \mathrm{~mL})$ and the combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification via flash chromatography ($2 \% \mathrm{EtOAc} /$ hexanes) yielded 123 mg (76% over 2 steps) of the title
compound. $[\alpha]_{\mathrm{D}}-45.6$ (c 1.10, CHCl_{3}); IR (thin film): 2958, 2933, 2896, 2712, 2175, 1730, 1463, 1252, 1143, 1086, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ (d, J = 4.5 Hz, 1H), 2.48-2.55 (m, 1H), $1.18(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}), 0.15$ (s, 3H), $0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.7, 104.7, 91.8, 63.8, 52.6, 25.9, 19.0, 9.3, -0.1, -4.2, -4.9; HRMS $(E I) m / z$ calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}_{2}$: 298.1784; found: 298.1770.

(3S,4R)-6,6-Dibromo-3-tert-butyldimethylsilyloxy-4-methyl-1-(trimethylsilyl)hex-5-en-1-yne (64):

Triphenylphosphine ($12.1 \mathrm{~g}, 46.3 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ to a solution of carbontetrabromide ($7.65 \mathrm{~g}, 23.2 \mathrm{mmol}$) in 42 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Aldehyde $\mathbf{6 8}(3.51 \mathrm{~g}, 11.6 \mathrm{mmol})$ as a solution in 116 $\mathrm{mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added to the resulting reaction mixture. The reaction mixture was warmed to room temperature and stirred for 20 min before being quenched with $\mathrm{H}_{2} 0(350 \mathrm{~mL})$. The organic and aqueous portions were separated and the aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 350$ $\mathrm{mL})$. The organics were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and the volatiles were removed in vacuo. Purification via flash chromatography ($4 \% \mathrm{EtOAc} /$ hexanes) afforded $4.22 \mathrm{~g}(80 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}-39.6\left(c 1.00, \mathrm{CHCl}_{3}\right.$); IR (thin film): 2957, 2931, 2897, 2858, 2174, 1722, 1621, 1462, 1252, 1142, 1103, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.36(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddq}, \mathrm{J}=5.1,6.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ $(\mathrm{s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5,105.4,90.8$, 89.1, 66.0, 45.4, 26.0, 18.5, 14.3, $-0.0,-4.3,-4.8 ; \operatorname{HRMS}(E I) m / z$ calcd for $\left(\mathrm{M}^{+}\right)$ $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{1} \mathrm{Si}_{2} \mathrm{Br}_{2}$: 436.9967; found: 436.9965.

(E)-3-Iodo-2-methylprop-2-en-1-ol (69):

Trimethylaluminum ($77.4 \mathrm{~mL}, 154 \mathrm{mmol}, 2 \mathrm{M}$ in hexanes) was added to $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in 100 mL dichloroethane at $0{ }^{\circ} \mathrm{C}$ and propargyl alcohol ($3.00 \mathrm{~mL}, 51.5 \mathrm{mmol}$) was added to the resulting solution. The reaction mixture was stirred for 7 h at ambient temperature before cooling to $-42{ }^{\circ} \mathrm{C}$ and addition of iodine (19.62 g , 77.40 mmol) dissolved in THF (50 mL). The reaction mixture stirred for 20 min prior to quenching with 80 mL saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 120 mL saturated aqueous Rochelle's salt and the emulsion was allowed to stir vigorously overnight before extracting with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 200 \mathrm{~mL})$. The organic portions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the crude product was purified via flash column chromatography (30\% EtOAc/hexanes) to yield $5.58 \mathrm{~g}(55.0 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.28(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.4,77.6,67.4,21.6$.

(2E,4E)-Ethyl-5-iodo-2,4-dimethylpenta-2,4-dienoate (72):
(Carbethoxyethylidene)triphenylphosphorane (11.7 g, 32.2 mmol) was added to a suspension of alcohol $69(5.27 \mathrm{~g}, 26.6 \mathrm{mmol})$ and $\mathrm{MnO}_{2}(23.5 \mathrm{~g}$, 268 mmol) in $526 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature. The resulting heterogeneous mixture was stirred for 24 h before being passed through a plug of SiO_{2} eluting with EtOAc/hexanes (1:5, 300 $\mathrm{mL})$. Purification via flash chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) afforded $6.18 \mathrm{~g}(83 \%)$ of the title compound as a yellow oil. IR (thin film): 3065, 2980, 1709, 1244, 1114, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (s, 3H), $1.31(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,143.9,138.8,128.5,85.5$, 61.2, 24.8, 14.5, 14.4; HRMS $(E I) m / z$ calcd for $\left(\mathrm{M}^{+}\right) \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{I}: 279.9960$; found: 279.9954.

(2E,4E)-Ethyl 2,4-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-2,4-dienoate (65):

Vinyl iodide $72(6.30 \mathrm{~g}, 22.7 \mathrm{mmol})$ as a solution in 77 mL DMSO was added to a nitrogen flushed flask containing (Bpin $)_{2}(16.2 \mathrm{~g}, 68.0 \mathrm{mmol})$, $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(548 \mathrm{mg}, 0.630 \mathrm{mmol})$, and $\mathrm{KOAc}(6.65 \mathrm{~g}, 68.0 \mathrm{mmol})$. The resulting suspension was warmed to $85^{\circ} \mathrm{C}$ and was stirred at that temperature for 20 min . The mixture was cooled to ambient temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$, and the organic solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x} 500 \mathrm{~mL})$. The organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and the volatiles were removed in vacuo. Purification via flash chromatrography (10% EtOAc/hexanes) afforded 6.1 g (97%) of the title compound as a yellow oil. IR (thin film): 2979, 2934, 1708, 1623, 1595, 1443, 1327, 1242, 1143, 1034, $968 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 4.20$ $(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.32(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.0,154.9,143.2,128.4,83.3,61.1,25.1,21.5,14.5,14.3$; HRMS $(E I) m / z$ calcd for $\left(\mathrm{M}^{+}\right)$ $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BO}_{4}$: 280.1846 ; found: 280.1838 .

(2E,4E,6Z, 8 R,9S)-Ethyl 6-bromo-9-(tert-butyldimethylsilyloxy)-2,4,8-trimethyl-11-(trimethylsilyl)undeca-2,4,6-trien-10-ynoate (73): $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(880 \mathrm{mg}, 0.760 \mathrm{mmol})$ was added to a solution of dibromide $\mathbf{6 4}(3.45 \mathrm{~g}, 7.60 \mathrm{mmol})$ and vinyl borane $\mathbf{6 5}(6.41 \mathrm{~g}, 22.9 \mathrm{mmol})$ in $39 \mathrm{~mL} \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3: 1)$ at ambient temperature. The suspension stirred for 5 min , TlOEt ($1.00 \mathrm{~mL}, 13.5 \mathrm{mmol}$) was added, and the suspension was stirred an additional 40 min . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(\sim 75 \mathrm{~mL})$ and quenched with 1 $\mathrm{M} \mathrm{NaHSO}_{4}(\sim 60 \mathrm{~mL})$ before being passed through a plug of celite. The resulting eluent was
then washed with brine $(60 \mathrm{~mL})$, the organics were dried $\left(\mathrm{MgSO}_{4}\right)$, and the volatiles were removed in vacuo. Purification of the crude product via flash chromatography (10:1:89 toluene $/ \mathrm{EtOAc} /$ hexanes to $5 \% \mathrm{EtOAc} /$ Hexanes $)$ yielded $2.65 \mathrm{~g}(66.3 \%)$ of the title compound as a single regioisomer by ${ }^{1} \mathrm{H}-\mathrm{NMR} .[\alpha]_{\mathrm{D}}-22.2\left(c\right.$ 1.03, $\left.\mathrm{CHCl}_{3}\right)$; IR (thin film): 2958, 2931, 2899, 2858, 2173, 1711, 1630, 1462, 1366, 1252, 1107, 1022, $934 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.13(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, \mathrm{J}=1.2,9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ $(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{ddq}, \mathrm{J}=5.4,6.6,9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{~d}, \mathrm{~J}=1.2$, 3H), 1.31 (t, J = 7.2 Hz, 3H), $1.1(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.11$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,141.4,135.8,135.5,133.9,129.8,128.5,120.7$, $106.6,90.5,66.8,61.1,44.3,26.0,18.5,15.2,14.5,14.4,0.0,-4.2,-4.8$; HRMS (EI) m/z calcd for $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+} \mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Br}$: 511.1699; found: 511.1690.
 (2E,4E,6E,8R,9S)-Ethyl 9-(tert-butyldimethylsilyloxy)-2,4,6,8-tetramethyl-11-(trimethylsilyl)undeca-2,4,6-trien-10-ynoate (74):

Dimethyl zinc ($2.27 \mathrm{~mL}, 4.54 \mathrm{mmol}, 2 \mathrm{M}$ in toluene) was added to a solution of palladium bistributylphosphine ($138 \mathrm{mg}, 0.270 \mathrm{mmol}$) in 15 mL THF at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 5 min . Triene $73(1.91 \mathrm{~g}, 3.63 \mathrm{mmol})$ as a solution in 8 mL THF was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$ and the resulting solution was warmed to ambient temperature and stirred for 45 min . The reaction was then quenched with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and the resulting emulsion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 40 \mathrm{~mL})$. The combined organic layers were washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ followed by brine $(40 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the volatiles were removed in vacuo. The crude product was purified via flash chromatography
$(10 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $1.5 \mathrm{~g}(90 \%)$ of the title compound as a $\sim 6.6: 1$ mixture of olefin isomers as detected by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (calculated from $\delta 1.79$ to 1.86). $[\alpha]_{\mathrm{D}}+91.2\left(c 1.01, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2958, 2931, 2857, 2172, 1708, 1614, 1462, 1388, 1366, 1251, 1208, 1112, 1023, 939, $842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.26-4.16 (m, 3H), 2.76-2.68(m, 1H), $2.07(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}$, $\mathrm{J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 12 \mathrm{H})$, $0.12(\mathrm{~s}, 3 \mathrm{H})$; resonances for the minor diastereomers were observable at: $\delta 6.41(\mathrm{~s}, 0.15 \mathrm{H}), 5.81$ (dd, J = 1.2, $9 \mathrm{~Hz}, 0.14 \mathrm{H}), 4.35-4.32(\mathrm{~m}, 0.28 \mathrm{H}), 2.55-2.60(\mathrm{~m}, 0.13 \mathrm{H}), 2.07(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, $0.54 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 0.40 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 0.69 \mathrm{H}), 0.19(\mathrm{~s}, 0.94 \mathrm{H})$, $0.16(\mathrm{~s}, 0.62 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,144.0,139.1,133.7,132.9,132.1,126.1$, $107.0,89.6,67.8,60.8,40.1,26.0,18.6,18.5,17.7,16.7,14.6,14.3,0.0,-4.2,-4.8$; HRMS ($Q-$ TOF) m / z calcd for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{NaSi}_{2}$: 485.2883; found: 485.2836.

(2E,4E, $6 E, 8 R, 9 S$)-Ethyl 9-hydroxy-2,4,6,8-tetramethylundeca-2,4,6-trien-10-ynoate (75):

TBAF ($0.86 \mathrm{~mL}, 0.86 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added to a solution of triene $74(0.100 \mathrm{~g}, 0.220 \mathrm{mmol})$ in 4.3 mL THF at $0{ }^{\circ} \mathrm{C}$ and the resulting reaction mixture was stirred for 60 min at that temperature. The reaction mixture was allowed to come to ambient temperature and was stirred an additional 20 min before being quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$. The resulting emulsion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 10 \mathrm{~mL})$ and the organic portions were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. The crude product was purified via flash chromatography (15-20\% EtOAc/Hexanes) to yield $0.873 \mathrm{~g}(83 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}+40.8\left(c 1.00, \mathrm{CHCl}_{3}\right) ;$ IR (thin film): 3455, 3300, 2977, 1700, 1610, 1448, 1369, 1254,
$1115,1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{dd}, \mathrm{J}=9.9,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.3(\operatorname{broad} \mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=7.2,2 \mathrm{H}), 2.85(\mathrm{ddq}, \mathrm{J}=\mathrm{Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.03(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3$, $143.7,136.1,135.1,132.9,131.9,126.4,88.6,74.2,66.8,60.9,38.3,18.6,17.7,16.3,14.5,14.4 ;$ HRMS ($Q-T O F) m / z$ calcd for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}$: 299.1623; found: 299.1601.

(2E,4E,6E, $8 R, 9 S, 10 E)$-Ethyl 9-hydroxy-2,4,6,8-tetramethyl-11-(tributylstannyl)undeca-2,4,6,10-tetraenoate (29):

Tributyltin hydride ($0.680 \mathrm{~mL}, 2.54 \mathrm{mmol}$) was added to a solution of alkyne $75(248 \mathrm{mg}, 0.899 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(22 \mathrm{mg}, 0.029 \mathrm{mmol})$ dissolved in 2.95 mL of THF at $0^{\circ} \mathrm{C}$. The resulting reaction solution was allowed to come to ambient temperature and was stirred for 30 min . The volatiles were removed and the crude reaction product was loaded directly onto a flash column and eluted (10\% EtOAc/Hexanes) to yield $0.346 \mathrm{~g}(68 \%)$ of the title compound and $0.101 \mathrm{~g}(20 \%)$ of the undesired regioisomer (3.4:1). $[\alpha]_{\mathrm{D}}+73.6$ (c 1.03, CHCl_{3}); IR (thin film): 3479, 2957, 2926, $2871,1705,1705,1609,1459,1370,1253,1208,1174,1114,1019 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{dd}, \mathrm{J}=1.2,19.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, \mathrm{J}=4.8,19.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}$, $1 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\operatorname{app~q}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.619$ $(\mathrm{m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 6 \mathrm{H})$, 1.32-1.28 (m, 12H), $1.05(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.3,148.9,143.9,139.0,134.0,133.1,132.0,129.0,126.2,60.8,39.4,29.3,27.5,18.6,17.5$,
16.7, 14.5, 14.3, 13.7, 8.7; HRMS (Q-TOF) m / z calcd for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{29} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{NaSn}$: 591.2836; found: 591.2813.

(2E,4E, $6 E, 8 R, 9 R, 10 E, 12 E, 17 R, 19 S)$-ethyl
20-
((2S,3R,4S,5S,6R)-6-((R)-2-(tert-
butyldimethylsilyloxy)-3-methoxypropyl)-2-methoxy-3,5-dimethyl-4-(triethylsilyloxy)tetrahydro-2H-pyran-2-yl)-9-hydroxy-17-methoxy-2,4,6,8,12-pentamethyl-19-(triethylsilyloxy)icosa-2,4,6,10,12-pentaenoate
(29b): To a flame dried vessel was added 0.151 g of vinyl stannane 29 ($0.266 \mathrm{mmol}, 4$ equiv), and 0.060 g of vinyl iodide 30 ($0.066 \mathrm{mmol}, 1.0$ equiv). The mixture was subjected to high vacuum for one hour before refilling the vessel with $\mathrm{N}_{2(\mathrm{~g})}$. To this was added 1.3 mL of degassed DMF at ambient temperature, before adding 0.152 g of $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{NBu}_{4}$ ($0.332 \mathrm{mmol}, 5$ equiv). The vessel was opened to atmosphere momentarily to add 1.7 mg of $\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mathrm{MeCN})_{2}(0.0066 \mathrm{mmol}$, 0.1 equiv). The reaction mixture immediately turned black. The reaction was covered in foil and stirred at ambient temperature for 15 hours before being quenched with 13.0 mL of a $1: 1$ solution of $\mathrm{Et}_{2} \mathrm{O}$ to hexanes. This heterogeneous mixture was passed through a plug of celite, rinsing with more of the same 1:1 solution. The yellowish organic eluent was washed with brine ($3 \times 20 \mathrm{~mL}$) before being dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude yellow oil was purified by flash chromatography (10 \% EtOAc/Hex) affording 48 mg (75%) of the title compound as a 12:1 mixture of isomers as assayed by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR. $\quad[\alpha]_{\mathrm{D}}^{22}+54.7\left(c \quad 0.19, \mathrm{CHCl}_{3}\right)$. IR (thin film): 2925, 1705, 1460, 1376, 1250, 1068, $1004 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15$ $(\mathrm{s}, 1 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{dd}, \mathrm{J}=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{t}, \mathrm{J}=7.0$
$\mathrm{Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.94(\mathrm{~m}$, $1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 5 \mathrm{H}), 3.26-3.22(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H})$, $2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$, 1.76-1.70 (m, 4H), 1.66-1.61 (m, 3H), 1.50-1.44 (m, 2H), 1.42-1.32 (m, 4H), 1.31-1.24 (m, 5H), $1.05(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98-0.90(\mathrm{~m}, 21 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.63-0.57(\mathrm{~m}$, $12 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,143.6,138.9,136.5,133.7,133.4,132.9$ (2C), 131.8, 136.9, 125.9, 101.7, 77.8, 73.0, 70.2, 68.2, 66.7, 60.6, 58.7, 55.6, 47.0, 43.0, 40.0, 39.4, 36.9, 32.8, 28.4, 27.8, 26.8, 25.9 (3C), 24.5, 18.2, 17.5, 17.3, 16.5, 14.3, 14.1, 13.6, 12.5, 12.3, 7.0 (3C), 6.9 (3C), 5.4, 5.31 (3C), 5.3 (3C), $-3.8,-4.7$; HRMS (ES) m / z calcd for $\mathrm{C}_{58} \mathrm{H}_{110} \mathrm{O}_{10} \mathrm{NaSi}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 1073.7305$; found: 1073.7268 .

$(2 E, 4 E, 6 E, 8 R, 9 R, 10 E, 12 E, 17 R, 19 S)-20-$
((2S,3R,4S,5R,6R)-6-((R)-2-(tert-
butyldimethylsilyloxy)-3-methoxypropyl)-4-hydroxy-2-methoxy-3,5-dimethyltetrahydro-2H-pyran-2-yl)-

9,19-dihydroxy-17-methoxy-2,4,6,8,12-pentamethylicosa-2,4,6,10,12-pentaenoic acid (77):

Lithium hydroxide monohydrate ($36.8 \mathrm{mg}, 0.876 \mathrm{mmol}$) was added to a solution of ethyl ester 29b ($91.9 \mathrm{mg}, 0.087 \mathrm{mmol}$) in 1.7 mL THF: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(6: 2: 1)$ and the resulting heterogeneous mixture was stirred for 48 h at ambient temperature. The reaction was quenched with 2 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the resulting emulsion was extracted with $\mathrm{EtOAc}(5 \mathrm{x} 5 \mathrm{~mL})$. The resulting organic portions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and the volatiles removed in vacuo. Purification via flash chromatography $\left(5-8 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $7 \mathrm{mg}(10 \%)$ of the title
compound and $52 \mathrm{mg}(\sim 68 \%)$ of a mixture of variously SiEt_{3} protected products that was carried on to the title compound in the following reaction.

Deprotection: The mixture of protected seco-acid ($52 \mathrm{mg}, 0.0572 \mathrm{mmol}, 1.0$ equiv) was added to 8.34 mL of a $1: 1$ mixture of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $-15^{\circ} \mathrm{C}$ in a MeOH and ice bath. $4.3 \mu \mathrm{~L}$ ($0.0572 \mathrm{mmol}, 1.0$ equiv) of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ dissolved in 0.6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise. The solution was maintained at $-15^{\circ} \mathrm{C}$ for 30 minutes before being quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 20$ mL), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), to yield 26.5 mg (58\%) of the seco-acid which was combined with the purified material from the previous step, giving an overall yield of $33.5 \mathrm{mg}(48 \%$ over two steps). $[\alpha]_{\mathrm{D}}+58.8\left(c 0.82, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3420, 2928, 1683, 1459, 1250, 1067, 834, $776 ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.22(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{dd}, \mathrm{J}=6.6,15$ $\mathrm{Hz}, 1 \mathrm{H}), 5.47(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.94-3.88 (m, 2H), $3.81(\mathrm{dd}, \mathrm{J}=4.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.3(\mathrm{~s}, 3 \mathrm{H})$, $3.17(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.83$ $(\mathrm{m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 2 \mathrm{H})$, $1.31-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.90(\mathrm{~m}, 3 \mathrm{H}), 0.89-$ $0.88(\mathrm{~m}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.1,145.9,140.2,136.5,134.3$, $133.1,133.0,132.9,131.8,127.2,124.6,102.2,78.8,77.6,72.4,69.8,68.4,66.0,58.8,56.8$, $47.9,42.2,40.8,39.5,39.4,39.3,38.9,38.5,32.9,28.3,27.8,27.0,26.8,25.2,18.2,18.2,17.5$, $17.3,16.4,16.6,13.9,13.7,13.6,12.5,11.5,6.7,5.1,5.0,-3.9,-4.7 ;$ HRMS $(Q-T O F) m / z$ calcd for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{44} \mathrm{H}_{78} \mathrm{O}_{10} \mathrm{NaSi}$: 817.5262; found: 817.5232.

(3E,5E,7E,9R,10R,11E, 13E, 18R,20S)-20-
(($(2 S, 3 R, 4 S, 5 R, 6 R)-6-((R)-2-(t e r t-$ butyldimethylsilyloxy)-3-methoxypropyl)-4-hydroxy-2-methoxy-3,5-dimethyltetrahydro-2H-pyran-2-yl)methyl)-10-hydroxy-18-methoxy-3,5,7,9,13-pentamethyloxacycloicosa-3,5,7,11,13-pentaen-2-one (77b): To an ambient temperature solution of 25.0 mg of seco-acid 77 ($0.0314 \mathrm{mmol}, 1.0$ equiv) in 7.44 mL of THF was added $0.174 \mathrm{~mL}^{\text {of }} \mathrm{NEt}_{3}(1.25 \mathrm{mmol}, 4.0$ equiv), followed by $19.5 \mu \mathrm{~L}$ of 2,4,6-trichlorobenzoyl chloride ($0.125 \mathrm{mmol}, 40.0$ equiv) dropwise. The reaction was stirred in a foil-covered flask at ambient temperature for 15 hours, whereupon it was diluted with 7.44 mL of toluene, and added to 930 mL of toluene containing 0.767 g of DMAP ($6.28 \mathrm{mmol}, 200$ equiv). The addition took place via syringe pump over 1 hour [followed by two rinses of toluene (1.0 and 0.5 mL) added over 20 and 10 minutes respectively]. The reaction was then allowed to stir at ambient temperature for 24 hours, covered in foil, before being concentrated to approximately 200 mL via rotovap. The toluene solution was then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (200 mL) and extracted with EtOAc (3 x 200 mL). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude mixture was purified by flash column chromatography on IATRO beads with $2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielding $13.9 \mathrm{mg}(57 \%)$ of the desired lactone based on HMQC, HMBC, and cosy correlations. The reaction also yielded 2.0 $\mathrm{mg}(8 \%)$ of a minor product believed to be macrolactonization on the pyran oxygen. $[\alpha]_{\mathrm{D}}^{21}+10.2$ (c $0.23, \mathrm{CHCl}_{3}$). IR (thin film): $3409,2925,1693,1460,1384,1248,1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.08($ app. d, J = $15 \mathrm{~Hz}, 1 \mathrm{H}), 6.07($ app. s, 1H), 5.51 (app. t, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.34(\mathrm{dd}, \mathrm{J}=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$
(app. t, J = 10.2 Hz, 1H), 3.95-3.89 (m, 2H), 3.86-3.81 (m, 2H), 3.37 (dd, J = 10.2, $4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{br} . \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.50$ $(\mathrm{m}, 1 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.10($ app. d, J = $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.90$ $(\mathrm{m}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{ddd}, \mathrm{J}=$ $14.4,7.2,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.39$ (app. d, J = $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.11(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,145.1,144.5,140.3,137.3,133.0,132.8,132.1,131.8,128.3$, $128.2,127.1,123.8,101.5,79.7,79.0,77.8,72.4,70.6,70.0,68.5,58.8,57.3,47.2,41.3,39.5$, 38.9, 38.4, 37.0, 33.5, 29.7, 28.0, 26.7, 25.9 (3C), 18.2, 17.5, 17.3, 16.3, 13.7, 12.0, 11.3, 4.9, $-3.8,-4.7$; HRMS (ES) m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{O}_{9} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 799.5156$; found: 799.5152.

$(3 E, 5 E, 7 E, 9 R, 10 R, 11 E, 13 E, 18 R, 20 S)-20-$ (($(2 S, 3 R, 4 S, 5 R, 6 R)$-2,4-dihydroxy-6-((R)-2-hydroxy-3-methoxypropyl)-3,5-dimethyltetrahydro-2H-pyran-2-yl)methyl)-10-hydroxy-18-methoxy-3,5,7,9,13-pentamethyloxacycloicosa-3,5,7,11,13-pentaen-2-one (3b): Protected aglycone 77b ($7.5 \mathrm{mg} ; 0.00965 \mathrm{mmol}, 1.0$ equiv) was dissolved in 1.37 mL of acetonitrile and cooled to $-35^{\circ} \mathrm{C}$ in a refrigerator. To this solution was added $\sim 34.7 \mathrm{mg}$ of $\mathrm{H}_{2} \mathrm{SiF}_{6}\left(\sim 154 \mathrm{mg}\right.$ of a $20-25 \%$ solution in $\mathrm{H}_{2} \mathrm{O} ; 0.2413 \mathrm{mmol}$, 25 equiv.; measured as 10 drops from a 20 gauge needle). The solution remained in the refrigerator for 46 hours before being quenched at $-35^{\circ} \mathrm{C}$ with 0.200 mL of NEt_{3}. The resulting mixture was allowed to sit for 30 minutes at $-35^{\circ} \mathrm{C}$ before quenching with sat. aq. $\mathrm{NaHCO}_{3}(3$ mL) and extracting with EtOAc ($5 \times 5.0 \mathrm{~mL}$). The organic layer was combined and dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, before being purified by flash chromatography $\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ on IATRO beads), yielding $4.0 \mathrm{mg}(64 \%)$ of the aglycone as a white solid in 90.6% purity as determined by HPLC analysis $(20 \%$ isopropanol/hexane, $1 \mathrm{ml} / \mathrm{min}) .[\alpha]_{\mathrm{D}}^{19}+56.1\left(c 0.15, \mathrm{CHCl}_{3}\right)$. IR (thin film): 3385, 2924, 1670, 1457, 1250, $1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.10-6.08(\mathrm{~m}$, $2 \mathrm{H}), 5.54(\mathrm{dd}, \mathrm{J}=9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, \mathrm{J}=16.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.18$ (broad d, $\mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 5 \mathrm{H}), 3.29-3.25$ (m, 4H), 2.91 (broad q, J = 7.0 Hz, 1H), 2.48-2.43 (m, 1H), 2.33-2.28 (m, 1H), $2.13(\mathrm{~s}, 3 \mathrm{H})$, $2.12-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 5 \mathrm{H}), 1.73-1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=$ 6.3 Hz, 3H), $0.89(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.175 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 170.9,147.1,146.0,142.5$, $137.9,134.4,133.4,133.0,132.9,129.4,124.7,100.2,80.9,80.4,78.6,73.6,71.3,68.4,68.3$, 59.3, 57.4, 46.0, 43.0, 41.0, 40.8, 38.6, 38.1, 34.3, 28.8, 28.0, 17.9, 17.8, 16.7, 14.1, 12.4, 12.2, 5.6; HRMS (ES) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 671.4135$; found: 671.4108 .

(R)-4-methyloxetan-2-one (89):

Trimethylsilyl quinidine $(0.500 \mathrm{~g}, 1.26 \mathrm{mmol})$ dissolved in $25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to $\mathrm{LiClO}_{4}(0.400 \mathrm{~g}, 3.77 \mathrm{mmol})$ in $12.5 \mathrm{Et}_{2} \mathrm{O}$ and the resulting suspension was cooled to $-78{ }^{\circ} \mathrm{C}$ before sequential addition of $i \operatorname{Pr}_{2} \operatorname{Net}(5.50 \mathrm{~mL}, 31.6 \mathrm{mmol})$ and acetaldehyde $(0.950 \mathrm{~g}, 17.0$ $\mathrm{mmol})$. To the solution was added acetyl chloride $(1.78 \mathrm{~mL}, 25.2 \mathrm{mmol})$ dissolved in 6.25 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise over 3 h via syringe pump and the resulting reaction mixture was stirred for 14 h before dilution with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the entire contents was passed through a plug of SiO_{2} eluting with $\mathrm{Et}_{2} \mathrm{O}$ to yield $2.95 \mathrm{~g}(88 \%)$ of the crude title compound, used in the next step
without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.69(\operatorname{app} \mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, J = 5.7, 16.2 Hz, 1H), $3.06(\mathrm{dd}, \mathrm{J}=4.2,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.

(R)-3-Hydroxy- N-methoxy- N-methylbutanamide (89b):

Dimethylaluminum chloride ($33.9 \mathrm{~mL}, 33.9 \mathrm{mmol}, 1 \mathrm{M}$ in hexanes) was added to N, O-dimethylhydroxylamine hydrochloride ($3.39 \mathrm{~g}, 34.9 \mathrm{mmol}$) in $121 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resulting mixture was stirred for 30 min before cooling to $-45^{\circ} \mathrm{C}$. Crude β-lactone $89(1.46 \mathrm{~g}$, 17.0 mmol) was added and the resulting reaction mixture was allowed to stir for $\sim 14 \mathrm{~h}$ before quenching with Rochelle's salt (150 mL) and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 150 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and the volatiles removed to obtain 2.50 g of the crude alcohol, used in the next step without further purification.

To a $-78^{\circ} \mathrm{C}$ solution of 2,6-lutidine $(5.40 \mathrm{~mL}, 46.4 \mathrm{mmol})$ and the crude alcohol $(2.30 \mathrm{~g}$, 15.64 mmol) in $32 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added TBSOTf ($4.70 \mathrm{~mL}, 20.5 \mathrm{mmol}$) and the resulting reaction mixture was allowed to stir for 3 h before quenching with saturated aqueous NaHCO_{3} $(30 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic portions were washed with 1 M aqueous $\mathrm{NaHSO}_{4}(90 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the resulting crude product purified via flash column chromatography ($30 \% \mathrm{EtOAc} /$ hexanes) to yield 2.95 g (66% over 3 steps) of the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.35(\mathrm{app}$ sextet, $\mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.17(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{dd}, \mathrm{J}=6.9,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, \mathrm{J}=5.4,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$.

(R)-3-((tert-Butyldimethylsilyl)oxy)butanal (90):

To a $-78{ }^{\circ} \mathrm{C}$ solution of weinreb amide $\mathbf{8 9 b}(2.95 \mathrm{~g}, 11.3 \mathrm{mmol})$ was added
$i \operatorname{Pr}_{2} \mathrm{AlH}(13.6 \mathrm{~mL}, 13.6 \mathrm{mmol}, 1 \mathrm{M}$ in hexanes) and the resulting reaction mixture was allowed to stir for 20 min before quenching with saturated aqueous Rochelle's salt (100 mL). The emulsion was allowed to stir vigorously over 2 h and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x $100 \mathrm{~mL})$. The combined organic portions were died $\left(\mathrm{MgSO}_{4}\right)$ and the crude product was purified via flash column chromatography (NEt_{3} treated $\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc} /$ hexanes $)$ to yield $2.02 \mathrm{~g}(88 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{dd}, \mathrm{J}=2.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{app}$ sextet, $\mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, \mathrm{J}=3.0,6.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, \mathrm{J}=2.1,4.8,15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$.

(2S,3R)-3-((tert-Butyldimethylsilyl)oxy)-2-((phenylamino)oxy)butan-1-ol (91):

L-Proline ($4.83 \mathrm{mg}, 0.042 \mathrm{mmol}$) was added to a solution of aldehyde $90(0.05 \mathrm{~g}, 0.25 \mathrm{mmol})$ and nitrosobenzene $(22.5 \mathrm{mg}, 0.21 \mathrm{~mol})$ in 0.42 mL DMSO and the resulting green reaction mixture stirred until the color changed to orange whereupon the reaction mixture was pipeted into a solution of $\mathrm{NaBH}_{4}(31.5 \mathrm{mg}, 0.830 \mathrm{mmol})$ in 0.21 mL EtOH . The resulting reaction mixture was stirred for 1 h before quenching with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The organic portions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and the crude product was purified via flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to yield $16.0 \mathrm{mg}(20 \% ; 72 \% \mathrm{BRSM})$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 3 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=3.6,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H})$.

(2R,3R)-3-Hydroxy-2,4-bis((triisopropylsilyl)oxy)butanal (92):

Aldehyde 83 ($0.790 \mathrm{~g}, 3.66 \mathrm{mmol}$) and L-proline $(41.3 \mathrm{mg}, 0.359 \mathrm{mmol})$ were stirred in 15.6 mL DMF for 36 h before dilution with $\operatorname{EtOAc}(50 \mathrm{~mL})$ and quenching with $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$. The separated organic portion was washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the crude product was purified via flash column chromatography ($2.5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ to yield 574 $\mathrm{mg}(72 \%)$ of the title compound as a 3:1 mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.74(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.69(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.87-$ $3.75(\mathrm{~m}, 4 \mathrm{H}), 2.75(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-1.05(\mathrm{~m}, 84 \mathrm{H})$.

(2R,3R)-3-((Triethylsilyl)oxy)-2,4-bis((triisopropylsilyl)oxy)butanal (93):

To a $-78{ }^{\circ} \mathrm{C}$ solution of 2,6-lutidine $(0.540 \mathrm{~mL}, 4.67 \mathrm{mmol})$ and alcohol 92 $(0.500 \mathrm{~g}, 1.15 \mathrm{mmol})$ in $3.9 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added TBSOTf ($0.390 \mathrm{~mL}, 1.73 \mathrm{mmol}$) and the resulting reaction mixture was allowed to stir for 2.5 h before quenching with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic portions were washed with 1 M aqueous $\mathrm{NaHSO}_{4}(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the resulting crude product was purified via flash column chromatography ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to yield $0.469 \mathrm{mg}(74.7 \%)$ of the title compound. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.61(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}$, 1H), 4.01 (ddd, J = 1.5, 4.8, 9.9 Hz, 1H), 3.87 (t, J = 9.0 Hz, 1H), 3.52 (dd, J = 4.8, 9.0 Hz, 1H), $1.13-1.04(\mathrm{~m}, 42 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.61(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.

(3R,4S,5R)-5-((Triethylsilyl)oxy)-4,6-bis((triisopropylsilyl)oxy)-3((trimethylsilyl)oxy)hexanal (97):

To a $-70{ }^{\circ} \mathrm{C}$ solution of silyl enol ether $96(1.15 \mathrm{~g}, 6.35 \mathrm{mmol})$ and
aldehyde $93(0.538 \mathrm{~g}, 0.980 \mathrm{mmol})$ in 6.46 mL THF was added $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ONBu}_{4}(0.52 \mathrm{~mL}, 0.26$ mmol, 0.5 M in DMF) and the resulting reaction mixture was stirred for 15 h before dilution with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The entire reaction contents were then passed through a plug of SiO_{2} eluting with $\mathrm{Et}_{2} \mathrm{O}$ and the crude product was purified via flash column chromatography ($1 \% \mathrm{EtOAc} /$ hexanes) to yield $0.636 \mathrm{~g}(89 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~s}, 2 \mathrm{H}), 6.27$ $(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{dt}, \mathrm{J}=1.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=$ $10.2,21.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=10.2,19.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, \mathrm{J}=1.8,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{J}$ $=8.7,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.16-1.07(\mathrm{~m}, 42 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.57(\mathrm{q}, \mathrm{J}=7.8,6 \mathrm{H}),-0.02(\mathrm{~s}$, $6 \mathrm{H})$.

(4R,5S,6R)-4-Hydroxy-5-((triisopropylsilyl)oxy)-6-(((triisopropylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-one (99):

Trifluoroacetic acid $(30.0 \mu \mathrm{~L}, 0.392 \mathrm{mmol})$ was added to amide $97(0.288 \mathrm{~g}$, $0.313 \mathrm{mmol})$ in $8 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(1: 1)$ and the resulting reaction mixture was stirred for 3.5 h before adding an additional aliquot of trifluoroacetic acid ($15.0 \mu \mathrm{~L}, 0.196 \mathrm{mmol}$). The reaction mixture stirred for 30 min before addition of $\mathrm{MeONa}(0.222 \mathrm{~g}, 4.10 \mathrm{mmol})$ in four aliquots over 3 h . The reaction was quenched with pH 7 phosphate buffer (12 mL), extracted with EtOAc (3x $12 \mathrm{~mL})$, and the combined organic portions were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The crude product was purified via flash column chromatography (10-20\% EtOAc/hexanes) to yield $120 \mathrm{mg}(81 \%)$ of the title compound. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.78(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{HZ}, 1 \mathrm{~h}), 3.86(\mathrm{dd}, \mathrm{J}=3.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, \mathrm{J}=4.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=6.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.12-1.03(\mathrm{~m}, 42 \mathrm{H})$.

(((triisopropylsilyl)oxy)methyl)tetrahydro-2H-pyran-2,4-diol (99b):

To a $-78{ }^{\circ} \mathrm{C}$ solution of lactone $99(0.089 \mathrm{~g}, 0.163 \mathrm{mmol})$ in $1.9 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $i \operatorname{Pr}_{2} \mathrm{AlH}(0.465 \mathrm{~mL}, 0.465 \mathrm{mmol}, 1 \mathrm{M}$ in heptanes) and the resulting reaction mixture was allowed to stir for 2 h before quenching with Rochelle's salt (3 mL). The resulting emulsion was allowed to stir for an additional 2 h before extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 3 \mathrm{~mL})$. The organic portions were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the crude product was purified via flash column chromatography ($10-15 \% \mathrm{EtOAc} /$ hexanes) to yield $88 \mathrm{mg}(76 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 5.4(\mathrm{bs}, 1 \mathrm{H}), 4.53(\mathrm{dd}, \mathrm{J}=1.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.78(\mathrm{dd}, \mathrm{J}=4.8,10.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{dd}, \mathrm{J}=6.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, \mathrm{J}=6.0,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.49 (dd, J = 5.7, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.05(\mathrm{~m}, 42 \mathrm{H}),-0.10(\mathrm{~s}, 9 \mathrm{H})$.

(2R,3S,4R)-6-(Benzyloxy)-3-((triisopropylsilyl)oxy)-2-(((triisopropylsilyl)oxy)methyl)tetrahydro-2H-pyran-4-ol (100):

Pyridinium p-toluenesulfonate $(27.0 \mathrm{mg}, 0.108 \mathrm{mmol})$ was added to a solution of diol 99b ($330 \mathrm{mg}, 0.693 \mathrm{mmol}$) and benzyl alcohol ($0.326 \mathrm{~mL}, 3.16 \mathrm{mmol}$) in 5.4 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resulting reaction mixture was stirred for 48 h before passing the entire reaction contents through a plug of SiO_{2} eluting with $20 \% \mathrm{EtOAc} /$ hexanes. The volatiles were removed and the crude product was purified via flash column chromatography ($5-10 \% \mathrm{EtOAc} /$ hexanes) to yield 348 mg (86%) of the title compound. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, mixture of $\alpha: \beta$ anomers ($\sim 2: 1$), $\delta 7.35-7.28(\mathrm{~m}, 10 \mathrm{H}), 5.39(\mathrm{dd}, \mathrm{J}=4.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, \mathrm{J}=1.5,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dt}, \mathrm{J}=3.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ $(\mathrm{d}, \mathrm{J}=12.0,1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=12.3,1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=6.9,1 \mathrm{H}), 3.84-3.79$
$(\mathrm{m}, 4 \mathrm{H}), 3.59-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.19(\mathrm{~m}, 2 \mathrm{H})$, $2.04(\mathrm{dq}, \mathrm{J}=1.5,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-1.05(\mathrm{~m}, 84 \mathrm{H})$.

 (((2R,3S,4R)-6-(Benzyloxy)-4-methoxy-2-
 (((triisopropylsilyl)oxy)methyl)tetrahydro-2H-pyran-3yl)oxy)triisopropylsilane (100b):

Sodium hydride ($20.8 \mathrm{mg}, 0.518,60 \%$ in mineral oil) was added to a solution of alcohol $\mathbf{1 0 0}$ $(118 \mathrm{mg}, 0.208 \mathrm{mmol})$ in 0.78 mL THF at $0{ }^{\circ} \mathrm{C}$ and the solution was warmed to ambient temperature and stirred for 1 h . The solution was cooled to $0^{\circ} \mathrm{C}$, $\operatorname{MeI}(64.7 \mu \mathrm{~L}, 1.04 \mathrm{mmol})$ was added and the resulting reaction mixture was stirred for 2 h at ambient temperature before quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and extracting with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 2 \mathrm{~mL})$. The organic portions were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the crude product was purified via flash column chromatography ($2-4 \% \mathrm{EtOAc} /$ hexanes) to yield $85 \mathrm{mg}(72 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of $\alpha: \beta$ anomers ($\sim 4: 1$) only major anomer tabulated, $\delta 7.38$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 5.25(\mathrm{dd}, \mathrm{J}=1.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.12$ $(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, \mathrm{J}=4.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, \mathrm{J}=6.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$, $3.40(\mathrm{dd}, \mathrm{J}=4.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, \mathrm{J}=6.0,7.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dt}, \mathrm{J}=2.7,13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.07-1.05(\mathrm{~m}, 42 \mathrm{H})$.

(2R,3S,4R)-6-(Benzyloxy)-2-(hydroxymethyl)-4-methoxytetrahydro-2H-pyran-3-ol (101):
tetra- n-Butylammonium fluoride ($3.88 \mathrm{~mL}, 3.88 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added
to a $0{ }^{\circ} \mathrm{C}$ solution of silyl ether $\mathbf{1 0 0 b}(564 \mathrm{mg}, 0.970 \mathrm{mmol})$ in 9.7 mL THF and the resulting
reaction mixture was allowed to stir for 2 h before quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (20 $\mathrm{mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 30 \mathrm{~mL})$. The organics were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the crude product was purified via flash column chromatography ($85 \% \mathrm{EtOAc} /$ hexanes) to yield $241 \mathrm{mg}(93 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), mixture of $\alpha: \beta$ anomers $(\sim 1: 1) \delta 7.38-7.29(\mathrm{~m}, 10 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, \mathrm{J}=7.2,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{bs}, 1 \mathrm{H}), 4.11-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{dd}, \mathrm{J}=3.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ $(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, \mathrm{J}=6.0,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$, 3.34-3.26 (m, 2H), $2.34(\mathrm{dd}, \mathrm{J}=6.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.07(\mathrm{~m}, 4 \mathrm{H})$.

O-(((2R,3S,4R)-6-(Benzyloxy)-3-hydroxy-4-methoxytetrahydro-2H-pyran-2-yl)methyl) O-phenyl carbonothioate (101b):
o-Phenyl chlorothionoformate ($132 \mu \mathrm{~L}, 0.900 \mathrm{mmol}$) was added to a solution of diol 101 ($241 \mathrm{mg}, 0.900 \mathrm{mmol}$) in $1.8 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ and the resulting solution was allowed to stir for 30 min before the addition of pyridine $(90 \mu \mathrm{~L}, 1.13$ $\mathrm{mmol})$. The reaction mixture was allowed to stir $\sim 14 \mathrm{~h}$ before quenching with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and washing with brine $(10 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the crude product was purified via flash column chromatography ($20-25 \% \mathrm{EtOAc} /$ hexanes) to yield $227 \mathrm{mg}(62 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ $(\mathrm{d}, \mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, \mathrm{J}=4.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, \mathrm{J}=5.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, \mathrm{J}=2.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$, $2.84(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, \mathrm{J}=4.8,6.3,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H})$.

(2R,3R,4R)-6-(Benzyloxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-ol (102):

Tributyltin hydride ($0.451 \mathrm{~mL}, 1.68 \mathrm{mmol}$) was added to a solution of thionoformate $\mathbf{1 0 1 b}$ (227 $\mathrm{mg}, 0.560 \mathrm{mmol})$ and AIBN $(26.2 \mathrm{mg}, 0.160 \mathrm{mmol})$ in 33 mL toluene and the resulting reaction mixture was heated to $\sim 115{ }^{\circ} \mathrm{C}$ and was stirred at that temperature for 3 h . The volatiles were removed and the crude product was purified via flash column chromatography ($0-20-30 \%$ EtOAc/hexanes) to yield $102 \mathrm{mg}(72 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.35-7.28 (m, 5H), $5.30(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{ddt}, \mathrm{J}=2.1,6.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, \mathrm{J}=2.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=4.2,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, \mathrm{J}=4.8,6.3,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, \mathrm{J}=$ $0.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

(2S,3S)-2,4-Bis((4-methoxybenzyl)oxy)-3-((triethylsilyl)oxy)butanal (107):

Triethylsilyltrifluoromethane sulfonate $(1.91 \mathrm{~mL}, 8.46 \mathrm{mmol})$ was added to a solution of diol $\mathbf{1 0 6}$ $(2.6 \mathrm{~g}, 7.2 \mathrm{mmol})$ and 2,6 -lutidine ($2.49 \mathrm{~mL}, 25.1 \mathrm{mmol}$) in $14.3 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min before quenching with saturated aqueous NaHCO_{3} (20 $\mathrm{mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic portions were then washed with $1 \mathrm{M} \mathrm{NaHSO}_{4}(60 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and purified via flash column chromatography (5$15 \% \mathrm{EtOAc} /$ hexanes $)$ to yield $2.75 \mathrm{~g}(81 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}+3\left(c 1.04, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2999, 2954, 2875, 2836, 1732, 1613, 1586, 1514, 1463, 1442, 1415, 1364, 1302, 1248, 1174, 1105, 1036, 821, $744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.59(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{dd}, \mathrm{J}=8.8,16.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 4 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{ddd}, \mathrm{J}=3.6$,
5.2, 2.4 Hz, 1H), $3.81(\mathrm{dd}, \mathrm{J}=3.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, \mathrm{J}=7.6,9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, \mathrm{J}=5.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.59(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 202.8,159.6,159.4,130.2,129.9,129.8,129.5,114.0,113.9,84.8$, 77.4, 73.2, 73.2, 73.0, 55.5, 7.0, 4.9; HRMS (ES) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 497.2329$; found: 497.2335.

(3S,4S)-3,5-Bis((4-methoxybenzyl)oxy)-4-((triethylsilyl)oxy)pentan-2one (108):

Methylmagnesium bromide ($1.26 \mathrm{~mL}, 3.78 \mathrm{mmol}, 3 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) was added to aldehyde $\mathbf{1 0 7}$ ($0.895 \mathrm{~g}, 1.89 \mathrm{mmol}$) in 35.2 mL Et 2 O at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 45 min before quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ and extracting with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 40 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvents were removed in vacuo to yield 0.926 g of a crude alcohol that was used in the following reaction without further purification.

Solid sodium bicarbonate $(0.317 \mathrm{~g}, 3.77 \mathrm{mmol})$ followed by DMP $(1.22 \mathrm{~g}, 2.88 \mathrm{mmol})$ was added to the crude alcohol $(0.926 \mathrm{~g}, 1.89 \mathrm{mmol})$ in $11.7 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred for 4 h before diluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, quenching with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 40 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and purified via flash column chromatography (5-15\% EtOAc/hexanes) to yield $0.778 \mathrm{~g}(85 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}-3.0\left(c 1.04, \mathrm{CHCl}_{3}\right.$); IR (thin film): 2999, 2954, 2837, 1715, 1613, 1586, 1514, 1462, 1417, 1353, 1302, 1249, 1175, 1096, 1036, 822, $743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{dd}, \mathrm{J}=5.6,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.86(\mathrm{dd}, \mathrm{J}=2.8,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}$, 2H), $4.4(\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.56$
$(\mathrm{dd}, \mathrm{J}=6.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, \mathrm{J}=5.2,10 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 9 \mathrm{H}, 0.58$ $(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 210.5,159.5,159.3,130.4,130.0,129.7$, $129.5,114.0,113.9,85.6,73.3,73.1,73.0,70.7,55.5,55.5,28.1,7.0,5.0 ;$ HRMS (ES) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 511.2492$; found: 511.2479.

(4S,5S,6S)-5,7-Bis((4-methoxybenzyl)oxy)-4-methyl-6-

((triethylsilyl)oxy)hept-1-en-4-ol (109):

Ketone $\mathbf{1 0 8}(1.52 \mathrm{~g}, 3.16 \mathrm{mmol})$ as a solution in $3.12 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added to a solution of $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}(1.26 \mathrm{~g}, 4.88 \mathrm{mmol})$ in $7.02 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The suspension was stirred for 5 min before being cooled to $-78^{\circ} \mathrm{C}$ and allyltributylstannane ($0.975 \mathrm{~mL}, 3.63 \mathrm{mmol}$) was added. The dry ice/acetone bath was allowed to slowly dissipate (over $\sim 6 \mathrm{~h}$) and the reaction stirred an additional 34 h before quenching with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 20 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and purified via flash column chromatography ($6-10 \% \mathrm{EtOAc} /$ hexanes $)$ to yield $1.2 \mathrm{~g}(72 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}-11.0$ (c 1.0, CHCl_{3}); IR (thin film): 3476, 2954, 2911, 2876, 1613, 1514, 1462, 1302, 1249, 1174, $1085,1036,1007 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, 2H), $6.82(\operatorname{app} \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.89-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{app} q, \mathrm{~J}$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{dd}, \mathrm{J}=4,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{dd}, \mathrm{J}=$ $5.6,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 9 \mathrm{H})$, $0.61(\mathrm{q}, \mathrm{J}=7.6,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.2,159.2,134.5,130.5,129.9,129.5$, $129.5,129.3,117.6,113.7,113.7,84.3,74.5,74.1,73.6,72.9,71.4,55.2,55.2,43.0,24.2,6.8$, 5.0; HRMS (ES) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 531.3142$; found: 531.3132.

(2S,3S,4S)-1,3-Bis((4-methoxybenzyl)oxy)-4-methylhept-6-ene-2,4-diol (110):

Tetrabutylammonium fluoride ($4.5 \mathrm{~mL}, 4.5 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added to a solution of silyl ether $\mathbf{1 0 9}(1.20 \mathrm{~g}, 2.26 \mathrm{mmol})$ in 22.6 mL THF at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 45 min before quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and extracting with $\mathrm{EtOAc}(3 \mathrm{x}$ $25 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and the crude product was purified via flash column chromatography ($40-50 \% \mathrm{EtOAc} /$ hexanes $)$ to yield $0.876 \mathrm{~g}(93 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}-27.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3582, 3430, 2912, 1612, 1514, 1462, 1302, 1249, 1175, 1078, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}$, $2 H), ~ 6.90-6.85(\mathrm{~m}, 4 \mathrm{H}), 5.95-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.45(\mathrm{~m}, 4 \mathrm{H}), 4.04-4.00(\mathrm{~m}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=3.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, \mathrm{J}=6.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ $(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H})$, $1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 159.4,159.2,134.2,130.2,129.8,129.6,129.4$, $117.9,113.9,113.8,83.2,74.9,74.8,73.1,71.5,70.8,55.2,42.5,24.0$; HRMS (ES) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6}(\mathrm{M}+\mathrm{Na})^{+}: 439.2097$; found: 439.2113 .

$t \mathrm{BuOH})$, and $\mathrm{NaIO}_{4}(1.83 \mathrm{~g}, 8.58 \mathrm{mmol})$ were added to a solution of enol $\mathbf{1 1 0}(0.876 \mathrm{~g}, 2.11$ mmol) in 20.8 mL dioxane $/ \mathrm{H}_{2} \mathrm{O}(3: 1)$ and the resulting reaction mixture was stirred for 2 h before quenching with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x} 40 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and the product was purified via flash column
chromatography ($60-80 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $0.697 \mathrm{~g}(79 \%)$ of the title compound as a yellow oil. $[\alpha]_{\mathrm{D}}-21.8$ ($c 1.0, \mathrm{CHCl}_{3}$); IR (thin film): 3582, 3407, 2918, 1612, 1514, 1461, 1249, $1096,1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$, mixture of $\alpha: \beta$ anomers ($\left.\sim 1: 1\right), \delta 7.27-7.25(\mathrm{~m}$, $4 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 8 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=$ $11.2,1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.43(\mathrm{~m}, 6 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=6.8,1 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{dd}, \mathrm{J}=2.0,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.44(\mathrm{ddd}, \mathrm{J}=2.0$, $4.8,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, \mathrm{J}=2.0,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.91(\mathrm{dd}, \mathrm{J}=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.82(\mathrm{dd}, \mathrm{J}=3.6,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, \mathrm{J}=9.6$, $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,130.5,130.4$, $129.7,129.7,129.5,129.4,113.8,113.7,93.6,91.6,81.3,80.7,74.5,74.3,74.3,73.0,72.5,72.3$, $70.0,69.3,69.3,55.2,55.2,46.1,42.9,23.5,21.4$; HRMS (ES) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{7}(\mathrm{M}+$ $\mathrm{Na})^{+}: 441.1889$; found: 441.1879 .

(2S,3S,4S)-6-(Allyloxy)-3-((4-methoxybenzyl)oxy)-2-(((4-methoxybenzyl)oxy)methyl)-4-methyltetrahydro-2H-pyran-4-ol (112):

Silver (I) oxide ($0.348 \mathrm{~g}, 1.50 \mathrm{mmol}$) and allyl bromide ($119 \mu \mathrm{~L}, 1.30 \mathrm{mmol}$) were added to a solution of diol $111(0.210 \mathrm{~g}, 0.500 \mathrm{mmol})$ in 3.48 mL DMF and the resulting reaxtion mixture was stirred for 36 h before being passed through a plug of SiO_{2} eluting with EtOAc. The product was purified via flash column chromatography ($20-40 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to yield $0.148 \mathrm{~g}(65 \%)$ of the title compound. IR (thin film): $3465,2934,2867,1612,1513$, 1462, 1399, 1372, 1302, 1248, 1174, 1090, 1034, $930,821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.28(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 4 \mathrm{H})$ 5.97-5.87(m, 1H), $5.27(\mathrm{dd}$, $\mathrm{J}=1.6,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, \mathrm{J}=1.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.49(\mathrm{~m}, 5 \mathrm{H}), 4.36(\mathrm{ddt}, \mathrm{J}=1.2,4.8$,
$12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, \mathrm{J}=6.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 6 \mathrm{H}), 3.71(\mathrm{dd}, \mathrm{J}=2.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (dd, $\mathrm{J}=4.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{ddd}, \mathrm{J}=2.4,4.4,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ $(\mathrm{dd}, \mathrm{J}=2.4,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{dd}, \mathrm{J}=8.8,13.2 \mathrm{~Hz}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,159.2,134.1,130.5,130.3,129.5,129.5,117.2,113.9,113.7,98.4,80.9$, 74.7, 74.2, 73.1, 72.3, 69.6, 69.5, 55.2, 44.2, 22.1; HRMS (ES) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{7}(\mathrm{M}+$ $\mathrm{Na})^{+}: 481.2202$; found: 481.2224 .
 (2S,3S,4S)-6-(Allyloxy)-2-(hydroxymethyl)-4-methyltetrahydro-2H-pyran-3,4-diol (114):

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone ($0.138 \mathrm{~g}, 0.608 \mathrm{mmol}$) was added to a solution of PMB ester $112(0.90 \mathrm{~g}, 0.20 \mathrm{mmol})$ in $5.9 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{pH} 7$ phosphate buffer (2:1) at $0{ }^{\circ} \mathrm{C}$ and the resulting reaction mixture stirred for 1 h before being warmed to ambient temperature and stirred for an additional 2.5 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x} 2 \mathrm{~mL})$, and the combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and used crude in the next reaction without further purification.
2.25 mL Acetic acid/water (4:1) were added to crude PMP acetal $\mathbf{1 1 3}$ from the previous reaction and the resulting mixture was stirred for 24 h . Approximately $1 / 2$ the reaction volume was removed at reduced pressure and the resulting solution was loaded directly onto a flash column and eluted $\left(0-10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $0.031 \mathrm{~g}(70 \%)$ of the title compound as a white solid. $[\alpha]_{\mathrm{D}}+58.6$ ($c 1.0, \mathrm{CHCl}_{3}$); IR (thin film): 3416, 2933, 1455, 1385, 1199, 1102, 1039, $990 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of $\alpha: \beta$ anomers ($\sim 10: 1$) major anomer tabulated $\delta 5.92-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{dd}, \mathrm{J}=1.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, \mathrm{J}=1.0,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.56(\mathrm{dd}, \mathrm{J}=1.5,10 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{dd}, \mathrm{J}=5.0,13 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, \mathrm{J}=6.0,13 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-$
$3.80(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{dd}, \mathrm{J}=$ $10,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.2,133.9,117.5,116.5,98.9$, $98.8,96.8,75.0,73.0,70.8,69.9,67.9,61.9,44.7,42.7,21.7,20.0$; HRMS (ES) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$: 241.1052; found: 241.1055.

O-(((2S,3S,4S)-6-(Allyloxy)-3,4-dihydroxy-4-methyltetrahydro-2H-

 pyran-2-yl)methyl) O-phenyl carbonothioate (114b):O-Phenyl chlorothionoformate ($180 \mu \mathrm{~L}, 1.34 \mathrm{mmol}$) was added to a solution of triol $\mathbf{1 1 4}(270 \mathrm{mg}, 1.34 \mathrm{mmol})$ in $2.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ and the resulting reaction mixture was stirred at ambient temperature for 30 min . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, pyridine ($124 \mu \mathrm{~L}, 1.54 \mathrm{mmol}$) was added and the reaction mixture was stirred for 18 h at ambient temperature before quenching with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and the product was purified via flash column chromatography ($40-60 \% \mathrm{EtOAc} /$ hexanes) to yield $0.276 \mathrm{~g}(61 \%)$ of the title compound as a white foam. $[\alpha]_{\mathrm{D}}+37.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3426,1644,1291,1204,1075 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) mixture of $\alpha: \beta$ anomers ($\sim 2: 1$), $\delta 7.44-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.23(\mathrm{~m}$, $2 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 4 \mathrm{H}), 5.96-5.87(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.0-5.88(\mathrm{~m}, 2 \mathrm{H}), 5.33-5.30$ $(\mathrm{m}, 2 \mathrm{H}), 5.23-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{dd}, \mathrm{J}=2.0,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, \mathrm{J}=5.6,11.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.64-4.62 (m, 2H), $4.55(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.04(\mathrm{~m}, 2 \mathrm{H})$, 4.07-4.04 (m, 2H), $3.65(\mathrm{ddd}, \mathrm{J}=2.0,5.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{bs}, 1 \mathrm{H}), 3.0(\mathrm{bs}$, $1 \mathrm{H}), 2.53(\mathrm{bs}, 1 \mathrm{H}), 2.06(\mathrm{dd}, \mathrm{J}=2.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, \mathrm{J}=2.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}$, 2H), $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.3, 154.2, 153.3, 151.0, 133.8, $133.8,129.5,129.5,126.6,126.2,121.9,121.0,117.7,117.7,73.7,73.6,73.0,72.8,72.0,71.9$,
$69.8,69.8,68.2,53.4,44.4,20.4,20.4 ;$ HRMS (ES) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Cl})^{-}$: 389.0826; found: 389.0863 .

(2S,3S,4S)-6-(Allyloxy)-2,4-dimethyltetrahydro-2H-pyran-3,4-diol (115):
Azobisisobutyronitrile ($36.7 \mathrm{mg}, 0.224 \mathrm{mmol}$) then $n \mathrm{Bu}_{3} \mathrm{SnH}(0.63 \mathrm{~mL}, 2.3$ $\mathrm{mmol})$ were added to a solution of thionoformate $\mathbf{1 1 4 b}(276 \mathrm{mg}, 0.817 \mathrm{mmol})$ in 46 mL toluene and the resulting reaction mixture was stirred for 3 h at $110-120^{\circ} \mathrm{C}$. The volatiles were removed under reduced pressure and the product was purified via flash column chromatography ($50-70 \% \mathrm{EtOAc} /$ hexanes $)$ to yield $0.140 \mathrm{~g}(93 \%)$ of the title compound as a yellow oil. $[\alpha]_{\mathrm{D}}+23.8$ ($c 1.0, \mathrm{CHCl}_{3}$); IR (thin film): 3411, 2978, 2933, 1647, 1453, 1380, 1313, 1118, 1072, $998 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of $\alpha: \beta$ anomers only major anomer tabulated (~10:1), $\delta 5.94-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{dd}, \mathrm{J}=1.6,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, \mathrm{J}=0.8,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, \mathrm{J}=2.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, \mathrm{J}=5.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$, (dd, $\mathrm{J}=6.4,12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, \mathrm{J}=2.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dd}, \mathrm{J}$ $=10.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $134.3,133.9,117.5,116.5,98.3,96.4,79.5,79.2,72.1,71.8,71.0,69.7,67.8,66.7,45.0,43.0$, 29.6, 22.0, 20.3, 18.3, 18.0; HRMS (ES) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 225.1103; found: 225.1076.
 (2R,3R)-2,4-Bis(benzyloxy)-3-((triethylsilyl)oxy)butanal (116):

Triethylsilyltrifluoromethane sulfonate ($0.178 \mathrm{~mL}, 0.788 \mathrm{mmol}$) was added to a solution of diol $105(0.200 \mathrm{~g}, 0.670 \mathrm{mmol})$ and 2,6-lutidine $(0.230 \mathrm{~mL}, 1.99 \mathrm{mmol})$ in 1.32 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min before quenching with saturated
aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL} \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic portions were then washed with $1 \mathrm{M} \mathrm{NaHSO} 4(8 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and purified via flash column chromatography to yield $171 \mathrm{~g}(72 \%)$ of the title compound as a $2.8: 1$ mixture of diastereomers. $[\alpha]_{\mathrm{D}}+3.8$ (c 1.0, CHCl_{3}); IR (thin film): 3031, 2954, 2912, 2876, 1733, 1455, 1105, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of diastereomers ($\sim 2.8: 1$), $\delta 9.74(\mathrm{~d}, \mathrm{~J}=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.64(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 20 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}$, $2 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.92$ (dd, J = 1.5, 3.3 Hz, 1H), 3.87 (dd, J = 0.9, 3.9 Hz, 1H), 3.65 (dd, J = 7.5, $9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (dd, J $=6.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, \mathrm{J}=4.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, \mathrm{J}=5.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.99-0.87(\mathrm{~m}$, $16 \mathrm{H}), 0.65-0.51(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.9,195.3,130.9,130.5,130.4$, $121.4,121.4,121.3,121.2,121.0,120.9,120.9,120.6,120.6,78.0,77.0,66.3,66.2,66.0,65.3$, 63.4, 63.2, $-0.3,-2.3$; HRMS (ES) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 4372124$; found: 437.2172.

(4R,5S,6R)-5,7-Bis(benzyloxy)-6-((triethylsilyl)oxy)hept-1-en-4-ol (116b):
Aldehyde $116(0.171 \mathrm{~g}, 0.413 \mathrm{mmol})$ as a solution in $0.41 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added to a solution of $\mathrm{MgBr}_{2} \bullet \mathrm{Et}_{2} \mathrm{O}(0.167 \mathrm{~g}, 0.647 \mathrm{mmol})$ in $0.94 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$. The suspension was stirred for 5 min before being cooled to $-78^{\circ} \mathrm{C}$ and allyltributylstannane (0.130 $\mathrm{mL}, 0.419 \mathrm{mmol}$) was added. The dry ice/acetone bath was allowed to slowly dissipate (over ~ 6 h) and the reaction stirred an additional 17 h before quenching with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 3 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and purified via flash column chromatography ($3-7 \% \mathrm{EtOAc} /$ hexanes) to yield $0.106 \mathrm{~g}(87 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}-3.0\left(c 1.17, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3502, 3066, 3031, 2953, 2911, 2876,

1496, 1455, 1414, 1365, 1324, 1239, 1208, 1100, 1007, $915,780,738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.28(\mathrm{~m}, 10 \mathrm{H}), 5.80(\mathrm{ddt}, \mathrm{J}=7.2,8.4,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, \mathrm{~J}=2 \mathrm{H}), 4.11(\mathrm{q}, \mathrm{J}=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{ddd}, \mathrm{J}=4.8,10,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, \mathrm{J}=2.4,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.38-2.24 (m, 2H), $0.95(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.63(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.1,137.8,135.2,128.3,128.1,127.9,127.7,127.7,117.1,80.0,73.6,73.4,72.3$, 71.4, 70.4, 38.6, 6.8, 4.8; HRMS (ES) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 479.2594$; found: 479.2578.

Proton sponge ($14.7 \mathrm{~g}, 68.5 \mathrm{mmol}$) followed by $\mathrm{Me}_{3} \mathrm{OBF}_{4}(9.09 \mathrm{~g}, 61.4 \mathrm{mmol})$ were added to alcohol 116b $(7.05,15.4 \mathrm{mmol})$ in $153 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting reaction mixture was stirred for 48 h before loading the entire contents onto a flash column and eluting ($5 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to yield 5.6 g (58% based on pure material present) of $\sim 75 \%$ pure product that was inseparable from the 25% impurity. $[\alpha]_{\mathrm{D}}-32.4\left(c 1.0, \mathrm{CHCl}_{3}\right.$); IR (thin film): $3458,3066,3031,2954$, 2911, 2876, 1641, 1496, 1455, 1414, 1362, 1239, 1207, 1097, 1006, 914, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.32-7.23(\mathrm{~m}, 10 \mathrm{H}), 5.81-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.03(\mathrm{~m}, 1 \mathrm{H}), 5.01-5.00(\mathrm{~m}$, $1 \mathrm{H}), 4.60(\mathrm{q}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.43(\mathrm{~m}$, $1 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 2 \mathrm{H}), 0.94(\operatorname{app~q}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.60(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.0,138.4,138.4,135.3,134.5,128.5,128.5,128.4,128.3,128.2$, $128.0,127.9,127.8,127.6,117.5,117.4,82.1,81.6,80.9,80.6,77.4,74.9,73.6,73.1,72.4,72.2$,
$72.1,71.2,58.3,38.1,34.8,7.2,7.0,5.3,5.0 ;$ HRMS (ES) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$: 493.2750; found: 493.2717.

(3R,4S,5R)-4,6-Bis(benzyloxy)-3-hydroxy-5-((triethylsilyl)oxy)hexanal (117b):

2,6-lutidine ($1.1 \mathrm{~mL}, 9.5 \mathrm{mmol}$), $\mathrm{OsO}_{4}(0.957 \mathrm{~g}, 0.09 \mathrm{mmol}, 2.5 \mathrm{wt} \%$ in $t \mathrm{BuOH})$, and NaIO_{4} $(4.05 \mathrm{~g}, 18.9 \mathrm{mmol})$ were added to a solution of enol $117(2.20 \mathrm{~g}, 4.68 \mathrm{mmol}, 66 \%$ pure $)$ in 46 mL dioxane $/ \mathrm{H}_{2} \mathrm{O}(3: 1)$ and the resulting reaction mixture was stirred for 14 h before quenching with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x} 75 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$ and the product was purified via flash column chromatography (5-20\% EtOAc/Hexanes) to yield $1.0 \mathrm{~g}(66 \%)$ of the title compound as a yellow oil. $[\alpha]_{\mathrm{D}}+13.8(c 1.0$, CHCl_{3}); IR (thin film): $3437,2998,1642,1454,1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.66$ $(\mathrm{dd}, \mathrm{J}=1.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{dt}, \mathrm{J}=3.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=3.2,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{dd}, \mathrm{J}=4.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, \mathrm{J}=3.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{ddd}, \mathrm{J}=1.2$, $5.2,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, \mathrm{J}=2.8,6.0,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, \mathrm{J}=7.6$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 201.1, 138.0, 137.9, 128.3, 128.3, 128.0, 127.7, 127.7, 81.6, 76.0, 74.1, 73.4, 71.9, 71.6, 58.1, 45.0, 6.9, 5.1; HRMS (ES) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}$ $+\mathrm{Na})^{+}: 495.2543$; found: 495.2536.

(2R,3S,4R)-6-(Allyloxy)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-methoxytetrahydro-2H-pyran (118):

Pyridinium p-toluenesulfonate $(62.6 \mathrm{mg}, 0.249 \mathrm{mmol})$ was added to a solution of
aldehyde 117b ($0.596 \mathrm{~g}, 1.26 \mathrm{mmol}$) in 11.3 mL allyl alcohol and stirred for 48 h at $55-60{ }^{\circ} \mathrm{C}$ before being passed through a plug of SiO_{2} eluting with $20 \% \mathrm{EtOAc} /$ hexanes. The volatiles (allyl alcohol) were removed under reduced pressure and the product was purified via flash column chromatography ($6-10 \% \mathrm{EtOAc} /$ hexanes) to yield $0.400 \mathrm{~g}(80 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}+43.8$ ($c 1.0, \mathrm{CHCl}_{3}$); IR (thin film): 3063, 3030, 2932, 1496, 1454, 1367, 1305, 1268, 1202, $1029,925,738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of $\alpha: \beta$ anomers $(\sim 2: 1), \delta 7.39-7.23$ $(\mathrm{m}, 20 \mathrm{H}), 5.32(\mathrm{dd}, \mathrm{J}=1.2,9.2,1 \mathrm{H}), 5.28(\mathrm{dd}, \mathrm{J}=1.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=12.4,1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-$ $4.50(\mathrm{~m}, 6 \mathrm{H}), 4.41(\mathrm{dd}, \mathrm{J}=4.8,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, \mathrm{J}=5.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, \mathrm{J}=6.0$, $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, \mathrm{J}=6.4,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.67(\mathrm{~m}, 6 \mathrm{H}), 3.55(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}$, $3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.4(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, \mathrm{J}=4.8,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.56(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 138.5, 138.4, 138.2, 138.1, 134.0, 128.3, 128.2, 127.8, $127.8,127.8,127.7,127.5,127.5,117.3,117.1,98.8,96.6,81.4,79.0,78.1,77.8,75.0,74.7$, 74.7, 73.4, 70.6, 69.6, 69.3, 68.7, 67.6, 57.2, 56.8, 35.9, 34.7; HRMS (ES) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 421.1991$; found: 421.1990 .
 via cannula to a solution of benzyl ether $118(0.015 \mathrm{~g}, 0.038 \mathrm{mmol})$ in 1.57 mL freshly distilled, degassed THF at $-78{ }^{\circ} \mathrm{C}$ and the resulting solution was stirred for 90 min . NOTE: If the dark green/blue color of the reaction mixture faded to red/brown during the course of the reaction, additional LiDBB was added until the dark green/blue color persisted. The reaction mixture was
quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and extracted with EtOAc (3x 2 mL). The combined organic portions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the product was purified via flash column chromatography $\left(0-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $4 \mathrm{mg}(57 \%)$ of the title compound.

1 M LiDBB was prepared as follows: 4,4'-di-tert-Butylbiphenyl ($12.7 \mathrm{~g}, 47.6 \mathrm{mmol}$) then piecemeal, polished Li Metal ($0.297 \mathrm{~g}, 42.4 \mathrm{mmol}$) was added to 47.6 mL recently distilled, degassed THF and the resulting suspension was sonicated without allowing the temperature to rise above $25^{\circ} \mathrm{C}$ until the Li metal had fully dissolved $(\sim 3-4 \mathrm{~h}) .[\alpha]_{\mathrm{D}}+15.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3465, 2934, 2867, 1612, 1513, 1461, 1399, 1372, 1302, 1248, 1174, 1090, 1034, 930, $821 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) isolated in $\sim 80 \%$ purity mixture of $\alpha: \beta$ anomers only major anomer tabulated ($\sim 10: 1) \delta 5.93-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{dd}, \mathrm{J}=1.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, \mathrm{J}$ $=1.2,10 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{ddt}, \mathrm{J}=1.6,5.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, \mathrm{J}=$ $6.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.47(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (ddd, $\mathrm{J}=0.8,4.4,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{ddd}, \mathrm{J}=3.6,11.2,12.8,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 133.9,133.8,117.5,117.3,99.1,96.7,80.5,78.2,75.3,71.5,70.8,70.5,69.9,67.8$, 62.5, 62.3, 56.6, 56.4, 35.0, 33.8; HRMS (ES) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{5}(\mathrm{M}-\mathrm{H})^{-}: 217.1076$; found: 217.1083.

$O-(((2 R, 3 S, 4 R)-6-(A l l y l o x y)-3-h y d r o x y-4-m e t h o x y t e t r a h y d r o-2 H-p y r a n-~$

2-yl)methyl) O-phenyl carbonothioate (119b):

O-Phenyl chlorothionoformate $(0.295 \mathrm{~mL}, 2.13 \mathrm{mmol})$ was added to a solution of diol $119(0.440 \mathrm{~g}, 2.02 \mathrm{mmol})$ in $4.1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ and the resulting reaction mixture was stirred at ambient temperature for 30 min . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, pyridine ($0.204 \mathrm{~mL}, 2.54 \mathrm{mmol}$) was added and the reaction mixture was stirred for 14 h at
ambient temperature before quenching with $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 12 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the product was purified via flash column chromatography ($20-30 \% \mathrm{EtOAc} /$ hexanes) to yield $0.480 \mathrm{~g}(67 \%)$ of the title compound as a white foam. $[\alpha]_{\mathrm{D}}+24.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3443,3076,2936,2360,1763,1591$, $1490,1455,1385,1334,1291,1204,1102,1043,1004,969,930,878,848,826,773,734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) mixture of $\alpha: \beta$ anomers only major anomer tabulated ($\left.\sim 5: 1\right) \delta$ 7.43-7.39 (m, 2H), $7.29(t t, J=1.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.97-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.31$ (ddd, $\mathrm{J}=2.0,3.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{ddd}, \mathrm{J}=1.2,2.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.79(\mathrm{dd}, \mathrm{J}=2.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, \mathrm{J}=5.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{ddt}, \mathrm{J}=1.6,5.2,12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{ddd}, \mathrm{J}=$ $1.2,4.4,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, \mathrm{J}=3.6,11.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $195.2,153.4,133.8,133.8,129.5,129.4,126.5,121.9,121.0,117.7,117.5,99.0,96.8,80.5,78.2$, $77.3,73.1,70.5,69.3,67.9,56.6,56.4,34.8,33.6$; $\mathrm{HRMS}(\mathrm{ES}) \mathrm{m} / z$ calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{SNa}(\mathrm{M}+$ $\mathrm{Na})^{+}: 377.1035$; found: 377.1032.

(2R,3R,4R)-6-(Allyloxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-ol (120):

 Azobisisobutyronitrile ($13.3 \mathrm{mg}, 0.081 \mathrm{mmol}$) then $n \mathrm{Bu}_{3} \mathrm{SnH}(0.23 \mathrm{~mL}, 0.86$ $\mathrm{mmol})$ were added to a solution of thionoformate $\mathbf{1 1 9 b}(0.103 \mathrm{~g}, 0.291 \mathrm{mmol})$ in 16.8 mL toluene and the resulting reaction mixture was stirred for 3 h at $110-120{ }^{\circ} \mathrm{C}$. The volatiles were removed under reduced pressure and the product was purified via flash column chromatography (20-40\% EtOAc/hexanes) to yield 48 mg (82%) of the title compound as a yellow oil. $[\alpha]_{\mathrm{D}}+62.2$ (c 1.0, CHCl_{3}); IR (thin film): 3457, 3081, 2971, 2934, 2902, 1741, 1647, $1452,1384,1349,1300,1242,1200,1107,1050,986,921,869,830,767,734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR(400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 5.96-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{ddd}, \mathrm{J}=2.0,3.6,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, \mathrm{J}=1.2$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{ddt}, \mathrm{J}=1.6,5.2,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{ddt}, \mathrm{J}=1.2$, $6.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, \mathrm{J}=6.0,9.2,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, \mathrm{J}=4.8,8.8,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dt}, \mathrm{J}=1.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, \mathrm{J}=1.2,4.8,12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.51$ (ddd, $\mathrm{J}=3.6,11.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 134.2,117.1,96.6,78.3,76.2,67.7,67.6,56.4,33.9,17.8 ;$ HRMS (ES) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 239.1259$; found: 239.1240 .

(((2R,3R,4R)-6-(Allyloxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-yl)oxy)(tert-butyl)dimethylsilane (121):

2,6-Lutidine ($73 \mu \mathrm{~L}, 0.63 \mathrm{mmol}$) then TBSOTf ($73 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) was added to a solution of alcohol $\mathbf{1 2 0}$ in $2.1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ and the resulting reaction mixture was stirred for 2 h before quenching with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x} 3 \mathrm{~mL})$. The combined organic portions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the product was purified via flash column chromatography ($5 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to yield $0.052 \mathrm{~g}(78 \%)$ of the title compound as a yellow oil. $[\alpha]_{\mathrm{D}}+70.8\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right)$; IR (thin film): 2957, 2932, 2897, 2857, 1463, 1388, 1251, 1104, 1077, 1040, 987, 922, 893, 837, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)$ mixture of $\alpha: \beta$ anomers only major anomer tabulated $(\sim 10: 1) \delta 5.95-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.28$ (ddd, $\mathrm{J}=1.6,3.2,17.2,1 \mathrm{H}), 5.17(\mathrm{ddd}, \mathrm{J}=1.2,2.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=2.8,1 \mathrm{H}), 4.11$ (ddt, $\mathrm{J}=1.2,5.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, \mathrm{J}=1.2,6.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}$, $3 \mathrm{H}), 3.13(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{ddd}, \mathrm{J}=1.6,5.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{ddd}, \mathrm{J}=3.6,11.2,12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 134.3, 117.4,
$117.1,98.6,96.4,81.0,78.5,77.1,76.6,72.7,69.6,68.4,67.7,56.3,56.1,34.4,26.0,18.4,18.3$, $-4.0,-4.8$; HRMS (ES) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 339.1968$; found: 339.2020.

$\underbrace{\mathrm{OOTBS}}_{\overline{\bar{O}} \mathrm{Me}}$
 (4R,5R,6R)-5-((tert-Butyldimethylsilyl)oxy)-4-methoxy-6-methyltetrahydro-2H-pyran-2-ol (95):

Quinaldic acid ($3.00 \mathrm{mg}, 0.017 \mathrm{mmol}$) as a solution in 0.5 mL MeOH was added to a suspension of $\left[\mathrm{CpRu}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(7.40 \mathrm{mg}, 0.017 \mathrm{mmol})$ in 0.5 mL MeOH and the resulting reaction mixture was stirred for 30 min before addition of allyl ether $121(0.052 \mathrm{~g}, 0.165 \mathrm{mmol})$ as a solution in $0.2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. The resulting reaction mixture was stirred for 6 h before being diluted with $\mathrm{Et}_{2} \mathrm{O}$ and passed through a plug of florasil eluting with $\mathrm{Et}_{2} \mathrm{O}$. The product was purified via flash column chromatography (5-20\% EtOAc/hexanes) to yield $0.032 \mathrm{~g}(70 \%)$ of the title compound. $[\alpha]_{\mathrm{D}}+29.8$ (c 1.0, CHCl_{3}); IR (thin film): 3409, 2956, 2932, 2891, 2857, 1463, 1388, 1252, 1150, 1107, 993, 893, 837, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of $\alpha: \beta$ anomers ($\sim 2: 1) \delta 5.33(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{ddd}, \mathrm{J}=6.4,12.8$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{bs}, 1 \mathrm{H}), 3.45(\mathrm{ddd}, \mathrm{J}=5.2,8.8,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.13$ $(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{bs}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, \mathrm{J}=2.0,4.4,12.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.29 (ddd, $\mathrm{J}=1.2,4.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=$ 6.4 Hz, 3H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.09-0.07(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 94.0$, $92.0,80.8,78.1,77.2,76.3,72.9,68.6,56.4,56.2,37.0,34.3,26.0,26.0,18.5,18.4,18.3,18.3$, $-4.0,-4.8,-4.8$; HRMS (ES) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 277.1835$; found: 277.1865.

(2S,3S,4S)-6-(Allyloxy)-3-(($(4 R, 5 R, 6 R)-5-((t e r t-$
butyldimethylsilyl)oxy)-4-methoxy-6-methyltetrahydro-2H-
pyran-2-yl)oxy)-2,4-dimethyltetrahydro-2H-pyran-4-ol (122):
Bromotrimethylsilane ($25.0 \mu \mathrm{~L}, 0.190 \mathrm{mmol}$) was added to a solution of alcohol $95(41.0 \mathrm{mg}$, 0.149 mmol) in 0.50 mL of benzene and the reaction mixture was allowed to stir for 5 min before removing the volatiles. The resulting crude anomeric bromide was dissolved in $0.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added to a suspension of diol $\mathbf{1 1 5}(82.0 \mathrm{mg}, 0.406 \mathrm{mmol}), 4 \AA \mathrm{MS}(50 \mathrm{mg})$ and $\mathrm{Ag}_{2} \mathrm{O}-\mathrm{SiO}_{2}{ }^{74,}$ ${ }^{75}(250 \mathrm{mg}, 0.856 \mathrm{mmol})$ in $1.5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ and the resulting reaction mixture was allowed to stir for 30 min before quenching with NEt_{3}. The quenched reaction mixture was loaded directly onto a flash column and eluted (20\% EtOAc/Hexanes) to give 26.2 mg (38\%) of the title compound and $12.4 \mathrm{mg}(18 \%)$ of what is believed to be alkylation at the tertiary alcohol. $[\alpha]_{\mathrm{D}}+86.6$ (c 1.0, CHCl_{3}); IR (thin film): 3437, 2932, 2858, 1462, 1387, 1103, 1074, $990 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of 4 diastereomers from $\alpha: \beta$ anomers only major anomer tabulated $\delta 5.96-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=1.5,17 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.16$ $(\mathrm{m}, 1 \mathrm{H}), 4.56(\mathrm{dd}, \mathrm{J}=2.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ddd}, \mathrm{J}=1.5,3.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 4.04$ $(\mathrm{dd}, \mathrm{J}=6.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 3 \mathrm{H}), 3.3(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.13(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, \mathrm{J}=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{t}, \mathrm{J}=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09$ $(\mathrm{s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$; mixture of 4 diastereomers from $\alpha: \beta$ anomers ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 134.3,134.1,134.1,134.0,117.4,117.4,117.0,98.5,98.4,98.3,98.1,93.9,92.5,91.7,90.8$, $81.0,79.6,78.9,78.3,78.1,78.0,75.1,72.8,70.9,70.8,70.4,70.4,70.3,70.2,70.2,69.8,69.7$, $69.7,69.4,68.6,56.4,56.3,56.2,45.1,43.8,41.6,36.3,35.3,34.4,31.9,26.0,26.0,20.5,19.8$,
18.6, 18.6, 18.6, 18.5, 18.5, 18.3, 18.3, 18.2, 18.2, 16.0, $-4.0,-4.8$; HRMS (ES) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 483.2754$; found: 483.2760 .

APPENDIX: SPECTRA

$$
\begin{aligned}
& \nabla 6 \cdot \square- \\
& \nabla Z \cdot \square- \\
& 0 \tau \cdot 0-
\end{aligned}
$$

$\boxed{ } 6 \cdot \sigma-\square$
$\sigma Z \cdot \square-\square$
$0 \tau \cdot 0-$

$$
\tau \varepsilon \cdot 6
$$

$$
\varpi \varepsilon \cdot 8 I
$$

$$
\mathrm{LB} \cdot \mathrm{SZ}
$$

$$
L S \cdot 2 S
$$

$$
8 L \cdot \varepsilon 9
$$

$08 *$ I6

とぁ・89T

ZS•8てT
$\varepsilon 8^{\circ} 8 \varepsilon \tau$
68° \＆ぁT
$\varepsilon 8^{\circ} 8 \varepsilon T$
68° हぁт

TS．S8

さてT・レ—
09でしー

+

$$
99^{\circ} L L
$$

ぁぁ・06
70．90T
ع8•89I
JSH＿02＿201 301

$68 \cdot \varepsilon \varepsilon \tau \longrightarrow$
8も・รをT
$8 \mathrm{~L} . \mathrm{G} \mathrm{\varepsilon}$
しも・てもし

JSH_02_282 cdcl3, pure; 300

$99^{\circ} 0 \square^{\square}$
［8．09
L8＊L9
$09 \cdot 68=$
LO•LOT
so．9てI－
so・てとI
ヵ6．マとโ
69° と ε I
とI•6とT
86・とぁ

Zぁ・8E

$$
O L \cdot \varepsilon \varpi \tau
$$

\qquad
\qquad
\qquad

$9 \varepsilon \cdot 6 \varepsilon=$ \qquad
28.09 —
[8.9L
28.9 LL
$99^{\circ} \mathrm{LL}$
$\mathrm{ZZ} \cdot 6 \mathrm{~L}$

trv3-171 reaction 2, pure, 13C, CDC13, 12/13/09, 600MHz
und

ppm
0

LZ•00T

$\angle D \cdot \angle S=$
$6 \varepsilon \cdot 6 S=$
$\varsigma \varepsilon \cdot 89$
$97.89 —$
โ• $\mathrm{L} L$ ——
$85^{\circ} \varepsilon L$
$69.8 L=$
I7.08
[6.08

\rightarrow
て.00T

$$
\begin{aligned}
& 10 \cdot 9 \\
& 86 \cdot 9
\end{aligned}
$$

SE.SG
9 D.SS $^{\circ}$

JSH_04_123 cdcl3; 400b ○○ \qquad

JSH_04_170 cdcl3; 500

BIBLIOGRAPHY

1. Kim, J. W.; Adachi, H.; Shin-Ya, K.; Hayakawa, Y.; Seto, H., "Apoptolidin, a New Apoptosis Inducer in Transformed Cells from Nocardiopsis sp.," J. Antibiotics 1997, 50, 628630.
2. Hayakawa, Y.; Kim, J. W.; Adachi, H.; Shin-ya, K.; Fujita, K.-i.; Seto, H., "Structure of Apoptolidin, a Specific Apoptosis Inducer in Transformed Cells," J. Am. Chem. Soc. 1998, 120, 3524-3525.
3. Wender, P. A.; Sukopp, M.; Longcore, K., "Apoptolidins B and C: Isolation, Structure Determination, and Biological Activity," Org. Lett. 2005, 7, 3025-3028.
4. Wender, P. A.; Longcore, K. E., "Isolation, Structure Determination, and Anti-Cancer Activity of Apoptolidin D," Org. Lett. 2007, 9, 691-694.
5. Salomon, A. R.; Voehringer, D. W.; Herzenberg, L. A.; Khosla, C., "Apoptolidin, a Selective Cytotoxic Agent, is an Inhibitor of $\mathrm{F}_{0} \mathrm{~F}_{1}$-ATPase," Chemistry \& Biology 2001, 8, 7180.
6. Wender, P. A.; Jankowski, O. D.; Tabet, E. A.; Seto, H., "Toward a Structure-Activity Relationship for Apoptolidin: Selective Functionalization of the Hydroxyl Group Array," Org. Lett. 2003, 5, 487-490.
7. Wender, P. A.; Jankowski, O. D.; Longcore, K.; Tabet, E. A.; Seto, H.; Tomikawa, T., "Correlation of F0F1-ATPase Inhibition and Antiproliferative Activity of Apoptolidin Analogues," Org. Lett. 2006, 8, 589-592.
8. Wender, P. A.; Gulledge, A. V.; Jankowski, O. D.; Seto, H., "Isoapoptolidin: Structure and Activity of the Ring-Expanded Isomer of Apoptolidin," Org. Lett. 2002, 4, 3819-3822.
9. Wender, P. A.; Jankowski, O. D.; Tabet, E. A.; Seto, H., "Facile Synthetic Access to and Biological Evaluation of the Macrocyclic Core of Apoptolidin," Org. Lett. 2003, 5, 2299-2302.
10. Nicolaou, K. C.; Li, Y.; Weyershausen, B.; Wei, H.-X., "Synthesis of the Macrocyclic Core of Apoptolidin," Chem. Commun. 2000, 307-308.
11. Nicolaou, K. C.; Li, Y.; Fylaktakidou, K. C.; Mitchell, H. J.; Wei, H.-X.; Weyershausen, B., "Total Synthesis of Apoptolidin: Part 1. Retrosynthetic Analysis and Construction of Building Blocks," Angew. Chem. Int. Ed. 2001, 40, 3849-3854.
12. Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.; Li, Y.; Weyershausen, B.; Mitchell, H. J.; Wei, H.; Guntupalli, P.; Hepworth, D.; Sugita, K., "Total Synthesis of Apoptolidin: Construction of Enantiomerically Pure Fragments," J. Am. Chem. Soc. 2003, 125, 15433-15442.
13. Nicolaou, K. C.; Li, Y.; Sugita, K.; Monenschein, H.; Guntupalli, P.; Mitchell, H. J.; Fylaktakidou, K. C.; Vourloumis, D.; Giannakakou, P.; O'Brate, A., "Total Synthesis of Apoptolidin: Completion of the Synthesis and Analogue Synthesis and Evaluation," J. Am. Chem. Soc. 2003, 125, 15443-15454.
14. Schuppan, J.; Wehlan, H.; Keiper, S.; Koert, U., "Synthesis of Apoptolidinone," Angew. Chem. Int. Ed. 2001, 40, 2063-2066.
15. Wehlan, H.; Dauber, M.; Fernaud, M. T. M.; Schuppan, J.; Keiper, S.; Mahrwald, R.; Ziemer, B.; Garcia, M.-E. J.; Koert, U., "Total Synthesis of Apoptolidin," Angew. Chem. Int. Ed. 2004, 43, 4597-4601.
16. Wehlan, H.; Dauber, M.; Fernaud, M. T. M.; Schuppan, J.; Keiper, S.; Mahrwald, R.; Garcia, M.-E. J.; Koert, U., "Apoptolidin A: Total Synthesis and Partially Glycosylated Analogues," Chem. Eur. J. 2006, 12, 7378-7397.
17. Schuppan, J.; Wehlan, H.; Keiper, S.; Koert, U., "Apoptolidinone A: Synthesis of the Apoptolidin A Aglycone," Chem. Eur. J. 2006, 12, 7364-7377.
18. Larcheveque, M.; Henrot, S., "A Stereospecific Synthesis of Optically Pure (-)- $\alpha-$ Multistriatin," Tetrahedron 1987, 43, 2303-2310.
19. Crimmins, M. T.; Long, A., "Enantioselective Synthesis of Apoptolidin Sugars," Org. Lett. 2005, 7, 4157-4160.
20. Crimmins, M. T.; Christie, H. S.; Chaudhary, K.; Long, A., "Enantioselective Synthesis of Apoptolidinone: Exploiting the Versatility of Thiazolidinethione Chiral Auxiliaries," J. Am. Chem. Soc. 2005, 127, 13810-13812.
21. Crimmins, M. T.; Christie, H. S.; Long, A.; Chaudhary, K., "Total Synthesis of Apoptolidin A," Org. Lett., 2009, 11, 831-834.
22. Crimmins, M. T.; Chaudhary, K., "Titanium Enolates of Thiazolidinethione Chiral Auxiliaries: Versatile Tools for Asymmetric Aldol Additions," Org. Lett. 2000, 2, 775-777.
23. Sulikowski, G. A.; Lee, W.-M.; Jin, B.; Wu, B., "Synthesis of the Apoptosis Inducing Agent Apoptolidin. Assembly of the C(16)-C(28) Fragment," Org. Lett. 2000, 2, 1439-1442.
24. Pennington, J. D.; Williams, H. J.; Salomon, A. R.; Sulikowski, G. A., "Toward a Stable Apoptolidin Derivative: Identification of Isoapoptolidin and Selective Deglycosylation of Apoptolidin," Org. Lett. 2002, 4, 3823-3825.
25. Wu, B.; Liu, Q.; Sulikowski, G. A., "Total Synthesis of Apoptolidinone," Angew. Chem. Int. Ed. 2004, 43, 6673-6675.
26. Jin, B.; Liu, Q.; Sulikowski, G. A., "Developement of an End-Game Strategy Towards Apoptolidin: a Sequential Suzuki Coupling Approach," Tetrahedron 2005, 61, 401-408.
27. Wu, B.; Liu, Q.; Jin, B.; Qu, T.; Sulikowski, G. A., "Studies on the Synthesis of Apoptolidin: Progress on the Stereocontrolled Assembly of the Pseudo Aglycone of Apoptolidin," Eur. J. Org. Chem. 2006, 2006, 277-284.
28. Ghidu, V. P.; Wang, J.; Wu, B.; Liu, Q.; Jacobs, A.; Marnett, L. J.; Sulikowski, G. A., "Synthesis and Evaluation of the Cytotoxicity of Apoptolidinones A and D," J. Org. Chem. 2008, 73, 4949-4955.
29. Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L., "Asymmetric Synthesis Using Diisopropyl Tartrate Modified (E)- and (Z)-Crotylboronates: Preparation of the Chiral Crotylboronates and Reactions with Achiral Aldehydes," J. Am. Chem. Soc. 1990, 112, 6339-6348.
30. Emmanuel Jehanno; Vaultier, M., "An Easy Access to Vinylboronates β-Substituted by a Keto Group," Tetrahedron Lett. 1995, 36, 4439-4442.
31. Markus R. Heinrich, L. A. S. a. S. Z. Z., "A Convergent Approach to γ-Carbonyl Vinyl Boronates," Chem. Commun. 2005, 3077-3079.
32. Bouchez, L. C.; Vogel, P., "Synthesis of the C(1)-C(11) Polyene Fragment of Apoptolidin with a New Sulfur Dioxide-Based Organic Chemistry," Chem. Eur. J. 2005, 11, 4609-4620.
33. Craita, C.; Didier, C.; Vogel, P., "Short Synthesis of the $\mathrm{C}_{16}-\mathrm{C}_{28}$ Polyketide Fragment of Apoptolidin A Aglycone," Chem. Commun. 2007, 2411-2413.
34. Toshima, K.; Arita, T.; Kato, K.; Tanaka, D.; Matsumura, S., "Synthetic Studies on Apoptolidin: Synthesis of the C1-C21 Macrolide Fragment," Tetrahedron Lett. 2001, 42, 88738876.
35. Abe, K.; Kato, K.; Arai, T.; Rahim, M. A.; Sultana, I.; Matsumura, S.; Toshima, K., "Synthetic Studies on Apoptolidin: Synthesis of the C12-C28 Fragment via a Highly Stereoselective Aldol Reaction," Tetrahedron Lett. 2004, 45, 8849-8853.
36. Handa, M.; Smith, W. J.; Roush, W. R., "Studies on the Synthesis of Apoptolidin A. 2. Synthesis of the Disaccharide Unit," J. Org. Chem. 2008, 73, 1036-1039.
37. Kim, Y.; Fuchs, P. L., "Lactol-Directed Osmylation. Stereodivergent Synthesis of Four C-19,20 Apoptolidin Diols from a Single Allylic Hemiacetal," Org. Lett. 2007, 9, 2445-2448.
38. Paquette, W. D.; Taylor, R. E., "Enantioselective Preparation of the C1-C11 Fragment of Apoptolidin," Org. Lett. 2004, 6, 103-106.
39. Chng, S.-S.; Xu, J.; Loh, T.-P., "A Divergent Approach to Apoptolidin and FD-891: Asymmetric Preparation of a Common Intermediate," Tetrahedron Lett. 2003, 44, 4997-50000.
40. Nelson, S. G.; Peelen, T. J.; Wan, Z., "Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensations. A strategy for Catalyzed Cross Aldol Reactions," J. Am. Chem. Soc. 1999, 121, 9742-9743.
41. Nelson, S. G.; Zhu, C.; Shen, X., "Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes," J. Am. Chem. Soc. 2004, 126, 14-15.
42. Zhu, C.; Shen, X.; Nelson, S. G., "Cinchona Alkaloid-Lewis Acid Catalyst Systems for Effecting Highly Enantioselective Ketene-Aldehyde Cycloadditions," J. Am. Chem. Soc. 2004, 126, 5352-5353.
43. Northrup, A. B.; MacMillan, D. W. C., "Carbohydrates by Selective Aldol Reactions," Science 2004, 305, 1752-1755.
44. Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C., "Enantioselective Organocatalytic Direct Aldol Reactions of α-Oxyaldehydes: Step One in a Two-Step Synthesis of Carbohydrates," Angew. Chem. Int. Ed. 2004, 43, 2152-2154.
45. Nelson, S. G.; Wan, Z., "Catalytic Asymmetric Propionate Aldol Reactions via Acyl Halide-Aldehyde Cyclocondensations," Org. Lett. 2000, 2, 1883-1886.
46. Horvath, A.; Backvall, J.-E., "Palladium(II)-Catalyzed SN2' Reactions of Allenic Acetates. Stereoconvergent Synthesis of (Z,E)-2-Bromo-1,3-dienes," J. Org. Chem. 2001, 66, 8120-8126.
47. Lemos, E.; Porée, F. H.; Commerçon, A.; Betzer, J. F.; Pancrazi, A.; Ardisson, J., " α Oxygenated Crotyltitanium and Dyotropic Rearrangement in the Total Synthesis of Discodermolide," Angew. Chem. Int. Ed. 2007, 46, 1917-1921.
48. Shen, X.; Wasmuth, A. S.; Zhao, J.; Zhu, C.; Nelson, S. G., "Catalytic Asymmetric Assembly of Stereodefined Propionate Units: An Enantioselective Total Synthesis of (-)Pironetin" J. Am. Chem. Soc. 2006, 128, 7438-7439.
49. Arisawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A., "Development of Isomerization and Cycloisomerization with Use of a Ruthenium Hydride with N -Heterocyclic Carbene and Its Application to the Synthesis of Heterocycles," J. Org. Chem. 2006, 71, 42554261.
50. Schmitt, D. L.; Jonassen, H. B., "The Isomerization of cis,trans-1,5-Cyclodecadiene by $\mathrm{RhCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ in Ethanol," J. Organomet. Chem. 1973, 49, 469-472.
51. Yagupsky, G.; Wilkinson, G., "Further Studies on Hydridocarbonyltris(triphenylphosphine)rhodium(I). Part II. Isomerization of n-pentenes and hex-1-ene," J. Chem. Soc. A 1970, 941-944.
52. Hutchins, R. O.; Natale, N. R., "Sodium Borohydride in Acetic Acid. A Convenient System for the Reductive Deoxygenation of Carbonyl Tosylhydrazones," J. Org. Chem. 1978, 43, 2299-2301.
53. Tan, Z.; Negishi, E., "Selective Synthesis of Epolactaene Featuring Efficient Construction of Methyl (Z)-2-Iodo-2-butenoate and ($2 R, 3 S, 4 S$)-2-Trimethylsilyl-2,3-epoxy-4-methyl- γ-butyrolactone," Org. Lett. 2006, 8, 2783-2785.
54. Wei, X.; Taylor, R. J. K., "In Situ Alcohol Oxidation-Wittig Reactions," Tetrahedron Lett. 1998, 39, 3815-3818.
55. Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N., "Palladium-Catalyzed CrossCoupling Reaction of Bis(pinacolato)diboron with 1-Alkenyl Halides or Triflates: Convenient Synthesis of Unsymmetrical 1,3-Dienes via the Borylation-Coupling Sequence," J. Am. Chem. Soc. 2002, 124, 8001-8006.
56. Frank, S. A.; Chen, H.; Kunz, R. K., Schnaderbeck, M. J.; Roush, W. R., "Use of Thallium(I) Ethoxide in Suzuki Cross Coupling Reactions," Org. Lett. 2000, 2, 2691-2694.
57. Zeng, X.; Qian, M.; Hu, Q.; Negishi, E., "Highly Stereoselective Synthesis of (1E)-2-Methyl-1,3-dienes by Palladium-Catalyzed trans-Selective Cross-Coupling of 1,1-Dibromo-1alkenes with alkenylzinc Reagents," Angew. Chem. Int. Ed. 2004, 43, 2259-2263.
58. Zeng, X.; Hu, Q.; Qian, M.; Negishi, E., "Clean Inversion of Configuration in the PdCatalyzed Cross-Coupling of 2-Bromo-1,3-dienes," J. Am. Chem. Soc. 2003, 125, 13636-13637.
59. Zhang, H. X.; Guibe, F.; Balavoine, G., "Palladium- and Molybdenum-Catalyzed Hydrostannation of Alkynes. A Novel Access to Regio- and Stereodefined Vinylstannanes," J. Org. Chem. 1990, 55, 1857-1867.
60. Srogl, J.; Allred, G. D.; Liebeskind, L. S., "Sulfonium Salts. Participants par Excellence in Metal-Catalyzed Carbon-Carbon Bond-Forming Reactions," J. Am. Chem. Soc. 1997, 119, 12376-12377.
61. Smith III, A. B.; Dong, S.; "An Efficient, Second-Generation Synthesis of the Signature Dioxabicyclo[3.2.1]octane Core of (+)-Sorangicin A and Elaboration of the (Z, Z, E)-Triene Acid System," Org. Lett. 2009, 11, 1099-1102.
62. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M., "A Rapid Esterification by Means of Mixed Anhydride and Its Application to Large-ring Lactonization," Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993.
63. Hikota, M.; Tone, H.; Horita, K.; Yonemitsu, O., "Stereoselective Synthesis of Erythronolide A By Extremely Efficient Lactonization Based on Conformation Adjustment and High Activation of Seco-Acid," Tetrahedron 1990, 46, 4613-4628.
64. Northrup, A. B.; MacMillan, D. W. C., "The First Direct and Enantioselective CrossAldol Reaction of Aldehydes," J. Am. Chem. Soc. 2002, 124, 6798-6799.
65. Storer, R. I.; MacMillan, D. W. C., "Enantioselective Organocatalytic AldehydeAldehyde Cross-Aldol Couplings. The Broad Utility of α-Thioacetal Aldehydes," Tetrahedron 2004, 60, 7705-7714.
66. Brown, S. P.; Brochu, M. P.; MacMillan, D. W. C., "The Direct and Enantioselective Organocatalytic α-Oxidation of Aldehydes," J. Am. Chem. Soc. 2003, 125, 10808-10809.
67. Chandra, B.; Fu, D.; Nelson, S. G., "Catalytic Asymmetric Synthesis of Complex Polypropionates: Lewis Base Catalyzed Aldol Equivalents in the Synthesis of Erythronolide B," Angew. Chem. Int. Ed. 2010, 49, 2591-2594.
68. Barrett, A. G. M.; Prokopiou, P. A.; Barton, D. H. R., "Novel Method for the Deoxygenation of Alcohols," J. Chem. Soc., Chem. Commun. 1979, 1175-1175.
69. Charette, A. B.; Benslimane, A. F.; Mellon, C., "The Tetrahydropyranyl Group as a Chiral Auxiliary for the Nucleophilic Addition to α-Alkoxy Ketones," Tetrahedron Lett. 1995, 36, 8557-8560.
70. Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z., "Improved Procedure for the Oxidative Cleavage of Olefins by $\mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$," Org. Lett. 2004, 6, 3217-3219.
71. Utille, J. P.; Briem, B., "Synthesis of Allyl 2-O-(α-L-Arabinofuranosyl)-6-O-(α-D-mannopyranosyl)- β-D-mannopyranoside, a Unique Plant N-Glycan Motif Containing Arabinose," Carbohydr. Res., 2000, 329, 431.
72. Tanaka, S.; Saburi, H.; Ishibashi, Y.; Kitamura, M., "CpRu(II)PF ${ }_{6}$ Acid-Catalyzed Chemoselective Allyl Ether Cleavage. A Simple and Practical Method for Hydroxyl Deprotection," Org. Lett. 2004, 6, 1873-1875.
73. Paulsen, H.; Lockhoff, O., "Neue Effektive β-Glycosidsynthese für Mannose-Glycoside Synthesen von Mannose-haltigen Oligosacchariden," Chem. Ber. 1981, 114, 3102-3114.
74. Paulsen, H.; Lebuhn, R., "Synthese von Tri- und Tetrasaccharid-Sequenzen von N Glycoproteinen mit β-D-mannosidischer Verknüpfung," Liebigs Ann. Chem. 1983, 1047-1072.
