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Prestressed concrete (PC) bridges are susceptible to catastrophic damage (often from over-height 

vehicle impact); the extent of which is often difficult to assess until it has progressed to the point 

of collapse. Impact damage occurs when a vehicle’s height is greater than the vertical clearance 

between the roadway and overpass and the vehicle strikes the overpass. Impact damage ranges in 

severity, but generally does not cause immediate collapse of the structure. However, when 

untreated, impact damage can result in further or accelerated deterioration often resulting in 

significant prestressing steel corrosion.  

Performing a structural repair requires confidence that the member in need of repair is 

behaving as anticipated. In doing so, the member should be viewed from a perspective different 

than conventional engineering assessment practices. For example, the contribution to section 

capacity of strands which have been exposed or severed due to over-height vehicle impact are 

neglected in conventional member assessment. This assessment practice has been found to be 

overly conservative because strands ‘redevelop’ their prestressing force upon entering sound 

concrete. Furthermore, due to the unanticipated composite action occurring between an AB 

girder and the barrier wall/curb slab assembly, many AB members that conventionally behave 

uniaxially are behaving asymmetrically and biaxial bending effects must be considered when 
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determining flexural capacity. Additionally, few (often one) girders are damaged due to the 

localized nature of impact-damage. Therefore, a rating factor expression was developed to 

quantify damage to individual girders.  

Overall, this dissertation presents new approaches to the assessment, analysis and repair 

of PC girders. Employment of these assessment and analysis techniques allows for more accurate 

quantification of in-service member behavior, thus allowing for the most appropriate solution 

(member/bridge repair or replacement) to be selected. This approach is demonstrated through a 

case study analysis of a previous experimentally tested girder. Lastly, an approach to 

determining repair technology limitations (based on geometric and mechanical constraints) 

through an impact-damaged AB girder repair example is provided. 
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ΔfpT total prestress loss 
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εc strain level in concrete 

εc’ maximum strain of unconfined concrete corresponding to f’c; may be taken as 

0.003 

εcu ultimate axial strain of unconfined concrete 

εfd debonding strain of externally bonded FRP reinforcement 

εfd* debonding strain of externally bonded PT FRP reinforcement 

εfe effective strain level in FRP reinforcement attained at failure 

εfu design rupture strain of FRP reinforcement 

εfu* ultimate rupture strain of FRP reinforcement 

εpe effective strain in prestressing steel after losses 
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1.0  INTRODUCTION 

 

The deteriorating condition of the nation’s bridge infrastructure cannot be overstated. Prestressed 

concrete (PC) bridges, however, generally contradict this trend. These, often newer, structures 

have thus far demonstrated exceptional durability and represent only a small fraction of deficient 

bridges in the nation (FHWA 2007). Nonetheless, PC bridges are susceptible to potentially 

catastrophic damage (often from over-height vehicle impact); the extent of which is often 

difficult to assess until it has progressed to the point of collapse (Harries 2009). Impact damage 

occurs when a vehicle’s height is greater than the vertical clearance between the roadway and 

overpass and the vehicle strikes the overpass. Examples of impact damage can be seen in Figure 

1-1. Impact damage ranges in severity, but generally does not cause collapse of the structure at 

the time of impact. However, when untreated, impact damage can result in further or accelerated 

deterioration often resulting in significant prestressing steel corrosion. The combination of 

impact damage and subsequent corrosion can potentially be catastrophic (Harries 2006); hence 

the motivation of this study. 

While PC bridges generally perform well (in Pennsylvania, only 7.8% of prestressed 

bridge superstructures are rated as deficient as opposed to an inventory-wide value of 13.7%), 

adjacent box (AB) girder bridges are the exception, representing a disproportionate number of 
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‘problem’ bridges and therefore requiring a disproportionate allocation of maintenance 

resources. In Pennsylvania, there is an inventory of 1997 AB bridges; these average over 40 

years old. Of these, 355 (18%) are structurally deficient based on their superstructure rating only 

(PennDOT 2007 and Kasan 2009). Typically, structural deficiencies in AB bridges result from 

inherent design issues and over-height vehicle impact damage. For example, common detailing 

and construction practices during most AB bridge construction in Pennsylvania (1960’s), along 

with improperly performing shear keys, have resulted in exterior AB girders behaving 

independently from the adjacent girders and compositely with the barrier wall/curb slab 

assembly, in an asymmetrical manner. The issue of asymmetric behavior is exacerbated when 

considering impact damage. Therefore, repair of impact damaged AB girders should take priority 

when considering PC girder repair methods. Consequently, many of the topics described in this 

dissertation are discussed specifically in terms of AB girders (Chapters 3, 4 and 5).  As a whole, 

this dissertation describes a new approach (and its limitations) to assessment, analysis and repair 

technique for PC structures which is valid for any girder type.  

Generally speaking, it is common practice that aging and structurally damaged PC bridge 

members are taken out of service and replaced. This, however, is not an efficient use of materials 

and resources since the member can often be repaired in situ. Recently, emphasis has been 

placed on repairing these girders, ultimately saving both economic and monetary resources and 

reducing the length of time in which the structure is out of service for girder/bridge replacement.  

Performing a repair design requires the designer to be confident that the member is 

behaving as anticipated in service. In doing so, it may be necessary to view the member from a 

perspective different than conventional engineering assessment practices. For example, typical 

engineering assessment practice suggests the contribution to section capacity of strands which 
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have been exposed or severed due to vehicle impact are neglected in member assessment. The 

work in this document suggests that this is overly conservative because strands ‘redevelop’ their 

prestressing force upon entering sound concrete. Also, contrary to conventional practices, a 

biaxial analysis approach to determining the flexural capacity of an adjacent box (AB) girder 

which is behaving compositely with the barrier wall/curb slab assembly is described. Typically 

bridge structures are not analyzed considering their neutral axes being rotated from the 

horizontal, many in-service AB members are behaving asymmetrically requiring that biaxial 

bending be included in the analysis so as not to overestimate the member’s capacity. Equally 

significant, the manner in which member assessment (establishing a rating factor) proceeds is 

also modified. The localized nature of impact damage typically results in few (often only one) 

damaged girders. Therefore, a rating factor method was developed to quantify the damage for 

individual girders. This method allows for the target capacity to be varied, thus allowing for the 

possibility of bridge posting, if acceptable. With this new paradigm regarding member behavior 

and assessment, actual in situ member behavior can be more accurately quantified, thus allowing 

for the most appropriate solution (repair or replacement of the member/bridge) to be selected.  

There are numerous repair techniques proposed by entrepreneurial and academic 

institutions which restore PC girder flexural strength and save both material and economic 

resources. Of course, not all repair methods are viable in every situation and thus each must be 

assessed based on girder geometry, repair method applicability and the objectives of the repair 

scenario. This document also provides a methodology for determining repair technology 

limitations through an example repair of an impact-damaged AB girder. Although only a single 

repair type for a single repair technology is described, the approach is applicable to other girder 

shapes and repair technologies. This portion of the dissertation, develops the methodology 
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required for the completion of NCHRP 20-07, an ongoing project which will address additional 

member shapes and repair technologies.  

It is anticipated that the guidance presented in this dissertation will benefit State agency 

and bridge design personnel when considering repair or replacement of damaged PC girders. 

1.1 MOTIVATION OF PROPOSED WORK 

Collisions between over-height vehicles and bridges are becoming more commonplace (Fig. 1). 

Recent catastrophic collapses including Lake View Drive onto I-70 in Washington PA (Fig. 1a) 

and the McIlvaine Road vehicle collision only 8 miles east of Lake View Drive (Fig. 1b) have 

led to a re-evaluation of the condition of many prestressed structures resulting in new postings 

and in some cases emergency decommissioning of structures. Collision damage, however, is 

generally far from catastrophic (Fig. 1c) although sound repair techniques are critical if 

additional damage (typically related to corrosion) is to be mitigated 

Although there are many research and case studies addressing repair of prestressed bridge 

girders, there is little comprehensive guidance available. NCHRP Project 12-21, ultimately 

completed in 1985 and published as NCHRP Report 280: Guidelines for Evaluation and Repair 

of Prestressed Concrete Bridge Members (Shanafelt and Horn 1985) remains the most 

comprehensive national study to address the evaluation and repair of prestressed bridge 

members. A 1996 Texas study (Feldman et al. 1996) and a 2004 Wisconsin study (Tabatabi et al. 

2004) have updated the earlier guides but are limited in scope: the TXDOT study addresses only 

impact damage while the WIDOT study focuses primarily on corrosion mitigation techniques at 

girder ends in cases where strengthening or structural retrofit is largely unnecessary. Extant 
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studies are necessarily out-of-date: i) they do not address the present state of the now 25-50 year-

old prestressed concrete infrastructure and the inherent deterioration associated with this aging; 

ii) they do not address some of the newer methods of assessing the structural capacity and, 

importantly, residual prestress forces; iii) they are not consistent with present evaluation 

practices (AASHTO 2011); and, iv) they do not address some of the newer methods of retrofit 

including those using FRP materials and prestressed FRP materials. 

To partially address these deficiencies, the author aided in preparation of a detailed report 

for Pennsylvania DOT entitled Repair Methods for Prestressed Bridges (Harries et al. 2009). 

While directed primarily at post-NCHRP Report 280 repair methods and focusing heavily on 

prestressed box girder structures, this PennDOT project and report forms a strong foundation for 

the present proposed study. Harries et al. provided: i) a detailed review of assessment techniques; 

ii) an extensive review of repair/rehabilitation and retrofit techniques including those addressed 

in NCHRP Report 280 and developed subsequently; iii) results from a North American survey of 

current state of practice; iv) 22 prototype repair examples; and v) a set of best practices 

recommendations. While the Harries et al. report provides a sound foundation for the present 

study, it is limited in scope, provides only cursory guidance.  

The use of these new repair technologies has benefitted the bridge industry by increasing 

the number of structures which can be repaired as opposed to being replaced or posted. Examples 

of such bridge repairs are presented by Tumialan et al. (2001), Schiebel et al. (2001), Klaiber et 

al. (2003), Herman (2005), Toenjes (2005), Kim et al. (2008), Sika (2008a), Kasan (2009), 

Enchayan (2010), Pakrashi et al. (2010) and Yang et al. (2011), among others. Despite these 

demonstrations, little attention has been paid to the selection of appropriate repair measures and 

the limitations of these; this is often referred to as the ‘repair or replace?’ question. The objective 
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this work is to develop a methodology to approaching repair design aimed at providing 

justification for the solution of the ‘repair or replace’ question in the context of present 

AASHTO practice. As part of this work, novel assessment techniques (i.e.: redevelopment of 

severed prestressed strands and analysis of eccentrically loaded AB girders) and the application 

of these techniques will be discussed.  

1.2 SCOPE AND OBJECTIVE OF DISSERTATION 

It is the goal of this dissertation to provide a rational approach to addressing analysis and 

structural repair issues relating to impact-damaged PC bridge girders. It is acknowledged that 

some findings presented in this document are specific to AB bridge structures, since this class of 

PC structure is in the most critical need (Kasan 2009). However, the approach to the issues 

described here can be applied to other girder shapes. Examples have been provided to 

demonstrate the implementation of findings described in this document (Chapters 2 and 3) to 

show applicability in analysis (Chapter 4) and for the determination of repair technology 

limitations (Chapter 5). Findings are described in context of the examples provided, but the 

approach can be extended to other girder types and repair technologies, and thus are useful 

beyond the current study. 
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1.3 OUTLINE OF DISSERTATION 

As a whole, this dissertation addresses issues associated with repair of impact damaged PC 

girders, particularly focusing on analysis issues and limitations of repair techniques. Chapter 2 

discusses the concept of prestressing strand redevelopment after having been exposed or severed 

due to impact or other damage. Chapters 3, 4 and 5 discuss methodologies to approach various 

topics pertaining to AB bridge structures since this bridge type exhibits exorbitant structural 

deficiency rates in Pennsylvania (PennDOT 2007) and in surrounding states. An approach to 

accounting for behavioral asymmetry of AB girders and associated analysis concerns is 

presented in Chapter 3. Chapter 4 presents a case study which utilizes the findings of Chapters 2 

and 3 in an effort to predict the behavior of an AB girder. This chapter also demonstrates 

implementation of the findings of Chapters 2 and 3. Lastly, Chapter 5 presents a method for 

quantifying repair technology limitations. This is validated through an example which utilizes 

externally bonded carbon fiber reinforced polymers (EB-CFRP) to repair an impact damaged AB 

girder. Chapter 5 also discusses the approach to rating an impact-damaged member since this 

damage type often affects only a single girder as opposed to the entire structure. The girder 

rating approach described here also allows for rapid comparison between the repair technologies’ 

effect on member capacity. 

1.4 DISCLAIMER 

This document presents engineering design examples; use of the results and/or reliance on the 

material presented is the sole responsibility of the reader. The contents of this document are not 
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intended to be a standard of any kind and are not intended for use as a reference in specifications, 

contracts, regulations, statutes, or any other legal document. The opinions and interpretations 

expressed are those of the author and other duly referenced sources. The designs presented have 

not been implemented nor have they been sealed by a professional engineer. 
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a) Lake View Drive collapse 
onto I-70. Impact damage led 

to significant strand loss, 
subsequent corrosion and 

eventual collapse under girder 
self-weight. 

[Pittsburgh Post-Gazette] 

b) Impact damage to facia 
beam of Crawford Lane over 

I-70. [Kasan] 

c) Bridge over I-26 north of 
Columbia SC showing 

evidence of significant vehicle 
impact. [Harries] 

  
Figure 1-1 Examples of damage associated with vehicle impact. 
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2.0  REDEVELOPMENT OF PRESTRESSING FORCE IN SEVERED 

PRESTRESSING STRANDS 

The deteriorating condition of the nation’s bridge infrastructure cannot be overstated. PC 

bridges, however, generally contradict this trend. These, often newer, structures have thus far 

demonstrated exceptional durability and represent only a small fraction of deficient bridges in 

the nation (FHWA 2007). Nonetheless, PC bridges are susceptible to potentially catastrophic 

damage; the extent of which is often difficult to assess until it has progressed to the point of 

collapse (Harries 2009). Deterioration of PC bridges usually results from corrosion of the strand 

in a region where the concrete has been damaged, often by vehicle impact (Harries et al. 2009). 

An example of such damage is shown in Figures 2-1c and d. Due to its refined chemistry and 

typically small diameter, prestressing steel is particularly susceptible to corrosion (ACI 222 

2001). Provided sound cover concrete is present to ensuring resistance to chloride attack, the 

passivating layer on the prestressing strand is maintained and corrosion is mitigated. Examples of 

this are shown in Figure 2-1 which shows observed damage from the collapsed Lake View Drive 

Bridge reported by Harries (2009). In Figure 2-1a, a 3/8 in. (9.5 mm) diameter strand is entirely 

corroded at the location of an older vehicle impact; the steel crumbled to the touch. A short 

distance away, where the strand re-enters sound concrete, the corrosion is only ‘surface’ 

corrosion. Finally, at the location at which the strand was again encased in sound concrete, only 

‘bright’ steel is found. A similar situation is seen in Figure 2-1b, showing the soffit of a box 
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girder following testing to failure (Harries 2009). In this case, the lowest layer of strands in the 

box, having a clear cover of only 1.25 in. (32 mm) and partially exposed due to spalling likely 

resulting from vehicle impacts, exhibits marked corrosion. The second layer of steel, 1.5 in. (38 

mm) above the lower layer remains ‘bright’. 

 Figures 2-1c and d show representative damage to prestressed box girders (Harries 2009). 

The damage shown in Figure 2-1c was almost certainly initiated by a recent vehicle impact and 

does not exhibit significant corrosion yet. Left unpatched, the damage in Figure 2-1c is likely to 

progress to that shown in Figure 2-1a. Figure 2-1d shows relatively typical soffit corrosion. In 

this case, the initial cause of the damage is less clear although the corrosion is most certainly 

accelerated by salt-spray from the road below. In the structure shown, the vertical clearance to 

the Interstate carriageway below was only 14.5 ft (4.42 m) making both vehicle impact and salt 

spray problematic (Harries 2009). 

 Damage such as that seen in Figure 2-1 clearly affects the capacity of the individual 

girder and therefore the bridge. Furthermore, when damage is caused by vehicle impact, it will 

often be located in the critical middle third of the flexural span. When rating a girder exhibiting 

such damage, typically a sections approach will be used and the contribution of the severed and 

corroded strands will be neglected. While this is an adequate approach at the affected section, it 

is conservative elsewhere along the span assuming fully bonded strands are used. The severed or 

corroded strand, once it re-enters sound concrete, continues to be bonded to the concrete; thus 

stress transfer between the concrete and strand is possible. If this is the case, the strand may be 

‘redeveloped’ (in the sense of ‘development length’) by bond transfer at a distance from the 

damage location. By the same argument, the prestress force in a bonded strand is not lost at a 

distance from the damage, since it too may be ‘redeveloped’. If the beneficial effects of 
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accounting for the redeveloped strand are to be used in load rating or assessing the need for 

repair or replacement of a PC girder or bridge, the effectiveness of the ‘redevelopment’, indeed 

its existence, must be established. This Chapter presents a study verifying that redevelopment of 

prestressing force does, in fact, occur and the code prescribed transfer length values remain valid 

for this phenomena. 

2.1 DEVELOPMENT AND TRANSFER LENGTHS 

Conceptually, this ‘redevelopment’ is no different than the original stress transfer from the 

tensioned strand to the concrete section at the ends of the member at the time of prestress force 

release. Only in this case the free end of the strand is not at the end of the member but at the edge 

of the damaged region. Thus, the concept of transfer length and development length should 

remain valid (ACI 318 2008; AASHTO 2007).  

Ewald Hoyer utilized the redevelopment effect in the 1940’s in his work with “piano-

string-concrete” (Marrey and Grote 2003). Hoyer (1939) developed a system to prestress thin, 

hard-drawn wires and thus created the most successful (prior to 1945) commercial PC operation. 

Smaller beams were cut to length from larger, previously cast members. Instead of losing their 

tension, the wires would expand elastically at each cut and re-anchor themselves (Marrey and 

Grote 2003). This elastic expansion relies on the radial forces which develop over the transfer 

length of the wire, as in Figure 2-2; this phenomenon is aptly termed the ‘Hoyer effect’. The 

expansive radial forces engage both friction and mechanical interaction (in the case of deformed 

bars or twisted strand) causing the wires to anchor themselves after the cut. Moreover, the 
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‘redevelopment’ of the thin wires utilized by Hoyer is essentially the same principal as described 

in this study for severed prestressing strands, as will be shown. 

 In a PC element, the stress in the prestressing steel may be assumed to vary linearly from 

zero at the point where bonding commences to the effective stress after losses, fpe, at the end of 

the transfer length, ℓtr. In a member loaded to its capacity, strand stress may be assumed to 

increase linearly from the end of the transfer length to the development length, ℓd, reaching the 

stress at nominal resistance, fps, at the development length. This idealized relationship is shown 

in Figure 2-3. The transfer length for bonded seven wire strand is given as 60 strand diameters 

(60db) by AASHTO (2007) and as shown in Equation 2-1 by ACI (2008). 

 ℓtr = 0.33fpedb    (ksi and in.)     (Eq. 2-1) 

 ℓtr = 0.05fpedb    (MPa and mm)    (Eq. 2-1) 

For typical cases, fpe is on the order of 180 ksi (1240 MPa), thus both AASHTO and ACI 

requirements give the same transfer length. The development length, also measured from the 

point at which bond commences, is given by both AASHTO and ACI as: 

 ( ) bpepsd df66.0fK −=  (ksi and in.)    (Eq. 2-2) 

 ( ) bpepsd df66.0fK145.0 −=  (MPa and mm)   (Eq. 2-2) 

Where K = 1.0 except for members deeper than 24 in. (610 mm) designed based on AASHTO 

where K = 1.6. Both transfer and development length recommendations were developed in the 

1950’s and 1960’s and adopted by ACI and AASHTO in 1963 and 1973, respectively (Tabatabai 

and Dickson 1993). The κ factor was introduced by AASHTO in 1988 to address perceived 

worst-case characteristics of older strand material (AASHTO 2007). All previous calculations 

assume a conventional minimum concrete cover over the strand; for flexural members, this is 

typically 1.5 in. (38 mm) (ACI 318 2008; AASHTO 2007). 
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2.1.1 Effects of Concrete Properties on Transfer Length 

Transfer of prestressing force and strand development is affected by concrete material properties. 

Concrete of good quality and higher strength will transfer prestressing force more efficiently 

than poor quality or lower strength concrete (Mitchell et al. 1993 and Oh et al. 2001). In other 

words, strand transfer length decreases with increasing concrete strength.  

 Concrete consolidation occurs during member casting which, in turn, influences the bond 

characteristics of reinforcing bars based on their casting position. This phenomenon, commonly 

referred to as the “top bar” effect, is often discussed for conventionally reinforced members but 

is equally significant in prestressed reinforcement. Top cast prestressed reinforcement will have 

greater initial slip upon release of prestressing force and thus exhibit slightly greater prestressing 

force losses as compared to bottom cast reinforcement (Wan et al. 2002). In most PC bridge 

girders, the prestressing reinforcement is located toward the bottom of the section. Therefore, 

‘redevelopment’ of severed strand prestressing force will occur in the consolidated concrete at 

the bottom of the section and thus will not generally be prone to the bond quality issues 

associated with top cast reinforcement. Therefore the strand will redevelop its prestressing force 

in a manner similar to that by which the original prestressing force transfers to the section.  

2.1.2 Effects of Concrete Cover on Transfer Length  

Harries (2006) noted significant variation in concrete cover for the 3/8” (9.5 mm) prestressing 

strand in the Lake View Drive girders (also in the test girder). Despite specified clear cover of 

1.25 in. (31.8 mm), in situ clear cover as small as 0.57 in. (14.5 mm) was observed. The effect of 

reduced concrete cover on prestress force transfer has been found to increase the transfer length 
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(Oh et al. 2001). There is physically less concrete for the strand prestressing force to transfer 

into, thus yielding greater transfer lengths. Another way of considering the effect of reduced 

cover is that the stiffness of the concrete surrounding the strand is reduced, resulting in longer 

transfer lengths. Recall that code-prescribed transfer lengths were developed based on standard 

concrete cover thicknesses (see above). Although this issue is beyond the scope of the current 

study, its importance to strand transfer length and ‘redevelopment’ of prestressing force is 

acknowledged. 

 

2.1.3 Effects of Strand End Slip on Transfer Length 

Strand end slip is the relative slip between the prestressing strand and concrete. This is typically 

measured at the end of the member during the release of the original prestressing force. This 

measurement is used to determine the effective prestressing force, or the amount of prestressing 

force which is transferred to the member (Oh et al. 2001 and Wan et al. 2002). Strand end slip is 

dependent on the location of the reinforcement (whether it be top or bottom cast), the rate at 

which prestressing force is released and the end at which the slip is being measured (the live 

(stressed) or dead end). Ultimately, strand end slip contributes to the determination of strand 

transfer length and thus the causes of strand end slip are discussed. 

 It was observed that strand end slip was found to be greater for top cast reinforcement as 

opposed to bottom cast reinforcement (Wan et al. 2002). The reasoning behind this is consistent 

with the discussion regarding concrete consolidation and the effect of “top cast reinforcement” as 

previously presented.  
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 The “live” end of the strand is considered to be where the strand is cut to release the 

prestressing force and the dead end is the other end. Tests have indicated that transfer length at 

the live end of the member could be as much as 15% greater than at the dead end due to strand 

slip (Oh and Kim 2000 and Oh et al. 2001). This increase is significant in the discussion of 

‘redevelopment’ of severed strand prestressing force in so far as the new ‘live end’ of the 

member is the location where the strand has been severed and the prestressing force has been 

released.  Therefore, in the region in which the strand is ‘redeveloping’ the prestressing force 

transfer will behave like a ‘live end’ and thus is more likely to have greater strand end slip. 

 Strand transfer lengths have also been found to increase with a more rapid prestressing 

force release rate (Kaar et al. 1963 and Steinberg et al. 2001). Kaar has shown that the transfer 

length for flame cut ends (which is the release method used at most precasting plants) is greater 

than for a more gradual release, as is evident in Figure 2-4. Another study conducted by 

Steinberg et al. (2001), cut strands in a manner which resulted in the release of prestressing force 

to be faster than flame cutting.  Steinberg et al. (2001) used two methods to determine strand 

transfer length; 1) a manual method which analyzed strains taken from gages mounted on the 

member’s surface before and after prestress release; and 2) LVDT readings which provided 

strand end slip values. Strain readings taken from gages embedded in the members verified 

strand transfer lengths determined from the other two methods. Regardless of the method used, 

all three determinations of strand transfer length resulted in values greater than that calculated 

based on contemporary PCI, ACI and AASHTO code provisions. The importance of the greater 

transfer lengths observed in test specimens subject to rapid prestressing force release rates is 

important in this study since a) impact damage may result in very rapid strand ruptures; and b) 

the technique used to cut strands in this study resulted in relatively rapid force release. 
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2.2 SEVERED STRANDS AND REDEVELOPMENT 

At a distance greater than ℓd from observed strand damage, when strand ‘redevelopment’ is 

assumed, girder capacity is restored since a) the strand is still present in sound concrete and thus 

is reinforcing the section; and b) the prestress force attributed to the damaged strand is still 

present. This, however, is not typically taken into account in rating damaged prestressed girders 

where the common practice is to assume that once a strand is severed it is lost over the entire 

length of the girder. By accounting for ‘redevelopment’ and considering appropriate sections 

along a damaged girder, it is possible to significantly increase a girder’s load rating over that 

obtained for the damaged section or for the entire girder assuming the loss of ruptured strands 

over the entire girder length.   

 Figure 2-5 illustrates this conceptually for a simply supported PC girder. In Figure 2-5, an 

undamaged girder has a moment capacity of M. The lines in Figure 2-5 represent damage 

reducing the sectional capacity to 95% - 75% of the undamaged capacity (levels still considered 

repairable (Kasan 2009)). The actual girder capacity (based on a uniformly distributed load) is 

given based on the location of this sectional damage over the half span of the girder. For 

instance, severe sectional damage may reduce local capacity to 0.75M. If this damage is located 

at midspan (x = 0.5L, where L is the girder length), the girder flexural capacity is 0.75M. If 

however the same damage is located at x = 0.35L, the overall girder load carrying capacity is 

0.82M and if x < 0.25L, the girder flexural capacity is unaffected. Thus, by considering the 

various undamaged sections away from the damage location, the load carrying capacity of the 

girder may be improved over the case of considering only the critical section. To permit this 

approach, the damaged strand must be redeveloped.  
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2.3 EXPERIMENTAL PROGRAM 

In order to include the effects associated with a redeveloped strand in load rating and member 

assessment, the effectiveness of the ‘redevelopment’, indeed its existence, must be established. 

The following experimental program was carried out to assess strand ‘redevelopment’ behavior. 

2.3.1 Test Girder 

Tests were conducted on a girder recovered from the decommissioned Lake View Drive Bridge 

(Harries 2006). Originally built in 1960, the test girder was an exterior girder of an AB girder 

bridge having no composite topping. The girder is a 42 in. deep by 48 in. wide (1070 x 1220 

mm) hollow PC box 91.2 ft (27.8 m) long (Spancrete 1960). Primary reinforcement consisted of 

60 3/8 in. (9.5 mm) diameter stress-relieved 250 ksi (1720 MPa) seven wire strands placed in 

five layers. A section of the girder is shown in Figure 2-6b. The asphalt topping and barrier wall 

had been removed from the girder when it was decommissioned. The original bridge had a 39o 

skew. At the time of the experimental program described, the girder was supported on four 

timber cribs as shown in Figure 2-6a. The test region itself was in excellent shape, there was 

little evidence of deterioration or damage of any kind. Subsequent removal of concrete cover for 

instrumentation and testing (described below) revealed only ‘bright’ strand in sound concrete 

with no evidence of corrosion. 

Although concrete strength of the test girder was not established in this study, the 

specified concrete compressive strength for all girders of the Lake View Drive Bridge was 5900 

psi (40.7 MPa). Cores taken from two other girders (Harries 2006) revealed very consistent 

strengths of 7300 psi (50.3 MPa). A single core extracted from the test girder in a previous study 
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yielded a compressive strength of 8440 psi (58.2 MPa) (Naito et al. 2006). Thus the concrete is 

considered to be of very good quality.  

Two samples of prestressing strand were removed from the test girder and the individual 

wires were tested. All wires were found to be in good condition with minimal corrosion. Due to 

the helical nature of prestressing strands, six of the seven wires are ‘kinked’; only the center 

wires are straight and thus capable of providing accurate stress-strain relationships. A stress-

strain curve obtained from one of the center (straight) wires tested is presented in Figure 2-7. 

Wire diameters and ultimate (rupture) stress values are provided for both center (straight) and 

outer (helical) wires in Table 2-1. The average ultimate strength of both center and outer wires 

was fpu = 263 ksi (1813 MPa) having a standard deviation of 4 ksi (27.6 MPa), confirming the 

grade (250 ksi) and quality of the almost 50-year old strand. Concrete and steel properties 

described here validate the assumptions and material properties used later in the girder analysis 

as well as confirm the apparent excellent girder condition.  

 Initial prestress in all strands is reported to be fpi = 0.7fpu = 175 ksi = 1207 MPa 

(Spancrete 1960). Calculations of estimated prestress loss based on the method reported by PCI 

(1999) were 0.13fpu = 33.7 ksi = 232 MPa, resulting in an effective prestress force of fpe = 0.57fpu 

= 141.3 ksi = 974 MPa. The residual stress in a single corner strand on the test girder was 

experimentally established to be 0.44fpu = 110.5 ksi = 762 MPa by Naito et al. (2006). In the 

present study the residual stress in an interior bottom layer strand (strand H, see below) was 

similarly found to be 0.47fpu = 118.3 ksi = 816 MPa (see Table 2-2).  

 It is noted that experimentally obtained prestress values necessarily include both the 

effects of prestress (fpe) and the effects of applied load. The latter can be assessed based on a 

sections analysis and is subtracted from the experimentally obtained force in the strand to assess 
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the effective prestress. In this study, the only load carried by the girder is its own self weight, 

determined to be 909 plf (1355 kg/m). The girder is supported as shown in Figure 2-6a and the 

location at which strand force is determined is located only 13.6 ft (4.1 m) from the nearest 

support. Based on these conditions, the stress in a single lower-layer strand that is attributed to 

applied load (i.e.: self weight) is only 0.5 ksi (3.4 MPa). 

The relatively low apparent values of effective prestress force were confirmed in two 

other girders from the Lake View Drive Bridge which had effective prestress forces of 101 and 

96 ksi (696 and 662 MPa) (Naito et al. 2006). Additional confirmation of these values was made 

by direct measurements of girder camber which were all smaller than long-term calculations 

(PCI 1999) and fabricator drawings (Spancrete 1960) indicated (Harries 2006). No design-related 

reason is offered for these low values, although it is noted that both strand and concrete materials 

were in generally excellent shape (apart from isolated damage). Therefore the authors suggest 

that the initial prestress, fpi may have been lower than indicated on the design drawings. 

2.3.2 Test Procedure and Protocol 

The basic premise of the test procedure was to intentionally sever prestressing strand while 

measuring the strain in the same strand at some distance from the cut. The drop in strain at a 

distance from the cut is an indication of the transfer of prestress between this location and that of 

the cut, at which the stress is now zero. In this manner the transfer length may be experimentally 

determined. 

 To access the strands for instrumentation, a shallow notch was cut transversely across the 

girder soffit, removing the concrete cover and exposing the surface of the lower layer of 

prestressing strand (Figure 2-6e). Considerable care was taken to avoid damage to the strands 
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and to maintain as much concrete around the strands as possible. Very small electrical resistance 

strain gages (micro-measurements type EA-06-062AQ-350/P) having a grid width of 0.062 in. 

(1.57 mm) and grid length of 0.114 in. (2.90 mm) were applied to a single wire of the partially 

exposed strand. To facilitate accurate alignment, the strain gage matrix was trimmed to be just 

greater than the grid width. The gages were applied within the notch as close as possible to the 

edge from which the cut distance was to be measured (distance ‘x’ shown in Figure 2-6d and 

given in Table 2-2). 

 Eight strands were instrumented; these were labeled A-H as indicated in Figure 2-6. 

Individual strands were cut at a distance ℓcut from the edge of notch. The order in which the 

strands were cut and the respective cut distances, ℓcut, are given in Table 2-2. In some cases, 

where ℓcut was sufficiently long to have little observed effect on the strain at the gage location, 

the strand was cut a second time at a shorter distance ℓcut (cut number 5, for instance). Strands 

were cut using an abrasive cut-off wheel on an 8000 rpm grinder. Each cut was accomplished in 

about 15 seconds. This cut speed is slightly slower than might be expected for a flame cut strand. 

Strain readings of all gages were taken before and after each cut. Approximately ten minutes 

elapsed between subsequent cuts, permitting sufficient time for any redistribution to take place. 

No data is reported for gage G, since this gage was damaged while making cut #1. 

2.4 EXPERIMENTAL RESULTS 

All results are presented in terms of stress change. Since a strand is in tension before it is cut, the 

result of the cut is a negative stress change. All stress change data is calculated from strain gage 

data assuming E = 29000 ksi (200 GPa). All normalized stress values reported have been 
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normalized based on fpu = 250 ksi (1720 MPa). Figure 2-8 shows a stress history of all gages 

reported in this study. In each case, the significant stress drop represents that associated with 

cutting the strand noted. The stress change due to cutting each strand is also given in Table 2-2. 

 Strain data was collected for all available strands before and after each cut was made. The 

data was then corrected based on the initial pretest value of the strain gage. This correction 

accounts for the change in stress, resulting from the cut, in strands adjacent to the cut strand (i.e.: 

the loss of reinforcement). The corrected strain data is provided in Table 2-3. Table 2-4 provides 

the corresponding prestressing force change calculated from the strain data assuming E = 29000 

ksi and a strand cross-section area of 0.085in2.  

 As previously described, the strain gages were applied to a single helical wire of the 7-

wire strand. Machida and Durelli (1973) provide a correction factor to convert strain measured in 

a helical wire to longitudinal strain in the strand (as represented by the strain in the center wire), 

based on the deviation angle of a helical wire. The deviation angle (or the lay angle) of a wire, β, 

is the angle between the axial direction of the helical wire and the longitudinal direction of the 

center wire and thus the strand (see Figure 2-9). For seven wire strand the deviation angle, β, is 

approximately 10o. Reworking equations proposed by Machida and Durelli (1973), the 

relationship between helical strand strain, εh, to that in the center strand strain, εc, is:  

 
)(cos2

h
c β

ε
=ε         (Eq. 2-3) 

Using a value of β = 10o for the deviation angle, the strain in the center wire is found to be 3.1% 

greater than that measured in the helical wire. This correction more accurately quantifies the 

prestressing force, N, in the strand when only helical strain data is available. Calculation of 

strand prestressing force can therefore be calculated as:  
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 )cos(EA6EAN hswcsw βε+ε=     (Eq. 2-4) 

where: Aw is the area of a single strand wire; and Es is the elastic modulus of the steel. 

The resulting error in calculated prestress force when strain is measured from a helical wire and 

β = 10o is less than 1% - in this case the actual prestress force is 0.8% less than that calculated 

based on the helical wire strain. This effect is negligible for the strand considered and this 

correction has not been applied to the data shown in Table 2-4. 

 Stress in uncut strands increase marginally (increased tension) since the act of cutting an 

adjacent strand eliminates a portion of the section reinforcing, redistributing stress to the 

remaining strands. For instance, based on the results of strand cut 1, the stress in the strands due 

to prestress and girder dead load was 118.3 ksi (816 MPa). Strand cuts 11 and 12, also both in 

the notch, yielded larger apparent stresses since these were made to a section having six and 

seven fewer effective strands, respectively. Indeed, the total stress drop of strand E during the 

course of testing was 143.3 ksi (988 MPa) which accounts for the increase in stress associated 

with cutting the adjacent strands.  

 Strands that only lost some of their prestress following cutting show some further 

reduction in stress with subsequent readings. This is attributed to the equilibration of transfer 

forces (as described below) rather than any affect from subsequent strand cuts. Where a partial 

stress drop was observed, it was not instantaneous. Upon cutting the strand at some distance ℓcut, 

a change in stress at the strain gage is affected. With time, the stress continues to fall as the 

remaining prestress forces transfer to the member and equilibrate. This behavior is believed to 

result from the progressive redistribution of bond stress along the strand in the vicinity of the cut. 

Figure 2-10 shows the continued stress drop in strand A following the initial drop associated 

with cutting this strand (103.6 ksi = 714 MPa). It takes about ten minutes for the stress in the 
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strand to re-equilibrate at a level almost 27 ksi (186 MPa) below the prestress remaining 

immediately following the cut; the final stress drop due to cutting strand A (cut #8) was 130.6 ksi 

(900 MPa) as indicated in Table 2-2. 

2.4.1 Apparent Transfer Length 

Figure 2-11 shows the stress change resulting from increasing cut distances. There was no 

observed stress change associated with any cuts made beyond ℓcut = 35db = 13.1 in. = 333 mm. 

The results appear to validate the ACI transfer length equation (Eq. 2-1) which is equal to 39db in 

this case.  

 The effective prestress in the strands found in this study is lower than would otherwise be 

predicted: 118 ksi (816 MPa) versus a predicted value of 141 ksi (974 MPa) based on PCI 

calculations (see Section 2.3.1). Additionally, the cuts in this study were discrete and did not 

disturb surrounding concrete to a great degree. Considering the less discrete nature of real strand 

damage, one might expect a longer apparent transfer length in situ. Thus, the authors contend 

that the use of the AASHTO-prescribed value of ℓtr = 60db is appropriate to conservatively 

establish the transfer length required to reestablish prestress force at a distance beyond the extent 

of damaged concrete.  

 In this study, it has been shown that the transfer length calculation used for design 

remains valid for ‘redevelopment’ of effective prestress in severed strand. The development 

length of the severed strand (Equation 2-2) has not been validated but the validation of the 

transfer length suggests no changes in strand bond behavior and therefore no effect on 

development length is anticipated.  
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2.5 DISCUSSION AND CONCLUSIONS 

The findings of this study demonstrate that severing prestressing strand is a ‘local effect’. That 

is, the effects of the lost strand affect the section at the damage location. To either side of the 

damaged concrete region, the effective prestress in the strand is ‘redeveloped’ over the transfer 

length, ℓtr. This approach implies the need to consider not only the critical section of a girder but 

all sections along its length when rating the girder or designing repair measures for a damaged 

girder (Harries et al. 2009 and also discussed in Section 5.2). The localized nature of 

severed/exposed prestressing strands being ineffective at the damage location (and the 

transfer/development length away from the damage) is also supported in the failure investigation 

case study discussed in Chapter 4.  

 Although not directly studied in this investigation, effects due to concrete material 

properties, concrete cover and strand end slip on transfer length of a ‘redeveloped’ severed 

strand can be significant and must be considered. While this study is not (and was never intended 

to be) a parametric study to quantify any of the effects listed here, their influence on the transfer 

length of a ‘redeveloped’ severed strand in the experimental investigation performed are 

inherently included. Therefore, the conclusion that the transfer length, as prescribed by 

AASHTO, is sufficient to account for strand redevelopment based on the present study includes 

effects due to concrete material properties, concrete cover and strand end slip. The findings and 

conclusions discussed here remain valid in light of the inclusion of these effects. Lastly, the test 

results are based on a member taken out of service and thus are representative of realistic 

conditions expected in the field.  

 This particular study also identified lower-than-expected values of prestress force in the 

sound strands. While not affecting ultimate capacity, this would be expected to affect 
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serviceability of these girders. Beyond destructive tests similar to those conducted here, there is 

no practical method for assessing prestressing force in situ. 

 Finally, it is acknowledged that this work presents experimental data from a single 

decommissioned girder. The work has demonstrated that ‘redevelopment’ of severed strands 

which should occur, does, in fact, occur in a manner that is essentially intuitive. Nonetheless, 

opportunities to verify these results are relatively rare and should be capitalized upon when they 

become available.  
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Table 2-1 Strand Tensile Test Data. 

Wire Wire location Wire 
Diameter (in.) 

Measured 
Ultimate Stress 

(ksi) 
A1 helical 0.1200 261.7 
A2 helical 0.1240 256.0 
A3 helical 0.1210 266.0 
B4 helical 0.1225 260.2 
B5 helical 0.1215 266.4 
B6 helical 0.1205 267.1 

A-center center 0.1270 266.0 
CH3A-C-11 not reported 0.117 269.7 
CH3A-C-21 not reported 0.118 299.7 

CH3A-C-31 not reported 0.118 288.3 
1 values from Naito et al. 2006 
1 in. = 25.4 mm; 1 ksi = 6.895 MPa 

 

 

Table 2-2 Strand cutting order, location and resulting stress change. 

Cut Number 
(see Tables 
2-3 and 2-4) 

Strand x (in.) ℓcut  (in.) 
stress change at 

strain gage due to 
cut (ksi) 

1 H 0.7 0 (cut in slot) -118.3 
2 F 0.6 59.5db = 22.3 none 
3 E 0.5  52.0db = 19.5 -0.3 
4 D 0.6 34.7db = 13.0 -0.3 
5 F1 0.6 16.3db = 6.1 -27.0 
6 C 0.6 13.3db = 5.0 -73.1 
7 B 0.9 11.5db = 4.3 -112.4 
8 A 0.8 4.3db = 1.6 -130.6 
9 E1 0.5 26.9db = 10.1 -25.6 
10 D1 0.6 20.8db = 7.8 -4.5 
11 D1 0.6 0 (cut in slot) -125.0 
12 E1 0.5 0 (cut in slot) -117.4 

1 strand recut after initial cut had little effect. 
1 in. = 25.4 mm; 1 ksi = 6.895 MPa 
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Table 2-3 Strain readings from testing procedure. 

     Strain reading, με 

 time Event 
# 

cut 
location 

(in.) 
cut 

strand A B C D E F G H 

before cut 1 10:30 1 0 H 0 0 0 0 0 0 0 0 
4 wires cut 1 10:46 1 0 H 5 5 7 12 18 30 

GAGE 
FAILED 

-2110 
after cut 1 10:53 1 0 H 7 8 10 16 23 37 -3380 

before cut 2 11:23 2 22.25 F 6 9 12 17 24 38 - 
after cut 2 11:39 2 22.25 F 6 9 11 16 21 35 - 

before cut 3 12:20 3 19.5 E 7 11 13 19 24 39 - 
after cut 3 12:25 3 19.5 E 7 9 10 12 14 30 - 

before cut 4 12:39 4 13 D 6 9 10 12 14 31 - 
after cut 4 12:43 4 13 D 5 5 2 1 4 25 - 

before cut 5 13:03 5 6.125 F 4 6 2 2 13 51 - 
after cut 5 13:07 5 6.125 F 7 10 6 5 4 -513 - 

before cut 6 13:26 6 5 C 5 13 10 6 8 -733 - 
after cut 6 13:28 6 5 C 18 19 -1873 17 19 -732 - 

before cut 7 13:47 7 4.25 B 18 23 -2110 22 24 -776 - 
after cut 7 13:48 7 4.25 B 36 -2364 -2104 36 36 -772 - 

before cut 8 13:56 8 1.625 A 67 -3236 -2085 42 40 -790 - 
after cut 8 14:01 8 1.625 A -3970 -3210 -2055 63 55 -801 - 

before cut 9 14:16 9 10.125 E -3855 -3234 -2119 61 32 -845 - 
after cut 9 14:19 9 10.125 E -3852 -3232 -2118 62 -588 -851 - 

before cut 10 14:25 10 7.75 D -3887 -3252 -2138 36 -711 -870 - 
after cut 10 14:27 10 7.75 D -3886 -3253 -2139 -67 -713 -873 - 

before cut 11 14:37 11 0 D - - - -94 -714 - - 
after cut 11 14:39 11 0 D - - - -3722 -691 - - 

before cut 12 14:40 12 0 E - - - -3717 -693 - - 
after cut 12 14:00 12 0 E - - - -3720 -4099 - - 
1 in. = 25.4 mm 
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Table 2-4 Change of prestress force based on strain from testing procedure. 

     Change in Prestress Force, kips 

 time Event 
# 

cut 
location 

(in.) 
cut 

strand A B C D E F G H 

before cut 1 10:30 1 0 H 0.00 0 0 0.00 0.00 0.00 0 0 
4 wires cut 1 10:46 1 0 H 0.01 0.01 0.02 0.04 0.05 0.09 

GAGE 
FAILED 

-6.18 
after cut 1 10:53 1 0 H 0.02 0.02 0.03 0.05 0.07 0.11 -9.91 

before cut 2 11:23 2 22.25 F 0.02 0.03 0.04 0.05 0.07 0.11 - 
after cut 2 11:39 2 22.25 F 0.02 0.03 0.03 0.05 0.06 0.10 - 

before cut 3 12:20 3 19.5 E 0.02 0.03 0.04 0.06 0.07 0.11 - 
after cut 3 12:25 3 19.5 E 0.02 0.03 0.03 0.04 0.04 0.09 - 

before cut 4 12:39 4 13 D 0.02 0.03 0.03 0.04 0.04 0.09 - 
after cut 4 12:43 4 13 D 0.01 0.01 0.01 0.00 0.01 0.07 - 

before cut 5 13:03 5 6.125 F 0.01 0.02 0.01 0.01 0.04 0.15 - 
after cut 5 13:07 5 6.125 F 0.02 0.03 0.02 0.01 0.01 -1.50 - 

before cut 6 13:26 6 5 C 0.01 0.04 0.03 0.02 0.02 -2.15 - 
after cut 6 13:28 6 5 C 0.05 0.06 -5.49 0.05 0.06 -2.15 - 

before cut 7 13:47 7 4.25 B 0.05 0.07 -6.18 0.06 0.07 -2.27 - 
after cut 7 13:48 7 4.25 B 0.11 -6.93 -6.17 0.11 0.11 -2.26 - 

before cut 8 13:56 8 1.625 A 0.20 -9.48 -6.11 0.12 0.12 -2.32 - 
after cut 8 14:01 8 1.625 A -11.64 -9.41 -6.02 0.18 0.16 -2.35 - 

before cut 9 14:16 9 10.125 E -11.30 -9.48 -6.21 0.18 0.09 -2.48 - 
after cut 9 14:19 9 10.125 E -11.29 -9.47 -6.21 0.18 -1.72 -2.49 - 

before cut 10 14:25 10 7.75 D -11.39 -9.53 -6.27 0.11 -2.08 -2.55 - 
after cut 10 14:27 10 7.75 D -11.39 -9.53 -6.27 -0.20 -2.09 -2.56 - 

before cut 11 14:37 11 0 D  - - -0.28 -2.09 - - 
after cut 11 14:39 11 0 D - - - -10.91 -2.03 - - 

before cut 12 14:40 12 0 E - - - -10.89 -2.03 - - 
after cut 12 14:00 12 0 E - - - -10.90 -12.01 - - 

 1 in. = 25.4 mm; 1 kip = 4.448 kN 
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a) Progression of strand corrosion as strand is 
depassivated due to loss of concrete cover. Cracking at 
left of image is associated with load test (Harries 2009). 

b) Corrosion of lower layer of strands in box girder 
while second layer remains bright.  Strand ruptures near 
center of image associated with load test (Harries 2009). 

  
c) Typical damage to strand resulting from recent 
vehicle impact. 

d) Typical corrosion of strands resulting in significant 
loss of section at soffit of box girder. 

 

Figure 2-1 In situ corrosion of prestressing strand. 

 

 

Figure 2-2 Radial Forces developed by the wire as described by the Hoyer Effect (Gilbert and Mickleborough 

1990). 
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Figure 2-3: Idealized transfer and development lengths. 

 

Figure 2-4 Transfer length of a 0.6 in. diameter strand in a 10 ft member illustrating different transfer lengths based 
on method of prestress force release (Kaar et al. 1963). 
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Figure 2-5 Capacity of uniformly loaded simple span girder accounting for damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0 0.1 0.2 0.3 0.4 0.5 0.6

no
rm

al
iz

ed
 lo

ad
ca

rr
yi

ng
 c

ap
ac

ity

location of damage along span (proportion of span length, L)

reduction in 
moment

0.90M

0.85M

0.80M

0.75M

capacity
0.95M



33 

 

a) test girder with support conditions (1 ft = 305 mm). 

 
 

b) girder cross section (1 in. = 25.4 mm). c) strand/gage nomenclature. 

 

 

d) strands with cut location. e) notch orientation. 
 

Figure 2-6 Test and girder details. 
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Figure 2-7 Stress-strain curve obtained from center wire of strand from test girder. 

 

 

 

Figure 2-8 Stress change-cut number history for all gages. 
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Figure 2-9 Geometry of a seven-wire strand (Machida and Durelli 1973). 

 

 

 

Figure 2-10 Stress change-time history for strand A following cut #8. 

 

-30

-25

-20

-15

-10

-5

0

0 5 10 15 20 25

st
es

s c
ha

ng
e (

ks
i)

time following cut (minutes)

strand A cut (cut #8) at distance 
of 1.6 in. = 4.3db at time zero



36 

 

 

 

 

 

Figure 2-11 Stress drop versus cut distance. 
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3.0  ECCENTRICALLY LOADED GIRDER ANALYSIS 

Prestressed Concrete (PC) adjacent box girder (AB) bridges are exhibiting signs of deterioration 

and distress as these structures ‘come of age’. In Pennsylvania, there is an inventory of 1997 AB 

bridges; these average over 40 years old. Of these, 355 (18%) are structurally deficient based on 

their superstructure rating (PennDOT 2007). While prestressed concrete bridges generally 

perform well (in Pennsylvania, only 7.8% of prestressed bridge superstructures are rated as 

deficient as opposed to an inventory-wide value of 13.7%), AB bridges are the exception, 

representing a disproportionate number of ‘problem’ bridges and therefore requiring a 

disproportionate allocation of maintenance resources.  

 There are a number of documented cases (e.g.: Harries 2009) of exterior AB girders 

‘rolling’ away from the bridge. Exterior AB girders a) often have a composite barrier wall 

resulting in an asymmetric section and load (torsional) condition; and b) have more strand loss 

(due to vehicle impact) on their lower exterior corner. These effects individually (and therefore 

more so in combination) have the effect of rotating the principal axes of the section as shown in 

Figure 3-1(b). Additionally, the flexural loading of the AB girder resulted in a biaxial response 

due to the rotation of the principal axes, which has been observed during testing (Harries 2006 

and discussed in Chapter 4). Conventional engineering practices may utilize the composite action 

of the barrier wall in member assessment, when appropriate, through a uniaxial section analysis 

(about the horizontal axis), resulting in an increase in the apparent strength of the member. 
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However, properly accounting for the asymmetrical (biaxial) behavior of the composite member 

will provide a moment capacity of the girder about the geometric horizontal axis (Mxθ) which 

will be reduced beyond that which is predicted using a typical uniaxial section analysis (Mx). In 

AB bridges, this effect is most pronounced in exterior girders since interior girders are restrained 

from rotation by the adjacent girders (Harries 2006).  

 Harries (2006 and 2009) demonstrated the described behavior experimentally on a 40 

year old decommissioned AB girder recovered from the Lake View Drive bridge (Figure 3.2a). 

In this study, a 90 foot (27.5 m) long exterior AB girder having a composite barrier wall was 

subjected to a monotonically increasing vertical load over a test span of 84.2 ft (25.7 m). The 

girder had some relatively minor vehicle impact damage on its exterior face, although this was 

not in the midspan region. The load was controlled such that it was applied symmetrically to the 

48 in. (1220 mm) wide by 42 in. (1067 mm) deep section – half to each web. The highly 

asymmetric section subject to a symmetric load (Figure 3.3a) exhibited significant out of plane 

deformation (Figure 3.3c) accompanying and coupled to the in-plane flexural deformation 

(Figure 3.3b). As testing progressed, the out-of-plane flexural deformation was approximately 

35% of the in-plane flexural deformation as shown in Figure 3.3d. As a result, observed failure 

included significant crushing of both the barrier wall and AB girder immediately beneath this but 

not on the girder top surface across from the barrier wall (interior corner). Additionally, 

monitoring of strand ruptures clearly indicated an asymmetric ultimate behavior (Harries 2006). 

Based on the preceding, the primary objective of this study is to develop an approach for 

accurately assessing of the capacity of a PC box girder having some level of discernable damage 

while accounting for effects of the barrier wall and permitting rotation; that is the capacity of a 
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damaged exterior AB girder. Examples of such damaged girders are shown in Figure 3.2; this 

figure also shows the range of impact damage that is seen.  

3.1 SECTION ANALYSIS 

Traditionally, the capacity of PC members is most simply arrived at using a uniaxial sectional 

analysis technique resulting in a moment-curvature behavior being defined for the section. This 

analysis is typically carried out considering moment about the horizontal section axis (x-axis in 

Figure 3.1) only. The member analysis is produced by combining multiple such plane analyses 

with a longitudinal (beam) analysis of the girder or bridge. This method will be referred to as 1-

dimensional (1D) throughout this chapter referring to the single flexural axis considered. Such a 

plane sections analysis technique forms the basis for most standard analytical tools. A 

particularly powerful plane sections analysis tool is Program RESPONSE (Bentz 2000) which 

uses the modified compression field theory to accurately capture the complex effects of shear 

loading on a section. The drawback of such a 1D plane sections approach is that it is unable to 

properly model the case of an asymmetric section or a section subjected to asymmetric 

(torsional) loading.  

Asymmetric section properties and/or loading arise in the following scenarios of interest 

in the present context: 

1. Torsional loading due to a heavy parapet wall located eccentrically with respect to the 

girder shear center. This is typically the case for exterior AB girders. 

2. Sectional asymmetry arising out of composite action between barrier walls, sidewalk 

slabs, etc. and the girder box section. 
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3. Sectional asymmetry arising from the asymmetric loss of prestressing strand (or other 

reinforcement). Again, due to the nature of vehicle impact damage, this is often an 

issue for exterior AB girders. 

It is therefore recommended that biaxial section analyses be conducted to account for 

asymmetric section properties and/or loading (referred to hereafter as a 2D sectional analysis). 

For this work, only flexural behavior is discussed since the girders considered are sufficiently 

long to be flexure critical. 

 Any section subject to flexure about a non-principal axis may be conceived of as being 

loaded by the simultaneous application of flexural components about each of the two primary 

axes (referred to here as the horizontal x-axis and the vertical y-axis). The net effect of such 

loading is that flexural deformation has both an x- and y-component; analogous to the 

deformation associated with lateral flexural buckling (often incorrectly referred to as lateral 

torsional buckling). This is the case of a symmetric section being subject to an asymmetric load. 

The same effect results from an asymmetric section being subject to a symmetric load (or most 

asymmetric loads). In concrete design, engineers rarely consider asymmetric sections and in 

bridge design, loads are assumed to be symmetric, oriented about the principle axes of the 

members. Thus 1D sectional analysis techniques are adequate to assess the capacity of such 

members.  

Damage to a section (specifically, asymmetric loss of prestressing strands), or the 

unanticipated composite behavior of appurtenances (specifically, the curb slab and barrier wall) 

results in an asymmetric cross section. In such a case the principal centroidal axes are rotated 

away from the horizontal/vertical alignment (Boresi and Sidebottom 1986). When subject to 

flexure about an axis other than the now-rotated principal axis, there is a coupling of principal 
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axis moments. This effect is most clearly expressed as a coupling of vertical (referred to as x-

axis bending, Mx, here) and horizontal (y-axis bending, My) moments, and results in moment 

capacities lower than those traditionally calculated about the (horizontal and vertical) geometric 

axes of the composite section. As will be shown, this reduction can be significant. The effect on 

moment capacity of neutral axis rotation due to asymmetric damage to the non-composite 

(symmetric) section is minimal for all realistic possible cases (above member self-weight) and 

thus is not considered (Harries 2006). 

While the foregoing discussion of flexure about non-principal axes is strictly only valid 

in the elastic range, this behavior may be leveraged for the related topic of section ultimate 

strength. Within the latter context, it is not the second moment of the areas of the cross-section 

that dictate the nature of the member’s response to moment. Rather, it is the consideration of 

statical equilibrium that governs the section’s response. 

In an effort to identify a method of addressing such asymmetric sections with a tool 

suitable for the design office, while yielding results that remain compatible with present bridge 

rating protocols, a 2D sectional analysis approach is proposed. 

Conceptually, the interaction of principal moments in a section may be presented in a 

moment-moment (Mx-My) interaction plot. Such a plot represents a failure surface whose criteria 

may be defined and revised to suit the capacity level (serviceability, ultimate load, etc.) 

considered. For a symmetric section, the Mx-My surface may be schematically represented as 

shown in Figure 3-1(a). In this case, the maximum flexural capacity is in bending about the x-

axis (Mx) and any off-axis component of bending functionally reduces this capacity as the critical 

stress (whether defined by the steel or concrete) is affected by the My component of loading. The 
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effects of such biaxial bending are considered to be uncoupled in design and are conventionally 

expressed in the form (Park and Paulay 1975): 

0.1
M
M

M
M

ny

y

nx

x ≤+      (Eq. 3-1) 

where Mx and My are the applied principal moments and Mnx and Mny are the nominal moment 

capacities in each principal direction. Park and Paulay note that this linear interaction 

relationship is always conservative and a more elliptical interaction is appropriate particularly for 

lower reinforcement ratios. 

Equilibrium conditions dictate that the tension and compression resultant forces resisting 

flexure in a section must be co-planar with the applied loading. Enforcing this equilibrium 

condition in an asymmetric section (Figure 3-1(b)) loaded about the horizontal x-axis requires an 

off-axis component of flexure be developed about the vertical y-axis. The section is therefore 

bending about its rotated principal axis. Figure 3-1(b) illustrates (again, schematically) the effect 

that the rotated principal axis has on the Mx-My interaction surface. It can be seen that when the 

composite section is subject to a moment about only the x-axis (i.e.: My = 0), the apparent 

capacity, Mxθ, is less than that about the (rotated) principle axis, Mx. Such loading is described 

(as above) as flexure about a non-principal axis. The reduced x-axis (geometric axis but no 

longer the principal axis) flexural capacity results from the necessary equilibrium condition 

increasing the stresses in critical element longitudinal fibers. A 1D analysis will not capture this 

axis rotation and moment interaction and, as a result will overestimate the Mx (and My) moment 

capacity. That is a 1D analysis will return a value of Mx where Mxθ is the actual capacity (see 

Figure 3-1(b)). 
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3.1.1 Mx-My Interaction Approach to Determining Section Capacity 

Previously, an uncoupled iterative approach to solving the Mx-My interaction behavior has been 

proposed for use with damaged PC box girders (Miller and Parekh 1994). In this iterative 

approach, for a given value of vertical curvature, the value of the horizontal curvature was varied 

until the calculated external horizontal (lateral) moment was zero (thus satisfying equilibrium 

since there is no externally applied horizontal moment). This iterative approach, although 

cumbersome, has predictive powers that couple the vertical and horizontal bending.  

In the present work an interaction approach is adopted using a commercially available 

sectional analysis software package: XTRACT (Chadwell and Imbsen 2004). XTRACT has a 

tool referred to as an ‘orbit analysis’ which calculates the Mx-My failure envelope by rotating the 

assumed orientation of the principal axis of bending through 360o around the section. By 

applying user-defined failure criteria an Mx-My failure envelope is generated based on these 

selected criteria. The user then enters the envelope at the desired Mx-My pair and determines the 

section capacity. For vertical (gravity) loading on a bridge, My = 0 and the Mx capacity is 

assessed at this condition. In essence this is a ‘trial and error’ approach where the orientation of 

the principal axis is varied until the external equilibrium (i.e.: My = 0, in this case) is satisfied. 

3.1.2 Program XTRACT 

XTRACT is the commercial version of the University of California at Berkeley program 

UCFyber (Chadwell and Imbsen 2004). XTRACT is a biaxial nonlinear fiber element sectional 

analysis program. Since it is biaxial (2D in the parlance of this Chapter), it permits the input of 

any section shape. While XTRACT can only perform moment-curvature (M-φ) and axial load-
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moment interaction (P-M) analyses about the traditional horizontal (x) and vertical (y) axes, the 

‘orbit analysis’ tool permits an Mx-My failure surface to be generated based on user-specified 

failure criteria. The failure criteria associated with each material (concrete, reinforcing steel, 

prestressing steel, embedded steel section, etc.) is selected by the user (or defaults based on 

material properties may be selected) and the analysis proceeds considering each material. Thus, 

for instance, a complete Mx-My interaction relationship may be governed by yielding of 

prestressing strand in one region and crushing of concrete in another.  

XTRACT provides both customizable analysis reports and an interactive mode to view 

results. A strong graphical interface allows the user to see the outcome of their analyses. Finally, 

all data is easily exported in text format for further processing. XTRACT is not able to run ‘batch 

jobs’ and thus multiple ‘what if’ scenarios (as done for this study) require individual runs and 

data processing. The ease of use (particularly in editing models) of XTRACT however makes up 

for the necessity of this ‘brute force’ approach for multiple analyses. 

3.2 2D SECTIONAL ANALYSIS USING XTRACT 

3.2.1 Girder Selection 

A review of all PC box girder bridge structures in PennDOT Districts 11 and 12 (essentially 

Southwestern Pennsylvania) was performed and is summarized in Table 3-1. The intent of this 

exercise was to establish a snapshot of the condition of the PC AB bridge inventory in 

Pennsylvania. Districts 11 and 12 are representative of the state inventory as evidenced by the 
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ratio of ‘all prestressed structures’ to ‘all bridges’ for the state (23.3%) as compared to that of 

District 11 and 12 combined (22.6%), as shown in Table 3-1.  

 In performing this review, in-service and commonly used box girder sizes were identified 

and thus informed the member selection for the current study. All selected bridges were AB 

structures, including both composite and noncomposite (in the sense that the member is 

composite with the slab, not the curb slab/barrier wall) structures. Eight representative exterior 

girders were selected for analysis are hereafter referred to as Beams A through H. Beams A 

through D are 48 in. (1219 mm) wide boxes having depths of 21 in., 27 in., 33 in. and 42 in. (533 

mm, 686 mm, 838 mm and 1067 mm), respectively.  Similarly, Beams E through H are 36 in. 

(914 mm) wide boxes having the same standard depths. Dimensions and section properties of the 

prototype beams are provided in Table 3-2. 

Dimensions of the barrier wall are based on a review of common barrier wall sizes 

typical of late 1960’s and early 1970’s construction. Harries (2006) notes that the entire curb 

slab/barrier wall assembly is effectively composite with the girder. Construction drawings often 

indicate construction joints along the curb slab/barrier wall assembly. Inspection, however, has 

shown that these are rarely, if ever, provided in the curb slab and are not always present in the 

projecting wall. Tests on an exterior girder (Harries 2006 and described above and Chapter 4) 

clearly indicated that composite behavior was achieved (indeed, this provided the motivation for 

this study). The typical sizes for barrier walls modeled in this study are given in Table 3-2; it is 

noted that these vary slightly for the 48 and 36 in. (1219 and 914 mm) wide beams. 
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3.2.2 Section Geometry 

The cross sections shown in Table 3-2 were analyzed in this study. Since the strength reduction 

for interior girders or girders without a barrier wall is not significant (Harries 2006), only 

exterior girders with composite barrier walls were modeled in this study. The approach used, 

however, is valid for any section geometry. 

The section geometry is ‘drawn’ and an automated discretization procedure in XTRACT 

divides this into triangulated fiber elements (see Figure 3-4). The concrete fiber element size for 

all models was 1 in. (25.4 mm), which is felt to be adequate given the complexity and size of the 

section. Mild steel and prestressing strand are modeled as individual fiber elements and are 

located exactly as they occur in the section. 

The following simplifications were made in the modeling process. 

1. The shear key located on the interior web of girder was not modeled. 

2. No asphalt topping was included (this is non-structural in any case). 

3. The barrier wall and girder concrete materials were assumed to have the same 

properties. 

4. Nominal material properties are used (no reduction factors are applied). 

 Only assumption #3 is likely to affect the accuracy of the predictive capacity of the 

model, although since the objective is a parametric study, this is not considered a concern. 

3.2.3 Concrete Material Model 

A fully nonlinear concrete material model is applied to all concrete fiber elements. The model 

includes the tensile capacity of concrete although tension-stiffening was not considered. Figure 
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3-5(a) provides the stress-strain curve used for the concrete material. Specific concrete material 

properties used are as follows: 

 compressive strength:   fc’ = 6000 psi = 41.4 MPa 

 modulus of elasticity:    Ec = 4700 ksi = 32.4 GPa 

 tensile strength:    ft = 479 psi = 3.3 MPa 

 compressive strain at fc’:   εc’ = 0.0028 

 crushing strain:    εcu = 0.0060 

 strain at spalling:    εsp = 0.0070 

 maximum compressive strain:  εcmax = 0.0080 

 residual compressive strength:  fcp = 0 psi = 0 MPa 

3.2.4 Prestressing Strand 

A nonlinear prestressing strand material was applied to all strand elements (Figure 3-5(b)). 

Regardless of diameter, each strand was assumed to be originally stressed to 0.7fpu (175 ksi = 

1207 MPa) and to retain 0.55fpu after all losses, resulting in a prestress of 137.5 ksi (948 MPa). 

The prestress loss value was determined using loss calculations from Harries (2006) since the 

members investigated in this study are assumed to be of similar quality and age (constructed in 

the 1960’s). Additionally, girders of this vintage utilized Grade 250 strand, hence its use in the 

members modeled in this study. Prestressing strand material properties are as follows:  

yield stress:     fpy = 230 ksi = 1586 MPa 

ultimate stress:    fpu = 250 ksi = 1724 MPa 

ultimate strain:    εpu = 0.0430 

modulus of elasticity:    Ep = 29000 ksi = 200 GPa 
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3.2.5 Mild Reinforcing Steel 

All longitudinal mild steel was modeled as A615 Grade 40 steel. The multilinear material model 

is shown in Figure 3-5(c) and material properties are as follows:  

 yield stress:     fy = 40 ksi = 276 MPa 

 tensile stress:     fu = 70 ksi = 483 MPa 

 rupture strain:     εsu = 0.1200  

 strain hardening strain:   εsh = 0.0150  

 modulus of elasticity:    Es = 29000 ksi = 200 GPa 

3.2.6 Removal of Strands 

In addition to the presence of the barrier wall, the primary parameter of interest in this study is 

the eccentricity due to loss of prestressing strands. The following suppositions are made: 

1. Strand loss is most likely at the outboard web-soffit corner of exterior girders due to 

mechanical damage caused by vehicle impacts followed by corrosion of the now-

exposed strands. This is evident in test girders (Harries 2009) and is regularly seen in 

practice (Kasan 2009).  

2. For exterior girders, due to the biaxial bending component resulting from the neutral 

axis orientation (see Figure 3-1(b)), the same outboard web-soffit corner is the critical 

region for tensile stresses in the section. 

Thus it is physically appropriate and most critical to the section behavior to remove strands 

beginning at the outboard web-soffit corner (i.e.: those under the barrier wall on an exterior 

girder) and progress toward the inboard direction. In the analyses to follow, strands were 
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removed from (at most) the lower three layers only. The three digit identification of each 

analysis indicates the number of strands removed from the lower, second and third layers, 

respectively. For example, damage of 8-8-1 for Beam D indicates 8 strands removed from the 

lower layer, 8 from the second and 1 from the third, for a total of 17 strands removed from the 

section (Figure 3-6). In all cases the strands were removed from the outboard side and progressed 

inward. Even if vehicle impact is not the source of damage, removing strands in this manner 

represents a worst-case scenario since it results in the greatest girder cross section eccentricity 

girder as described previously. 

Each beam was subjected to multiple levels of damage in order to capture the member 

behavior through a range of damage levels. It is important to note that in no case did the level of 

damage considered exceed that which would result in failure due to dead load of the member 

(i.e.: all damaged girders were still able to support their own weight). Tables 3-3 to 3-10 provide 

the induced damage for each beam as well as model predictions (as will be discussed later). 

3.2.7 Criteria for Establishing Moment-Moment Failure Envelope 

As described above, specific material failure criteria must be provided to establish the moment-

moment (Mx - My) failure envelope. These criteria represent input parameters in the XTRACT 

model and are selected by the user. (Alternately, default values corresponding to a 

“serviceability” and “ultimate” load condition are automatically generated based on the material 

models used.) The selection of the material failure criteria results in a single envelope being 

generated based on the selected criteria which are related (by the user) to some load condition (in 

essence these criteria are ‘allowable strains’ or ‘performance criteria’ which no fiber in the 

section may exceed). In the present analysis, the ultimate capacity of the under reinforced (i.e.: 
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section response controlled by steel) PC box girder is desired, thus criteria related to the ultimate 

capacity were selected as follows: 

 concrete strain to cause failure:  εc = 0.003 

 prestressing strand strain at failure:  εp = 0.010 

 mild steel strain at failure:   εs = 0.035 

 The concrete and prestressing strand values were selected to represent the initiation of 

concrete crushing (εc = 0.003) and a strand strain (εp = 0.010) sufficient to develop the yield 

capacity of the strand (230 ksi) but not approach strand rupture (εpu = 0.043). The mild steel 

strain was selected to be very high (εs = 0.035) so as not to affect the outcome of the analysis. In 

the sections considered, the mild steel does not play a significant role in the behavior and its 

failure (if the concrete and strand were still adequate) would not be catastrophic. If the mild steel 

were critical to the ultimate behavior, an allowable strain on the order of εs = 0.006 would be 

appropriate to ensure yielding but no strain hardening behavior. The criteria selected were 

generally observed to maximize girder capacity and thus are appropriate in assessing the ultimate 

load carrying capacity of the sections as described in the following section. The reader is 

cautioned that ‘failure’ in this sense is used to define the Mx-My envelope and should not be 

interpreted as implying catastrophic failure; indeed reserve deformation capacity would be 

expected beyond the envelope strains defined. 

3.2.7.1 Sensitivity of predicted behavior to failure criteria 

To reiterate, the ultimate moment capacity is determined based on user-defined limiting strain 

criteria, thus the ultimate moment capacity and the neutral axis rotation angle reported are only 

valid for the defined failure criteria. Selection of different failure criteria will yield different 

results. To illustrate this concept as well as verify the appropriateness of the selected failure 
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criteria (particularly, εp = 0.010), Beam D 6-4-0 was analyzed using strand strain failure criteria 

ranging from slightly greater than the long-term prestressing force (εp = 0.0053) to the onset of 

concrete crushing (which occurred at εp > 0.015). At values below εp = 0.0047, the strand would 

be unable to support the assumed level of prestress after losses of 0.55fpu (see Section 3.2.4). The 

girders are under reinforced; in this case steel strand strains exceeding εp = 0.015 are required to 

be achieved before concrete failure (assumed to occur at εc = 0.003) will occur. Therefore strand 

failure strains greater than εp = 0.015 will result in no further increase in section capacity.  

 Figure 3-7 shows the predicted values of moment capacity and principal axis rotation as 

εp is varied. It can be seen in this figure that the ultimate capacity and the axis rotation converge 

to singular values as limiting strand strain increases. The selection of εp = 0.010 for all analyses 

is sufficient to capture the near-ultimate behavior of the sections while still respecting the under-

reinforced nature of the beams (i.e.: avoiding concrete failure) and allowing for some reserve 

capacity. 

3.3 SECTION ANALYSIS RESULTS 

Tables 3-3 to 3-10 summarize both the 1D and 2D the moment capacities and neutral axis 

rotations determined using the criteria described in Section 3.2.7. 106 analyses are reported. The 

data provided in each table is defined as follows: 

 MxN = the vertical moment capacity (i.e.: flexure about the horizontal axis) of the section 

(with appropriate damage) calculated assuming the neutral axis is horizontal (i.e.: θ = 0o). This 

capacity is equivalent to that determined from a traditional uniaxial (1-D) sectional analysis.  
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 θ = the orientation of the neutral axis measured as a clockwise rotation from the 

horizontal (x-axis; Figure 3-1(b)) corresponding to the required external equilibrium condition; 

that is, satisfying My = 0.  

 Mxθ = the vertical moment capacity of the section having a neutral axis rotation of θ 

associated with the applied load case My = 0.  

 MxN0 is the special case of the vertical moment capacity of the undamaged section 

calculated assuming the neutral axis is horizontal (i.e.: θ = 0o). In this study, MxN0 = MxN for 

damage case 0-0 or 0-0-0. This value is surrogate for the original design capacity of the girder. 

Convergence tolerance, limits on the number of iterations (80) and the resolution of both 

the fiber model geometry (1 in. = 25.4 mm) and the neutral axis angle (1o) combine to result in a 

precision (in determining moments) that is on the order of ±20 kip-ft (±27 kN-m) for the models 

considered. In all cases, the value of θ is determined as the point on the interaction surface 

having My algebraically closest to zero at the ultimate capacity. Mxθ is then determined for this 

point (essentially truncating the selection of θ to the nearest whole degree). Linear interpolation 

between values of θ would be valid although it will not improve the precision and was not 

carried out. An example of a portion of the XTRACT output data for Beam D 8-8-1 illustrating 

this procedure is shown and annotated in Table 3-11. 
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3.4 INTERPRETATION OF SECTIONAL ANALYSIS PARAMETRIC STUDY 

3.4.1 Capacity Determined from Uniaxial (1D) Sectional Analysis 

A uniaxial (1D) sectional analysis of a member composite with the barrier wall and curb slab 

will overestimate the vertical flexural capacity of an asymmetric section; this is discussed below. 

The analyses presented nonetheless verify the intuitive conclusion: For an under-reinforced 

concrete section, the capacity of the damaged section, relative to the undamaged section, will be 

proportional to the remaining reinforcement: 

MxN = [(N – n)/N]MxN0       (Eq. 3-2) 

Where n is the number of damaged (removed) strands and N is the original total number 

of strands in the section. The relationship expressed by Equation 3-2 was found to hold for all 

analyses conducted. It is noted that this relationship will only be valid while the section has 

sufficient capacity (i.e.: remaining strands) to carry its own dead load. If the girder capacity falls 

below that corresponding to its own dead load, clearly a catastrophic failure occurs. 

3.4.2 Capacity Determined from Biaxial (2D) Sectional Analysis 

The relationship described by Equation 3-2 only roughly holds true for biaxial (2D) analyses. 

The relationship is only strictly valid when the damaged strands are removed in a symmetric 

manner. If the strand damage is asymmetric (as is the case modeled here), application of 

Equation 3-2 in the context of a biaxial (2D) sectional analysis will overestimate the section 

capacity. This overestimation is proportional to the degree of asymmetry as expressed by the 

rotation of the neutral axis, θ. 
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3.4.3 Relationship between Biaxial (2D) and Uniaxial (1D) Sectional Analyses 

The flexural capacity determined from a uniaxial (1D) analysis (MxN) overestimates the vertical 

flexural capacity of an asymmetric section (Mxθ). This ratio, MxN/Mxθ, is given in each of Tables 

3-3 through 3-10. As one may imagine, the overestimation is related to the degree of asymmetry 

as expressed by the rotation of the neutral axis, θ. The results of the parametric study suggest the 

following factors affect the overestimation of vertical flexural capacity of an asymmetric section 

when predicted using a 1D analysis (MxN). 

3.4.3.1 Degree of damage 

The overestimations of the uniaxial (1D) analysis predictions are more significant at greater 

levels of damage (i.e.: more strands removed) regardless of whether the strands are removed in a 

symmetric manner or not. Thus the rotation of the neutral axis due to asymmetric strand loss 

does not account for the entire overestimation. The following relationship may be established 

based on the parametric study conducted. 

)M()(cosM xNx
α

θ θ=      (Eq. 3-3) 

 Combining the effects expressed by Equations 3-2 and 3-3, one arrives at the relationship 

expressed in Equation 3-4. The advantage of Equation 3-4 is that it is written in terms of the 

original design capacity of the beam, MxN0. 
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 Where Iy = moment of inertia of the gross girder section, including the barrier wall about 

the vertical y-axis and; Ix = moment of inertia of the gross girder section, including the barrier 

wall about the horizontal x-axis. The calculated values of α for each beam are presented in Table 

3-2. The average absolute error, indicated by the ratio of member capacity calculated using 

Equation 3-4, Mxθ, to XTRACT-predicted results (as seen in Tables 3-3 to 3-10), in all cases, is 

less than 6%.  

 If an empirical approach to determining the value of α is taken with the goal of 

minimizing absolute error, α was found to be marginally different for Equations 3-3 and 3-4 and 

slightly different than the relationship expressed in Equation 3-5. This implies that additional 

parameters play a role in the prediction of Mxθ, particularly: a) The ultimate capacity of the 

section is defined based on user-selected failure criteria and thus is dependent on such criteria 

and; b) the section is utilized beyond its elastic range and thus will also be cracked, changing the 

section properties used in Equation 3-5. Therefore, approaches based on elastic mechanics will 

not be sufficient, but can be leveraged.  

 Asymmetric bending results in biaxial moments and the combination of these moments, 

with their directions, form the couple moment vector. The relationship to determine the angle 

which the resultant couple moment vector forms with the horizontal axis for a section under 

asymmetric bending is proportional to the ratio of moment of inertia about the vertical and 

horizontal axes (Beer and Johnston 1985). Since determination of the angle the resultant couple 

moment vector forms with the horizontal axis is similar in nature to the current study (resulting 

from asymmetrical bending), it is reasonable to expect Equation 3-3 and 3-4 to include a similar 

relationship. Therefore, it follows that α to be proportional to the ratio of moments of inertia 

about the vertical and horizontal axes. It is acknowledged that accuracy may be improved if an 
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empirical method were used to determine α. However, due to modeling restrictions and the 

aforementioned factors accounted for by the α parameter, determination of the ultimate capacity 

for an exterior box girder does not require an accuracy greater than that which is provided by 

Equation 3-4 and the α factor obtained from Equation 3-5. Therefore, the level of accuracy 

provided is felt to be sufficient for the determination of the ultimate capacity of an exterior AB 

girder composite with a curb slab and barrier wall.  

 It is apparent that the cosθ term in Equations 3-3 and 3-4 accounts for axis rotation while 

the calibration factor α is a function of the girder vertical and horizontal moment of inertias. 

Capacities predicted using both Equations 3-3 and 3-4 and the ratio of these values with respect 

to the XTRACT predictions are given in Tables 3-3 through 3-10 for Beams A through H, 

respectively.  

 Using the relationships presented by Equation 3-3 and 3-4, normalized moment capacity 

plots were created and are provided in Figures 3-8 to 3-15. In these figures, the values of Mxθ 

determined from Equations 3-3 and 3-4 are normalized by MxN and MxN0, respectively, and are 

thus consistent with the bases for the equations. 

3.4.3.2 Section geometry  

The shallower girders (e.g. Beam A and E) exhibited a somewhat different relationship between 

uniaxial (1D) and biaxial (2D) results than did the deeper girders (e.g. Beam D and H). Largely, 

the difference in behavior between the shallower girders and deeper girders results from the 

difference between horizontal and vertical axis moments of inertia and is easily seen in a 

comparison of α values between Beams A and D and Beams E and H. As the shape moves 

towards a deeper section, the α factor decreases, in turn increasing the (cosθ)α term. This 

suggests that the effect of the neutral axis rotation is lessened with the increase in depth. 
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Additionally, the variation of the α value is a result of the proportional contribution of the barrier 

wall to the section behavior. Since its size is essentially constant, the barrier wall corresponds to 

a greater portion of the gross section properties in the smaller girders. 

3.4.3.3 Girder efficiency 

In a further attempt to understand the effect of beam geometry, the girder efficiency, ρ, was 

calculated as follows (Guyon 1963): 
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=ρ       (Eq. 3-6) 

Where Ix = moment of inertia of the gross girder section, including the barrier wall, about the 

horizontal x-axis; Ag = gross area of the section including the barrier wall; yt = the distance from 

the neutral axis to the top of the section and; yb = the distance from the neutral axis to the bottom 

of the section. The girder efficiency for Beams A through H is provided in Table 3-1. However, 

no correlation between girder efficiency and α parameter or the ultimate capacity was found.  

3.4.3.4 Effect of Composite Barrier Wall on Undamaged Girder 

Although not a focus of the present work, results from the analysis of undamaged girders (i.e.: 0-

0 and 0-0-0 cases) illustrate the effect of the presence of a composite barrier wall in rotating the 

neutral axis of an exterior girder. As previously observed (Harries 2006), in-situ conditions and 

previous experimental results (Harries 2009) indicate that the barrier wall and curb slab act 

compositely with the exterior girder and thus should be included in the analysis of the structure. 

Additionally, the analysis is typically performed about the horizontal axis (x-axis) and the neutral 

axis rotation is not included. Figure 3-16a shows the ratio of the ultimate moment capacity 

determined using a 2D-analysis (accounting for the effects of axis rotation) compared to that 
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from an analysis performed about the horizontal axis (1D) for the undamaged prototype girders. 

It can be seen in this figure that the 1D-analysis significantly overestimates the true ultimate 

moment capacity of the member and that the actual capacity is between 66% and 79% of that 

determined from the simple analysis depending on the girder geometry. As expected, the 

overestimation provided by the 1D analysis is greater for the shallower members (i.e.: beam A 

and beam E) due to the greater proportional contribution of the barrier wall to the girder section 

properties and and the barrier wall’s effect of shifting the neutral axis location vertically. 

 Although the presence of the composite barrier wall drives the rotation of the neutral 

axis, it also significantly increases the capacity of the exterior girder over that assumed in design; 

that is: with a non-composite barrier wall. The net effect is that despite the capacity reduction 

resulting from the neutral axis rotation, an exterior girder having a composite barrier wall has a 

greater capacity than that without the wall. Figure 3-16b shows the 2D-analysis of the girder 

having a composite barrier wall normalized by the nominal capacity of the non-composite girder. 

The latter may be thought of as the intended design capacity of the girder.  It can be seen in this 

figure that the member capacity increases to between 119% and 170% of the original girder. The 

increase in moment capacity due to the presence of a composite barrier wall is less in deeper 

members; again, due to the proportional contribution of the barrier wall to the girder section 

properties and the barrier wall’s effect of shifting the neutral axis location vertically . 

This issue is further complicated when considering the possible actual load which may be 

carried by the exterior girder compared to the design loading. A live load moment-distribution 

factor of 0.3 is common for AB girder structures. When the member no longer acts in 

conjunction with adjacent girders (i.e.: in a transversely composite manner), the live load 

moment-distribution factor will increase to 0.5 (i.e.: one wheel line of the design vehicle). This 
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can occur when the shear key between girders deteriorates as discussed in the following section. 

In this case, the loss of composite behavior between adjacent girders also results in the weight of 

the barrier wall and curb slab to no longer be distributed to the other girders; thus the exterior 

girder supports the entire barrier wall and curb slab assembly. Thus it is feasible that the live load 

carried by the exterior girder is increased by 66% and the barrier wall dead load is increased by 

factor equal to half the total number of girders in the bridge. To illustrate this, Table 3-12 

presents the moment demand for each prototype member when the structure is: a) acting as 

designed with an intact shear key and the barrier wall and curb slab dead load distributed evenly 

to each girder; and b) no longer behaving as designed or transversely composite (shear key 

ineffective) and the exterior girder is acting independently. Essentially, Table 3-12 illustrates 

both the ‘best’ and ‘worst’ case scenarios for moment demand of an exterior girder. Figure 3-16c 

shows the ratio of the potential load that may be carried by an exterior girder to that for which it 

is designed (ratio of worst-to-best cases). 

Thus, it is not at all clear (and must be assessed on a case-by-case basis) whether the 

beneficial effects of assuming a composite barrier wall outstrip the deleterious effects the 

potential loss of composite behavior in the transverse direction. The effects of girder damage 

must also be considered in this assessment.  

3.4.4 Exterior girders in the context of complete AB bridges 

The results presented in this chapter are based on individual exterior AB girders and do not 

consider how these interact with the rest of the bridge. This section describes intended designed-

for behavior of AB bridges, deviations from intended behavior observed in the field and 

therefore the appropriateness of the analyses presented in this chapter. 
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 The exterior girder of an AB bridge (Figure 3-17) is expected to behave in a composite 

manner with the rest of the bridge. Two or three details are provided to ensure this, although 

field observations draw into question the efficacy of these details as described below: 

3.4.4.1 Composite deck 

Approximately 55% of AB bridges have a composite deck overlayed on the girders (Table 3-1). 

This deck enforces compatibility and allows the entire bridge section to behave as a single unit. 

It is not clear whether the presence of a composite deck alone is sufficient to resist the tendency 

of an exterior girder to ‘roll away’ from the bridge superstructure. As noted in Table 3-1, AB 

bridges having composite decks have significantly fewer ‘structurally deficient’ ratings. This 

study largely focused on AB bridges having non-composite decks.  

3.4.4.2 Shear key 

All AB bridges have a continuously grouted shear key between all girders. The shear key is 

located about 6 in. (152 mm) below the top of the girder, is approximately 6 in. deep and 

engages the AB web to a depth of about 1 in. (25 mm). The shear key is grouted after the girders 

are set and cannot be inspected. If the shear key is present and intact, it should be sufficient to 

distribute forces between girders in the manner intended by the bridge design. For an AB bridge, 

AASHTO (2007) calculations lead to a flexural distribution factor (DF) on the order of 0.3 for 

AB bridges. Without an intact shear key, this value increases to 0.5 resulting in 66% greater 

vertical moments being applied to the girder. Additionally, without a shear key the dead load of 

appurtenances (including the barrier wall) are not distributed equally across the bridge as 

assumed in design. 
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 Harries (2009) reports significant anecdotal evidence that shear keys in AB bridges are 

often deteriorated or missing altogether: “In some cases, where shear keys were present, they 

were of very poorly consolidated grout… It was common to find asphalt material on the lower 

ledge of a shear key … indicating that the key had not been present at least since the last time the 

bridge was paved.” 

 An additional detail affecting the shear key between the exterior girder and the first 

interior girder is that the exterior girder is often set vertically, rather than following the angle of 

the bridge cross slope or superelevation (this is shown in Figure 3-17). This is done typically 

only on the side of the bridge facing oncoming traffic (left side of Figure 3-17) and is done for 

purely aesthetic reasons: drivers prefer to see a vertical surface, rather than an angled one, as 

they pass under a bridge. The change in girder angle results in a triangular gap between the 

exterior and interior girders that widens with increasing depth. This widening gap makes it more 

unlikely that the shear key at this interface will be properly placed, intact or effective. 

3.4.4.3 Tie Rods 

AB bridges of the size and vintage considered here have three mild steel tie rods provided 

between adjacent girders (Harries 2006). These rods are typically 1 in. (25.4 mm) in diameter 

and located vertically in the center of the shear key. Longitudinally, these rods are located at 

internal diaphragms which are located near midspan and about 10-20% of the span length from 

each support. The tie rods are primarily used to ‘pull’ the girders together during construction. 

Tie rods may also resist some of the off-axis flexure inherent in an exterior girder; that is, they 

may resist the tendency of the girder to ‘roll away’ from the bridge. However, the relatively 

small rods will only resist a relatively small off axis (My) moment. 
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 With the loss of shear key grout to protect them, tie rods are often found to be badly 

corroded (sometimes to the extent of being no longer present) at the girder interfaces (this is 

found upon demolition; tie rods cannot be inspected in an AB bridge). Furthermore, proof that 

the rods are unable to resist the tendency of the girder to ‘roll away’ from the bridge was clearly 

evident in the fact that all three tie rods of the Lake View Drive bridge exhibited tension failures 

despite their being in essentially very good shape (little more than surface corrosion). 

 As described in the previous paragraphs, the efficacy of composite decks, shear keys and 

tie rods in restraining exterior girders from rotation is questionable. Harries (2006) notes that the 

presence (inertia) of adjacent interior girders is sufficient to resist any tendency of interior 

girders to rotate. While an interior girder would certainly resist the tendency of an adjacent 

exterior girder to ‘roll inward’, this is not the behavior of such a girder. Thus it is rational to 

assume that no such restraint exists as was done in this study. 

3.5 CONCLUSIONS 

A parametric study which analyzed the effects of varying levels of damage to eight prototype AB 

beams was conducted; in all, 106 analyses were carried out. From this study, two relationships 

have been proposed to determine the capacity of an AB beam subject to asymmetric loading 

which include the composite behavior of the barrier wall assembly. These relationships relate the 

capacity to the more easily obtained 1D capacity predictions. While both relationships showed 

good predictive ability compared to the modeled values (average error less than 6%), it is 

believed that Equation 3-4 is a better representation of the true behavior of the beams because 

both damage to the structure due to lost strands and the rotation of the neutral axis are accounted 
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for. Additionally, this relationship is more useful in assessing an existing structure since it is 

based on the original undamaged, 1D capacity; essentially the original design capacity. It is 

noted that the α factor facilitates the adoption of a single equation to represent various member 

geometries.  

 It is common for the barrier wall and curb slab to be composite with the girder. This 

composite action will increase the moment capacity as compared to the original girder. However, 

additional loadings beyond those which the original member is intended to resist must also be 

considered. When including the composite action of the barrier wall and curb slab, it is prudent 

to assume that the entire dead load of this assembly is acting only on the exterior girder. 

Additionally, if the shear key is ineffective, the structure is no longer composite transversely and 

thus additional live load demands need to be considered. It is acceptable for the barrier wall and 

curb slab to be considered composite with the girder, however this new section will experience 

loadings different than the original member which must be accounted for in the analysis and 

rating of the member. 

As shown in Figure 3-7, the selection of steel failure strain εp = 0.010 is sufficient to 

utilize the section beyond its elastic capacity and cause concrete cracking. Although all factors 

contributing to the capacity reduction cannot be individually quantified, the α factor accounts for 

these effects to a sufficiently accurate degree. Thus, Equation 3-4 provides a relationship which 

accurately captures the behavior and capacity of a damaged or undamaged exterior AB girder 

with a composite barrier wall (as was experimentally verified in Harries 2006 and reiterated in 

the analysis presented in Chapter 4). It is acknowledged that the expected ratio of Equation 3-4 

to XTRACT-predicted results is dependent on the failure criteria selected. The failure criteria 

used in the current study are felt to be appropriate for an under reinforced prestressed member 
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while continuing to provide some reserve plastic rotation capacity As a result, the α factor is 

believed to be acceptable for AB girders. However, more research is required to verify the α term 

for other girder geometries. 
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Table 3-1 Summary of statewide and District 11 and 12 AB bridge inventory. 

 Pennsylvania1 District 112 District 123 

  Structurally Deficient 
(rating < 4)  Structurally Deficient 

(rating < 4)  Structurally Deficient 
(rating < 4) 

 number of 
bridges all4 superstructure 

only 
number of 

bridges all4 superstructure 
only 

number of 
bridges all4 superstructure 

only 

all bridges 25203 5385 
(21.4%) 

3465 
(13.8%) 1781 505 

(28.4%) 
318 

(17.9%) 2345 586 
(25.0%) 

376 
(16.0%) 

all prestressed (4xxxx) 5874 887 
(15.1%) 

456 
(7.8%) 671 188 

(28.0%) 
52 

(7.8%) 263 71 
(27.0%) 

22 
(8.4%) 

Noncomposite AB 
(BMS code: 4x107) 822 350 

(42.6%) 
326 

(39.7%) 69 19 
(27.5%) 

14 
(20.3%) 33 9 

(27.3%) 
7 

(21.2%) 
Composite AB  
(BMS code: 4x207) 1175 96 

(8.2%) 
29 

(2.5%) 95 17 
(17.9%) 

8 
(8.4%) 40 7 

(17.5%) 
4 

(10.0%) 
1 reported: September 10, 2007 
2 reported: December 5, 2007; District 11 includes Allegheny, Beaver and Lawrence Counties 
3 reported: December 26, 2007; District 12 includes Greene, Fayette, Washington and Westmoreland Counties  
4 SD rating resulting from any of deck, super structures or sub structure rating (culverts not considered) 
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Table 3-2 Prototype beam dimensions. 

 

fc’ = 6000 psi 
fps = 250 ksi 
fy = 40 ksi 
 
L = length of girder (from representative bridge) 
Ix = gross moment of inertia about horizontal axis 
Iy = gross moment of inertia about vertical axis 
Ag = gross cross sectional area 
ρ = section efficiency (see Equation 3-6) 

Beams A-D:  strands 
have 1.5” vertical and 
horizontal clear cover 
(typ). 
 
Beams E-H:  strands have 
1.25” vertical clear cover 
(typ) and 1.5” horizontal 
clear cover (typ). 

Beam L 
(ft) 

h 
(in) 

b 
(in) 

tw 
(in) 

tf 
(in) 

a 
(in) 

Ix 
(x103 in4) 

Iy 
(x103 in4) 

Ag 
(in2) strand details and area (ASTRAND) cgs 

(in) 
α 

(Eq. 3-5) 
ρ  

(Eq. 3-6) 

Strand Pattern 
(half section of box soffit 

drawn to scale) 

A 41.5 21 48 5 5.5 15 186.8 297.9 1151 26 -  250 ksi 7/16”strand = 2.83 in2 
in 2 layers (22-4) 2.06 3.2 0.389 

 

B 55.5 27 48 5 5.5 15 266.6 336.3 1224 28 -  250 ksi 7/16”strand = 3.05 in2 
in two layers (16-12) 2.61 2.5 0.417 

 

C 71.7 33 48 5 5.5 15 368.6 369.2 1284 38 -  250 ksi 7/16”strand = 4.14 in2 
in three layers (16-20-2) 3.01 2.0 0.418 

 

D 81.7 42 48 5 5.5 15 569.0 421.4 1374 54 -  250 ksi 7/16”strand = 5.89 in2 
in five layers(16-26-4-2-4-2) 4.19 1.5 0.389 

 

E 33.2 21 36 5 5 14.5 162.5 153.3 1004 28 -  250 ksi 3/8”strand = 2.24 in2 
in two layers(18-10) 2.29 1.9 0.411 

 

F 48.3 27 36 4.5 4.5 14.5 224.8 168.0 1047 30 -  250 ksi 3/8”strand = 2.40 in2 
in two layers(18-12) 2.35 1.5 0.436 

 

G 69.5 33 36 4.5 4.5 14.5 310 185.0 1101 42 -  250 ksi 3/8”strand = 3.36 in2 
in six layers(16-14-6-2-2-2) 3.54 1.2 0.443 

 

H 47.3 42 36 4.5 4.5 14.5 467.9 206.9 1182 34 -  250 ksi 3/8”strand = 2.72 in2 
in three layers(16-16-2) 2.63 0.9 0.518 

 
 1 in. = 25.4 mm; 1 kip = 4.448 kN 
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Table 3-3 Damage and analysis results for Beam A. 

 XTRACT analysis Equation 3-3 Equation 3-4 

Damage MxN 
(k-ft) 

θ 
(deg) 

Mxθ 
(k-ft) 

MxN 
Mxθ 

Mxθ 
(k-ft) 

(Mxθ)EQ3-3 
(Mxθ)XTRACT 

Mxθ 
(k-ft) 

(Mxθ)EQ3-4 
(Mxθ)XTRACT 

0-0 MxN0 = 2314 31 1526 1.52 1413 0.93 1413 0.93 
1-0 2239 31 1478 1.51 1367 0.92 1359 0.92 
2-0 2163 32 1354 1.60 1276 0.94 1261 0.93 
3-0 2087 32 1297 1.61 1232 0.95 1208 0.93 
4-0 2005 32 1241 1.62 1183 0.95 1155 0.93 
5-0 1928 33 1113 1.73 1098 0.99 1064 0.96 
6-0 1850 33 1058 1.75 1054 1.00 1014 0.96 
7-0 1771 33 1002 1.77 1009 1.01 963 0.96 
8-0 1691 33 947 1.79 963 1.02 912 0.96 
9-0 1608 33 892 1.80 916 1.03 862 0.97 

10-0 1528 33 836 1.83 870 1.04 811 0.97 
11-0 1445 34 719 2.01 793 1.10 733 1.02 
8-1 1614 34 838 1.93 886 1.06 830 0.99 
8-2 1536 34 823 1.87 843 1.02 782 0.95 

1 in. = 25.4 mm; 1 kip = 4.448 kN 
 

Table 3-4 Damage and analysis results for Beam B. 

 XTRACT analysis Equation 3-3 Equation 3-4 

Damage MxN 
(k-ft) 

θ 
(deg) 

Mxθ 
(k-ft) 

MxN 
Mxθ 

Mxθ 
(k-ft) 

(Mxθ)EQ3-3 
(Mxθ)XTRACT 

Mxθ 
(k-ft) 

(Mxθ)EQ3-4 
(Mxθ)XTRACT 

0-0 MxN0 = 2769 31 1930 1.43 1884 0.98 1884 0.98 
1-0 2681 32 1798 1.49 1776 0.99 1768 0.98 
2-0 2593 32 1738 1.49 1717 0.99 1703 0.98 
3-0 2504 32 1669 1.50 1658 0.99 1637 0.98 
4-0 2414 33 1528 1.58 1555 1.02 1529 1.00 
5-0 2326 33 1461 1.59 1498 1.03 1465 1.00 
6-0 2234 33 1393 1.60 1439 1.03 1401 1.01 
7-0 2144 33 1326 1.62 1381 1.04 1338 1.01 
8-0 2053 33 1259 1.63 1322 1.05 1274 1.01 
5-1 2239 33 1407 1.59 1442 1.03 1401 1.00 
5-2 2153 34 1282 1.68 1347 1.05 1300 1.01 
6-3 1973 34 1163 1.70 1235 1.06 1176 1.01 
6-4 1883 35 1043 1.81 1144 1.10 1081 1.04 
7-5 1704 35 928 1.84 1035 1.12 961 1.04 
8-6 1521 36 807 1.88 895 1.11 815 1.01 

1 in. = 25.4 mm; 1 kip = 4.448 kN 
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Table 3-5 Damage and analysis results for Beam C. 

 XTRACT analysis Equation 3-3 Equation 3-4 

Damage MxN 
(k-ft) 

θ 
(deg) 

Mxθ 
(k-ft) 

MxN 
Mxθ 

Mxθ 
(k-ft) 

(Mxθ)EQ3-3 
(Mxθ)XTRACT 

Mxθ 
(k-ft) 

(Mxθ)EQ3-4 
(Mxθ)XTRACT 

0-0 MxN0 = 4041 32 2949 1.37 2906 0.99 2906 0.99 
1-0 3947 32 2886 1.37 2839 0.98 2830 0.98 
2-0 3852 33 2736 1.41 2709 0.99 2693 0.98 
3-0 3757 33 2657 1.41 2643 0.99 2618 0.99 
4-0 3660 33 2578 1.42 2574 1.00 2543 0.99 
5-0 3563 33 2499 1.43 2506 1.00 2468 0.99 
6-0 3461 34 2338 1.48 2379 1.02 2339 1.00 
7-0 3363 34 2261 1.49 2311 1.02 2266 1.00 
8-0 3263 34 2183 1.49 2243 1.03 2193 1.00 
5-1 3468 34 2358 1.47 2384 1.01 2339 0.99 
5-2 3372 34 2291 1.47 2318 1.01 2266 0.99 
6-3 3177 35 2059 1.54 2132 1.04 2069 1.01 
6-4 3081 35 1985 1.55 2067 1.04 1998 1.01 
7-5 2886 36 1758 1.64 1889 1.07 1810 1.03 
8-6 2687 36 1611 1.67 1759 1.09 1670 1.04 
8-7 2588 36 1538 1.68 1694 1.10 1601 1.04 
8-8 2491 37 1399 1.78 1589 1.14 1492 1.07 

1 in. = 25.4 mm; 1 kip = 4.448 kN 
 

Table 3-6 Damage and analysis results for Beam D. 

 XTRACT analysis Equation 3-3 Equation 3-4 

Damage MxN 
(k-ft) 

θ 
(deg) 

Mxθ 
(k-ft) 

MxN 
Mxθ 

Mxθ 
(k-ft) 

(Mxθ)EQ3-3 
(Mxθ)XTRACT 

Mxθ 
(k-ft) 

(Mxθ)EQ3-4 
(Mxθ)XTRACT 

0-0-0 MxN0 = 6301 33 4913 1.28 4748 0.97 4748 0.97 
1-0-0 6200 34 4743 1.31 4672 0.98 4660 0.98 
2-0-0 6097 34 4663 1.31 4595 0.99 4572 0.98 
3-0-0 5993 34 4568 1.31 4518 0.99 4484 0.98 
4-0-0 5890 34 4473 1.32 4361 0.97 4318 0.97 
5-0-0 5785 35 4285 1.35 4283 1.00 4232 0.99 
6-0-0 5679 35 4191 1.36 4205 1.00 4145 0.99 
7-0-0 5575 35 4093 1.36 4127 1.01 4059 0.99 
8-0-0 5468 35 3998 1.37 4048 1.01 3972 0.99 
5-1-0 5686 35 4210 1.35 4210 1.00 4145 0.98 
5-2-0 5583 35 4133 1.35 4135 1.00 4059 0.98 
6-3-0 5373 36 3852 1.39 3906 1.01 3814 0.99 
6-4-0 5270 36 3763 1.40 3830 1.02 3729 0.99 
7-5-0 5057 36 3575 1.41 3606 1.01 3492 0.98 
8-6-0 4840 37 3298 1.47 3453 1.05 3325 1.01 
8-7-0 4731 37 3208 1.47 3374 1.05 3242 1.01 
8-8-0 4624 37 3119 1.48 3233 1.04 3096 0.99 
8-8-1 4522 38 2957 1.53 3160 1.07 3015 1.02 
8-8-2 4415 38 2883 1.53 3088 1.07 2933 1.02 

1 in. = 25.4 mm; 1 kip = 4.448 kN 
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Table 3-7 Damage and analysis results for Beam E. 

 XTRACT analysis Equation 3-3 Equation 3-4 

Damage MxN 
(k-ft) 

θ 
(deg) 

Mxθ 
(k-ft) 

MxN 
Mxθ 

Mxθ 
(k-ft) 

(Mxθ)EQ3-3 
(Mxθ)XTRACT 

Mxθ 
(k-ft) 

(Mxθ)EQ3-4 
(Mxθ)XTRACT 

0-0 MxN0 = 1878 38 1271 1.48 1194 0.94 1194 0.94 
1-0 1819 38 1238 1.47 1157 0.93 1152 0.93 
2-0 1763 39 1145 1.54 1092 0.95 1080 0.94 
3-0 1706 39 1103 1.55 1057 0.96 1039 0.94 
4-0 1647 39 1062 1.55 1020 0.96 997 0.94 
5-0 1588 40 973 1.63 957 0.98 930 0.96 
6-0 1527 40 930 1.64 920 0.99 889 0.96 
7-0 1468 40 890 1.65 885 0.99 849 0.95 
8-0 1410 40 848 1.66 850 1.00 808 0.95 
9-0 1348 40 806 1.67 812 1.01 768 0.95 
5-1 1531 40 942 1.63 923 0.98 889 0.94 
5-2 1473 41 867 1.70 863 1.00 825 0.95 
6-3 1355 41 796 1.70 794 1.00 747 0.94 
6-4 1297 42 723 1.79 738 1.02 687 0.95 
7-5 1176 42 661 1.78 669 1.01 611 0.92 
8-5 1116 43 590 1.89 616 1.04 555 0.94 

1 in. = 25.4 mm; 1 kip = 4.448 kN 
 

 

Table 3-8 Damage and analysis results for Beam F. 

 XTRACT analysis Equation 3-3 Equation 3-4 

Damage MxN 
(k-ft) 

θ 
(deg) 

Mxθ 
(k-ft) 

MxN 
Mxθ 

Mxθ 
(k-ft) 

(Mxθ)EQ3-3 
(Mxθ)XTRACT 

Mxθ 
(k-ft) 

(Mxθ)EQ3-4 
(Mxθ)XTRACT 

0-0 MxN0 = 2251 38 1632 1.38 1575 0.96 1575 0.96 
1-0 2183 39 1541 1.42 1496 0.97 1491 0.97 
2-0 2118 39 1489 1.42 1451 0.97 1439 0.97 
3-0 2049 39 1439 1.42 1404 0.98 1388 0.96 
4-0 1983 40 1339 1.48 1330 0.99 1308 0.98 
5-0 1918 40 1288 1.49 1286 1.00 1258 0.98 
6-0 1848 40 1238 1.49 1239 1.00 1207 0.98 
7-0 1781 40 1188 1.50 1194 1.01 1157 0.97 
8-0 1713 40 1137 1.51 1149 1.01 1107 0.97 
9-0 1645 40 1087 1.51 1103 1.01 1056 0.97 
5-1 1851 40 1250 1.48 1241 0.99 1207 0.97 
5-2 1784 41 1165 1.53 1170 1.00 1131 0.97 
6-3 1653 42 1034 1.60 1059 1.02 1009 0.98 
6-4 1585 42 997 1.59 1015 1.02 961 0.96 
7-5 1449 43 868 1.67 906 1.04 845 0.97 
8-5 1381 43 820 1.68 864 1.05 798 0.97 

1 in. = 25.4 mm; 1 kip = 4.448 kN 
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Table 3-9 Damage and analysis results for Beam G. 

 XTRACT analysis Equation 3-3 Equation 3-4 

Damage MxN 
(k-ft) 

θ 
(deg) 

Mxθ 
(k-ft) 

MxN 
Mxθ 

Mxθ 
(k-ft) 

(Mxθ)EQ3-3 
(Mxθ)XTRACT 

Mxθ 
(k-ft) 

(Mxθ)EQ3-4 
(Mxθ)XTRACT 

0-0-0 MxN0 = 3335 39 2451 1.36 2464 1.01 2464 1.01 
1-0-0 3262 39 2404 1.36 2410 1.00 2406 1.00 
2-0-0 3191 39 2346 1.36 2358 1.01 2347 1.00 
3-0-0 3119 40 2229 1.40 2265 1.02 2249 1.01 
4-0-0 3046 40 2169 1.40 2212 1.02 2191 1.01 
5-0-0 2973 40 2110 1.41 2159 1.02 2134 1.01 
6-0-0 2897 40 2052 1.41 2104 1.03 2076 1.01 
7-0-0 2823 40 1993 1.42 2050 1.03 2018 1.01 
8-0-0 2748 40 1933 1.42 1996 1.03 1961 1.01 
5-1-0 2902 40 2066 1.40 2108 1.02 2076 1.00 
5-2-0 2828 41 1954 1.45 2018 1.03 1983 1.01 
6-3-0 2682 41 1839 1.46 1913 1.04 1869 1.02 
6-4-0 2610 42 1728 1.51 1828 1.06 1779 1.03 
7-5-0 2459 42 1615 1.52 1722 1.07 1668 1.03 
8-6-0 2310 42 1502 1.54 1618 1.08 1557 1.04 
8-7-0 2237 42 1446 1.55 1567 1.08 1501 1.04 
8-7-1 2167 43 1355 1.60 1489 1.10 1418 1.05 
8-7-2 2094 44 1258 1.66 1410 1.12 1390 1.11 

1 in. = 25.4 mm; 1 kip = 4.448 kN 
 

Table 3-10 Damage and analysis results for Beam H. 

 XTRACT analysis Equation 3-3 Equation 3-4 

Damage MxN 
(k-ft) 

θ 
(deg) 

Mxθ 
(k-ft) 

MxN 
Mxθ 

Mxθ 
(k-ft) 

(Mxθ)EQ3-3 
(Mxθ)XTRACT 

Mxθ 
(k-ft) 

(Mxθ)EQ3-4 
(Mxθ)XTRACT 

0-0 MxN0 = 3233 39 2548 1.27 2577 1.01 2577 1.01 
1-0 3148 39 2485 1.27 2509 1.01 2501 1.01 
2-0 3059 40 2364 1.29 2407 1.02 2394 1.01 
3-0 2970 40 2291 1.30 2337 1.02 2319 1.01 
4-0 2883 40 2218 1.30 2268 1.02 2244 1.01 
5-0 2795 41 2098 1.33 2170 1.03 2141 1.02 
6-0 2705 41 2025 1.34 2100 1.04 2067 1.02 
7-0 2616 41 1952 1.34 2031 1.04 1993 1.02 
8-0 2526 41 1878 1.35 1961 1.04 1919 1.02 
5-1 2708 41 2038 1.33 2102 1.03 2067 1.01 
5-2 2624 41 1968 1.33 2037 1.04 1993 1.01 
6-3 2448 42 1780 1.38 1874 1.05 1820 1.02 
6-4 2357 42 1712 1.38 1804 1.05 1747 1.02 
7-5 2183 43 1531 1.43 1647 1.08 1579 1.03 
8-6 2002 44 1354 1.48 1488 1.10 1414 1.04 
8-7 1913 44 1287 1.49 1422 1.11 1343 1.04 
8-8 1824 44 1218 1.50 1356 1.11 1272 1.04 

1 in. = 25.4 mm; 1 kip = 4.448 kN 
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Table 3-11 Example XTRACT output. 

Angle 
(deg) 

Mx 
(k-ft) 

My 
(k-ft)  

0 -3081 -1908 value of MxN determined at θ = 0 (i.e. 1D analysis). 
1 -3082 -1913  
2 -3083 -1917  
…    

143 -1830 198  
144 -1908 100  
145 -1985 -4  
  

 
 
step 1: find entry corresponding to My = 0. 
(interpolation or closest value is acceptable) 
 

   
step 2: read value of θ. 
(XTRACT sign convention: θ = 180-145 = 35o) 
 

   step 3: read value of Mxθ. 
(XTRACT sign convention removed for reporting ) 

146 -2063 -111  
147 -2143 -221  
148 -2221 -334  
…    

360 -3082 -1910  
 

Table 3-12 Moment demand comparison for an exterior AB girder. 

Beam h 
(in) 

b 
(in) 

L 
(ft) 

ng 
(number 

of girders) 

Nominal Design Moments Nominal Moment Demand 

Beam DL 
(k-ft) 

Wall DL 
(k-ft) 

HS20 LL 
(k-ft) 

As 
designed1 

(k-ft) 

Possible 
In-service2 

(k-ft) 
A 21 48 41.5 8 138 120 467 308 492 
B 27 48 55.5 8 276 215 719 545 850 
C 33 48 71.7 8 500 359 1011 893 1365 
D 42 48 81.7 8 727 467 1191 1201 1789 
E 21 36 33.2 12 68 76 318 176 303 
F 27 36 48.3 12 157 161 589 361 613 
G 33 36 69.5 12 360 333 971 707 1178 
H 42 36 47.3 12 190 154 571 387 630 

1 𝐴𝑠 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 =  𝐷𝐿𝐵𝐸𝐴𝑀 + 2
𝑛𝑔
𝐷𝐿𝑊𝐴𝐿𝐿 + 0.3𝐿𝐿 

2 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛 − 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 =  𝐷𝐿𝐵𝐸𝐴𝑀 + 𝐷𝐿𝑊𝐴𝐿𝐿 + 0.5𝐿𝐿 
1 in. = 25.4 mm; 1 kip = 4.448 kN 
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(a) symmetric section (b) asymmetric section 

 
Figure 3-1 Schematic representation of moment interaction (Harries 2006). 

 

 

 
  

(a) Lake View Drive bridge collapsed 
onto I-70 December 26, 2005 

(Pittsburgh Post Gazette, 12/29/05) 

(b) Soffit and fascia of McIlvaine 
Road bridge over I-70 damaged by 

vehicle October 18, 2010 (PennDOT) 

(c) Crawford Lane bridge over I-70 
damaged by vehicle impact March 

15, 2011 (photo by author). 
   

Figure 3-2 Examples of vehicle impact damage to AB girder bridges along about 22.5 miles of the I-70 corridor in 
southwestern Pennsylvannia. 
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(a) Test set-up for asymmetric EXTERIOR girder. Loading is symmetric.  

   
(b) applied load versus vertical deflection (c) applied load versus lateral deflection (d) lateral versus 

vertical deflection 
Figure 3-3 EXTERIOR AB girder test (Harries 2009). 
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Figure 3-4 XTRACT screen capture showing Beam H. 

 

 

   
(a) concrete material model. (b) prestressing steel material model. (c) mild steel material model. 

 
Figure 3-5 Material models used in XTRACT analyses. 
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(a) Beam D case 0-0-0. (b) Beam D case 8-8-1. 

Figure 3-6 Example of damage classification. 

 

 

Figure 3-7 Verification of steel failure strain criteria. 
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Figure 3-8 Normalized moment capacity vs. number of removed strands – Beam A. 

 

Figure 3-9 Normalized moment capacity vs. number of removed strands – Beam B. 
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Figure 3-10 Normalized moment capacity vs. number of removed strands – Beam C. 

 

Figure 3-11 Normalized moment capacity vs. number of removed strands – Beam D. 
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Figure 3-12 Normalized moment capacity vs. number of removed strands – Beam E. 

 

Figure 3-13 Normalized moment capacity vs. number of removed strands – Beam F. 
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Figure 3-14 Normalized moment capacity vs. number of removed strands – Beam G. 

 

Figure 3-15 Normalized moment capacity vs. number of removed strands – Beam H. 
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a) ratio capacity of girder with 
composite barrier wall analyzed 
considering neutral axis rotation 
(2D) versus that considering an 
analysis about the horizontal 
axis. 
 

 

b) ratio of 2D composite barrier 
wall girder capacity to non 
composite capacity.  
 

 

c) ratio of potential nominal load 
on exterior girder to nominal 
design load. 
 

Figure 3-16 Capacity ratios of undamaged prototype girders. 
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a) Plan View 

 
b) Section AA 

 

Figure 3-17 Lake View Drive bridge – a typical AB girder span. 
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4.0  ASSESSMENT OF DAMAGED PRESTRESSED ADJACENT BOX GIRDER 

BRIDGES: A CASE STUDY 

Recent failures of prestressed AB girder bridges – some catastrophic and others requiring 

posting, emergency repair measures or decommissioning – have demonstrated that this bridge 

type has some inherent weaknesses. This Chapter describes an approach to assessing the extant 

condition of damaged ABs, including those damaged by vehicle impact and corrosion. The 

approach described allows for the ‘redevelopment’ of damaged strand once it is re-established in 

sound concrete (described in Chapter 2) and includes the need to consider biaxial section 

analysis to account for significant geometric asymmetry in exterior AB girders (described in 

Chapter 3).The objective of this work is to discuss the implementation and, ultimately validity of 

more rigorous assessment techniques that account for these effects. This chapter presents the 

analytical assessment of a damaged exterior AB girder recovered from the decommissioned Lake 

View Drive bridge which partially collapsed in 2005 (Figure 3-2). Harries (2006 and 2009) 

report this collapse and the subsequent load testing of additional girders from the Lake View 

Drive structure. It was found that the ultimate capacity and behavior of this damaged 40-year old 

exterior AB girder was accurately predicted using the combination of multiple biaxial section 

analyses over the length of the member, validating the proposed assessment techniques. 
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4.1 DAMAGE ASSESSMENT 

Visual indicators, particularly longitudinal cracking, impact damage, and exposed, corroded or 

severed strands identified during bridge inspection provide information vital to the condition 

assessment of a PC bridge. The inclusion of such damage in subsequent analyses and load rating 

is critical to capturing expected in-service member behavior. The following ‘lessons learned’ are 

provided to assist in the assessment of existing, damaged AB girder bridges. 

4.1.1 Longitudinal Cracking 

Longitudinal cracking of the soffit typically indicates strand corrosion although it is also 

associated with vehicle impact damage to exterior girders (Feldman et al. 1996). In either case, 

the lower strand layer at the location of longitudinal cracking should not be considered to 

contribute to girder capacity in the load rating procedure since bond of this strand has been 

compromised. Additional investigation of the extent of spalling in the transverse direction should 

be performed to determine whether adjacent strands are affected.   

4.1.2 Exposed or Corroded Strands and Strand Redevelopment 

As discussed in Chapter 2, exposed strands, which may or may not be corroded or severed, are 

typically removed from the member analysis along the entire girder length. It has been shown 

that severed strands will ‘redevelop’ their capacity and indeed maintain their prestress force in 

sound concrete at a distance from the damage. This redevelopment of prestressing force is 

conservatively represented by the prescribed strand transfer length of 60 strand diameters. Thus 
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in a best-case scenario, away from the damaged region, the strand retains its prestress force; in a 

worst-case scenario, the strand remains ‘developed’ in which case it still contributes to the 

ultimate capacity of the section as non-prestressed reinforcement.   

4.1.3 125% Rule 

In areas of the soffit of AB girders having concrete spalling (often resulting from impact 

damage) and subsequent corrosion of the lowest layer of strands, some unobservable corrosion of 

the second layer of strands is likely. Naito et al. (2006) report this unobserved corrosion to be 

25% of strand area in addition to that of the observed damaged strands. Rigorous field 

investigation, including chipping away cover concrete adjacent to corroded regions to identify all 

potentially corroded strands is required since significant corrosion may occur prior to spalling. 

Additionally, minor corrosion of the second layer of strands may be expected to continue and 

accelerate, raising the extent of unobserved damage in girders where little or no remedial action 

is taken. With these issues in mind, a conservative estimate of the total strand area affected by 

corrosion is suggested to be taken as 50% of the strand area in addition to that of the observed 

damaged strands (PennDOT 2010). 

4.1.4 Analysis of Eccentrically Loaded Girders 

Chapter 3 discussed the issues associated with 1D- and 2D-analyses of exterior AB girders which 

behave compositely with the barrier wall and curb slab assembly. Particularly, the overestimation 

of the vertical moment capacity (Mx, about the horizontal axis) of the 1D analysis and the biaxial 
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behavior of an asymmetric section loaded about its non-principal axis must be accounted for 

appropriately in the analysis. 

4.2 CASE STUDY SPECIMEN 

A 90’- 2” ft. (27.5 m) long, 48 in. (1220 mm) wide by 42 in. (1067 mm) deep exterior AB girder 

with 60 - 3/8” (9 mm) diameter Grade 250 (1724 MPa) low-lax strands was analyzed in this 

study. Cross section details and strand labeling are provided in Figures 4-1a and 1b, respectively. 

The girder was recovered from the decommissioned Lake View Drive bridge (Figure 3-2) and 

was tested to failure as part of the investigation of that collapse (Figure 3-3 and Harries 2009). 

Prior to testing, a rigorous inspection was carried out to identify all damage locations and 

affected strands. Damage was classified by its location along the girder, description and the 

specific strands affected as shown in Table 4-1 and Figure 4-2a. This information will be used to 

assemble a series of plane-sections analyses along the beam length. 

4.3 EXPERIMENTAL RESULTS 

The exterior AB girder was subjected to a monotonically increasing vertical load over a test span 

of 84’-2” (25.6 m). The load, located at midspan, was spaced at 48 in. (1220 mm), representing a 

typical AASHTO (2010) tandem axle arrangement. The highly asymmetric section subject to a 

symmetric load (Figure 3-3a) exhibited significant out of plane deformation (Figure 3-3c) 

accompanying and coupled to the in-plane flexural deformation (Figure 3-3b). As testing 
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progressed, the out-of-plane flexural deformation was approximately 35% of the in-plane 

flexural deformation as shown in Figure 3-3d. As a result, the observed failure included 

significant crushing of both the barrier wall and AB girder immediately beneath this but not on 

the girder top flange across from the barrier wall (interior corner). Additionally, monitoring of 

strand ruptures clearly indicated an asymmetric ultimate behavior (Harries 2006). The ultimate 

capacity of the girder was observed at an applied axle load of 73.4 kips (326.5 kN) (total tandem 

load of 146.8 kips (653 kN)). Including the self-weight of the girder, this corresponds to a 

midspan moment of approximately 4285 k-ft (5810 kNm). As shown in Figure 4-2c, however, 

failure of the beam did not occur in the initially undamaged midspan constant moment region but 

rather corresponded to the locations of initial girder damage at locations D and G (see Table 4-1 

and Figure 4-2a). 

4.4 MODELLING THE AB GIRDER 

The undamaged girder cross section and all damaged sections (see Figure 4-1a and Table 4-1) 

were analyzed using a commercially available fiber sectional analysis software package 

XTRACT (Chadwell and Imbsen 2004). As described in Chapter 3, this software has a tool 

referred to as an ‘orbit analysis’ which calculates the Mx-My failure envelope for a user-specified 

failure criteria by rotating the assumed orientation of the principal axis through 360o. From this 

envelope, the vertical (gravity) load carrying capacity, Mxθ, is determined for the section. In 

essence this is a ‘trial and error’ approach where the orientation of the principal axis is varied 

until the external equilibrium (i.e.: My = 0, in this case) is satisfied. 
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Material properties are modeled as indicated in Section 3.2.3 to 3.2.5. Concrete properties 

were modeled after compression strength values determined from the test girder (Harries 2006). 

Girders of this vintage utilized Grade 250 (1724 MPa) strand and Grade 40 (276 MPa) mild steel 

reinforcement, hence their use in this study. All strands were assumed to be initially stressed to 

0.70fpu (175 ksi = 1207 MPa) and to retain 0.55fpu after all losses (based on the AASHTO 2010 

prestress loss calculations), resulting in a prestress of 137.5 ksi (948 MPa). This assumption is 

consistent with the in situ results obtained from another Lake View Drive girder described in 

Chapter 2. 

4.4.1 Model Material Properties and Criteria for Establishing Moment-Moment 

Failure Envelope 

As described in Section 3.2.7, specific material failure criteria must be provided to establish the 

moment-moment (Mx-My) failure envelope. In essence, these criteria are ‘allowable strains’ or 

‘performance criteria’ which no fiber in the section may exceed and are selected based on the 

limit state being investigated. In the present analysis, the ultimate capacity of the under-

reinforced (i.e.: section response controlled by steel) PC box girder is desired, thus criteria 

related to the ultimate capacity were selected. The concrete and prestressing strand values were 

selected to represent concrete crushing (εcF = 0.005) and a strand strain (εpF = 0.015) sufficient to 

develop the ultimate capacity of the strand (250 ksi = 1724 MPa; see Figure 2-7) while 

respecting the under-reinforced nature of the member. The mild steel strain was selected to be 

very high (εsF = 0.035) so as not to affect the outcome of the analysis. The goal of this work is to 

assess the effectiveness of the assessment approach to quantify the experimentally observed 

ultimate capacity of this girder. In this case, no conservativism is considered and failure criteria 
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representing significant plastic deformations are selected. If the girder were being assessed for in 

situ load rating or evaluation for repair, lower ‘failure’ strains would be used as done in Chapter 

3. 

4.5 ASSESSMENT RESULTS AND DISCUSSION 

Sections analyses were performed at each damaged section (Table 4-1) and for the undamaged 

section. These were then ‘stitched together’ over the length of the girder accounting for the 

effects of strand redevelopment as the damaged regions transition to undamaged. The required 

redevelopment length was taken as 60db = 22.5 in. (572 mm) in every case and the transition was 

assumed to be linear as shown in Figure 2-3. These analyses result in the moment capacity 

envelopes shown in Figure 4-2b. Both 1D and 2D analyses were conducted. The significant 

reduction in predicted capacity when the more rigorous 2D analysis is used is clear from Figure 

4-2b. In this case, the predicted capacity from a 2D analysis is approximately 78% of that from 

the more conventional 1D analysis.  

The pre-test inspection was extensive. Thus each 1D and 2D analysis was conducted 

considering only the observed damage (Table 4-1). Additional analyses were conducted to 

investigate the effect of applying the 125% rule (with the rigorous inspection conducted, 150% 

was considered needlessly conservative). The effect of applying this rule is relatively minor for 

the case of this relatively undamaged girder: the greatest observed strand loss was only 6 strands 

(of 60) at location G (contrast this to over 30 strands lost in the collapsed exterior girder shown 

in Figure 3-2 (Harries 2006)). 
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Overlaid on the moment capacity envelopes shown in Figure 4-2b are the moment 

demand curves resulting from loading the girder. The moment demand curve for the observed 

ultimate capacity of a 73.4 kip (326.5 kN) axle load just intersects the ‘2D- 125% strand 

removed’ capacity at stations 30.8 and 48.2 ft. (9.4 and 14.7 m). The observed failure, shown in 

Figure 4-2c is remarkably consistent with this prediction (for ease of presentation each of figures 

4-2a, b and c are drawn to the same horizontal scale). 

The effect of accounting for strand redevelopment is clearly validated by the results 

shown in Figure 4-2b. Current practice of assuming that a damaged or corroded strand is 

removed from the analysis of the girder altogether, would have resulted in as many as 15 (of 60) 

strands being removed from this girder for assessment (Table 4-1). By accounting for strand 

redevelopment, a more rational capacity envelope is generated. In addition a more exact 

prediction of behavior – locating failure along the beam span – becomes possible.  

The agreement between observed and predicted behaviors additionally confirms that the 

barrier wall assembly is in fact behaving in a composite manner with the box girder. For the 

damaged prototype girder considered, if the barrier wall were not present, the girder capacity 

would be approximately 75% of that predicted with the composite barrier wall. Care must be 

taken in interpreting this result however. The composite barrier wall increases the girder capacity 

but also results in an asymmetric section which reduces the apparent 1D capacity. Damage both 

further reduces the 1D capacity but also may increase the asymmetry, compounding the 

reduction in capacity. Finally, other factors such as degraded shear connections between adjacent 

girders (Harries 2009) may significantly increase the demand placed on exterior AB girders. 
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4.6 CONCLUSIONS 

The ultimate capacity and behavior of a damaged 40-year old exterior AB girder was accurately 

predicted using multiple biaxial section analyses over the length of the member. The approach 

demonstrated accounts for geometric asymmetry resulting from the presence of a composite 

barrier wall and observed asymmetric strand loss. The application of the 125% rule in 

considering the reduction in prestressing strand area in damaged regions is also demonstrated 

and shown to be appropriate for the case where a rigorous inspection of damage was carried out. 

Finally, the appropriateness of the allowing for ‘redevelopment’ of damaged strand once it is re-

established in sound concrete is demonstrated. 
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Table 4-1 Summary of girder damage. 

Damage 
Location 

(see Figure 4-2a) 

Affected Region 
(stationing from 

west end of girder, 
ft) 

Damage Description Affected Strands 

A 15 - 16.5 Longitudinal crack A12 
B @ 20 Shallow spall none 
C @ 24 Minor impact A1 

D 25 - 31 Major impact A1, B1, C1, D1 and 
A2 

E 31 - 32 Exposed strands, 
corrosion A2, A3, A4, A5, A6 

F @ 45 Minor impact A1 

G 48 - 55 
Impact, spall and 

exposed and corroded 
strands 

A8, A9, A10, A11, 
A12 and A13 

H 68 - 61 Longitudinal crack A1 
J 61 - 64 Shallow spall none 

1 ft. = 305mm 
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a) Cross section (dimensions in in. unless noted) b) Strand labelling 
Figure 4-1 Test girder cross section. 
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Figure 4-2 AB test girder initial damage and experimental and predicted behavior. 
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5.0  DETERMINATION OF REPAIR LIMITATIONS 

Due to the significant number of vehicle impacts of prestressed concrete (PC) girders, the bridge 

engineering community has increased repair efforts. As a result, new repair methods and 

technologies (i.e.: strand splices and applications of fiber reinforced polymers (FRP)) have 

emerged. The use of these new repair technologies has benefitted the bridge industry by 

increasing the number of structures which can be repaired as opposed to being replaced or 

posted. Examples of such bridge repairs are presented by Tumialan et al. (2001), Schiebel et al. 

(2001), Klaiber et al. (2003), Herman (2005), Toenjes (2005), Kim et al. (2008), Sika (2008a), 

Kasan (2009), Enchayan (2010), Pakrashi et al. (2010) and Yang et al. (2011), among others. 

Despite these demonstrations, little attention has been paid to the selection of appropriate repair 

measures and the limitations of these; this is often referred to as the ‘repair or replace?’ question. 

The objective the work presented in this Chapter is to develop a methodology to approaching 

repair design aimed at providing justification for the solution of the ‘repair or replace’ question. 

This Chapter will present the approach to identifying repair limitations through an example of an 

impact-damaged AB girder bridge structure repaired with externally bonded carbon fiber 

reinforced polymer (EB-CFRP) plates. Additionally, a discussion regarding approaches to 

individual girder rating is provided due to the localized nature of impact damage where few 

girders of a bridge are typically affected. A portion of this discussion also acknowledges 
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acceptable structure postings. An illustrative example including all necessary steps and 

calculations is described in the following sections and presented in its entirety in Appendix A. 

5.1 PROTOTYPE STRUCTURE 

An 81’-2” (24.75 m) long, 48 in. wide by 42 in. deep (1220 mm by 1067 mm) precast concrete 

(PC) adjacent box (AB) girder is considered in this study (when composite with the deck, the 

overall girder depth is 45 in. (1143 mm)). The prototype girder was an exterior girder recovered 

from a decommissioned AB girder bridge in southwestern Pennsylvania (Figure 5-1a). The 

bridge was erected in 1960. Impact damage (approximately 45 in. long) is evident centered 

approximately 28 ft. from the girder end (see Figure 5-1b) at a location above the right lane of 

the carriageway passing beneath the bridge. The primary prestressing consists of 57 - 3/8” (9 

mm) diameter Grade 250 (1724 MPa) low-relaxation (low-lax) strands. Cross section details of 

the girder are provided in Figure 5-2. Although an exterior girder, tests were conducted without a 

barrier wall or curb. Additional information regarding the original design of the structure can be 

found in the bridge cross section shown in Figure 5-3. 

Damage classification and naming proceeded similar to that discussed in Section 3.2.6 

and as shown in Figure 3-6. Recall, the damage multi-digit identification of each analysis 

indicates the number of strands removed from the lower, second, third layers, et cetera, 

respectively. The example provided in Appendix A describes the section AB 3-2-0 wherein 3 

strands were removed from the first layer, 2 from the second and none from the third. 
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5.1.1 Modeling the Prototype Girder 

The example in Appendix A was completed using member capacities calculated using either 

AASHTO- or ACI-prescribed analysis methods. In subsequent analyses, in order to rapidly 

analyze the girders at various damage levels, the undamaged girder cross section and all 

damaged and repaired sections were analyzed using a commercially available non-linear fiber 

sectional analysis software package XTRACT (Chadwell and Imbsen 2004). Modeling using 

XTRACT is discussed at length in Chapter 3. Only moment-curvature analyses are utilized for 

this work.  

Material properties are modeled as indicated in Table 5-1. Concrete properties were 

modeled after design strength values of the prototype AB girder (American Marietta 1960). 

Girders of this vintage utilized Grade 250 strand and Grade 40 mild steel reinforcement, hence 

their use in this study. All strands were assumed to be initially stressed to 0.7fpu (175 ksi) and to 

retain 0.57fpu after all losses (based on the AASHTO 2010 prestress loss calculations), resulting 

in a prestress of 142.4 ksi. CFRP material and geometric properties are based on manufacturer’s 

data for Sika CarboDur strips (preformed CFRP strips) (Sika 2008b) and can also be found in 

Table 5-1. These properties were used for convenience; the use of Sika products is not 

specifically endorsed in this document. 

5.2 IDENTIFICATION OF THE CRITICAL SECTION FOR MOMENT  

When performing a load rating analysis, ratings are based on the maximum moment demand for 

a particular structure; this includes the dead load of the structure (i.e. beams, diaphragms, 
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wearing surface, etc.), a 640 plf lane load (per AASHTO 2010 design specifications) and a 

design truck placed on the structure in a location to maximize its effect (near the center of the 

span for simply supported members). Conventional engineering assessment proceeds by 

neglecting the damaged strands in the section analysis and structure rating. In this instance of a 

simply supported girder, the maximum moment demand will occur when placing the truck near 

midspan1. This configuration will also often govern structural ratings. However, when rating a 

damaged girder where strand redevelopment is permitted (as discussed in Chapter 2), it is 

important to recognize the location of damage in the context of the entire structure. If damage 

were located elsewhere along the span, this additional potentially critical section must be 

investigated despite it not representing the greatest absolute demand across the span. A simple 

influence line approach can be used to establish the moment envelope at any location along the 

span. Recognizing and accounting for this effect allows the structure to be analyzed in a more 

rational fashion by identifying all critical section. Doing so will inform the appropriateness of the 

selected repair technique as well as provide a more accurate structural assessment and rating. For 

instance, damage may be located outside of the critical moment region and thus it is possible that 

a flexural repair may not be necessary.  

A set of analyses was performed using the prototype girder to determine the design 

moment at various locations along the length of the girder. This approach requires the truck load 

to be located at different locations along the span to cause the maximum moment at these 

locations. For example, the moment demand at 30% of the span (0.3L) includes all dead load 

                                                 
1 The location of the AASHTO HL93 vehicle to result in maximum on a simple span is such that 

the second axle is located 2.33 feet from the girder midspan and the third axle is on the other side 

of midspan; for ease of description, this is referred to as the midspan location. 
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effects and also locates the design truck at this location which ultimately provides the greatest 

moment demand at this location. The resulting moment envelope is shown in Figure 5-4. This 

concept is more easily visualized by considering the ‘reserve’ capacity: the difference between 

girder capacity and moment demand at any section. Figure 5-4 plots reserve capacity over the 

length of the girder for the undamaged AB section. All values shown in Figures 5.4 and 5.5 are 

factored with appropriate AASHTO load and resistance factors. It is noted that the prototype 

structure considered is considerably over designed – the girder capacity, even at its lowest 

(midspan) is almost twice the load demand. This is not uncommon for an exterior girder which 

will generally have lower demand than adjacent interior girders. In AB bridges, as in most 

simple span bridges, to reduce cost and complexity, all girders in a structure will be the same; 

thus exterior girders often have significant reserve capacity or over-strength. 

Typically in PC girders, the moment capacity is uniform along the girder length (outside 

the development length). However, including the redevelopment of severed/exposed strands, 

away from the damage location, in the capacity analysis results in a moment capacity which 

varies along the length of the member (as seen in Figure 5-4). When including the damage in the 

analysis of the damaged prototype girder AB 3-2-0 (Appendix A), the reserve capacity along the 

girder length can be seen in Figure 5-4. It is important to notice in Figure 5-4 that the reserve 

capacity at approximately 0.35L location (location of damage) is less than that at midspan 

(0.5L). This effect is considerably more dramatic for increased levels of damage as can be seen 

for the case of AB 6-5-2-2 also shown in Figure 5.5. Therefore, when considering this girder for 

structural rating and repair, the critical section is at the location of damage and not midspan. The 

identification of the critical section of a damaged member must be determined based on design 

truck location and section capacity and should not be assumed to be midspan (which remains the 
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location of the greatest absolute moment demand), as illustrated in the example. Utilizing this 

approach should also be accompanied by the consideration of strand redevelopment (as described 

in Chapter 2), thus developing an accurate assessment of anticipated girder performance. 

Other effects that may impact the reserve capacity include general deterioration of the 

girder which would have the effect of uniformly reducing girder capacity (Figure 5.4) and 

therefore the reserve capacity (shifting the curve in Figure 5.5 downward). Similarly, the loss of 

an effective shear key, as discussed in Section 3.4.4.2, will increase the live load component of 

the moment by approximately 67% (Figure 5.4) and therefore also reduce the reserve capacity 

essentially uniformly (Figure 5.5). 

It should be noted that the conventional approach to assessing damaged girders is to 

simply assume a) the damage extends over the entire span; that is: the critical section in terms of 

capacity is the damaged section; and b) the demand is the greatest demand on the span; that is: 

the critical section in terms of demand is at midspan. This approach, while conservative , is 

inconsistent and inefficient, resulting in unnecessary girder replacement rather than repair in 

many cases. 

5.3 IDENTIFICATION OF REPAIR LIMITATIONS 

Limitations on what repairs are viable and the degree to which girder capacity may be recovered 

are inherent to each girder type and repair technique. Often, controlling factors can be identified 

with each repair technology and an upper bound on the effectiveness (contribution to capacity 

recovery) of the repair technology can be determined. Physical constraints such as girder size 

and shape and structure type also limit the use or efficiency of repair methods. In either case, the 
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‘law of diminishing returns’ in terms of repair efficiency is often observed as the repair effort is 

increased; this too informs the designer of a rational limit to the repair technology considered. 

Determination of these limitations ultimately informs the ‘repair or replace’ decision for 

damaged PC bridge girders.  

Limitations pertaining to design and physical constraints will be discussed in the 

following sections, referencing the example in Appendix A, to develop an approach to answering 

the ‘repair or replace’ question. Therefore, the following sections will specifically consider 48 in. 

(1220 mm) wide AB girders repaired with EB-CFRP. Using a similar approach, determining 

limitations for other girder shapes and repair technologies will be developed further in the 

NCHRP 20-07 report. 

5.3.1 Repair Material  

Controlling factors can be identified with each repair technology and thus an upper bound of the 

contribution of the repair technology is determined. Beyond geometric constrains (discussed in 

Section 5.3.2), constraints can also be identified in the repair design methodology, as is the case 

for EB-CFRP. In most EB-CFRP repairs, CFRP debonding strain controls the repair design (Step 

16 of the example). In bonded FRP-to-concrete applications, ‘bond’ refers to the entire FRP-

adhesive-concrete interface. Debonding occurs when the strain generated in the FRP-adhesive-

concrete interface exceeds its capacity and the FRP disconnects from the concrete substrate. 

CFRP is the most suitable FRP for structural strengthening in the parlance of this study due to its 

strength and stiffness properties and thus changing material is not considered. The existing 
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concrete substrate material cannot be modified significantly for a repair design2. Therefore, the 

only parameter which can be altered is the nature of the CFRP. In practice, particularly for bridge 

spans where disruption of traffic on and below the bridge are significant concerns or 

environmental considerations are an issue below the bridge, preformed CFRP strips are preferred 

to a wet lay-up CFRP application. In such a case, the preformed strips are available in only 

discrete sections. In this study, strips having nominal dimensions of 2 x 0.047 in. (50 x 1.2 mm) 

are used; these are the most readily commercially available products in North America. Thus, the 

only remaining design parameter is the number of layers of CFRP used. Debonding strain is 

inversely proportional to the square root of the number of layers. In other words, the debonding 

strain decreases with the increase in the number of CFRP layers resulting in a diminished 

efficiency in strengthening with an increased the number of layers. This is not to suggest that the 

use of multiple layers is not possible, it simply does not utilize the CFRP material efficiently. 

Therefore, to inform the limitations of this repair method in the context of the ‘repair or replace’ 

decision, EB-CFRP will typically be limited to one layer. 

 

5.3.2 Geometry 

When repairing a structure, the physical constraints regarding structure type and girder size must 

be considered. For AB bridge repairs employing EB-CFRPs, repairs are limited to the girder 

soffit only. For the AB structure in the example, the beam soffit is 48 in. wide. Even if the girder 

                                                 
2 The design presented in Appendix A, like most such examples, assumes a sound concrete 

substrate or sound concrete patches restoring the original profile of the section. 
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web were accessible, placing CFRP on the girder web causes the centroid of the repair material 

to approach the neutral axis of the member, thus decreasing the lever arm and therefore utility of 

the web-applied CFRP. The geometric constraint limits the bonding of CFRP to the girder soffit 

for AB bridge structures; thus for the example girder, a maximum of 24-2 in. wide CFRP strips 

may be applied. 

5.4 APPROACHES TO GIRDER RATING AND STRUCTURAL POSTING 

AASHTO Evaluation Manual (2011) Eq. 6A.4.2.1-1 provides the basis for AASHTO girder 

rating factor, RF: 

)IMLL(
PDWDCC

RF
LL

PDWDC

+
±−−

=
γ

γγγ        (Eq. 5-1) 

Where C is the structural capacity, DC, DW, LL and IM are load effects prescribed in the 

AASHTO LRFD Bridge Design Specifications (2010), and the values of γ are LRFD load factors 

prescribed in Table 6A.4.2.2 of the Evaluation Manual (2011). These factors differ for inventory 

and operational rating levels. The term P represents the effects of other permanent loads on the 

structure and, for convenience, is neglected in the subsequent discussion. 

Application of Eq. 5-1 requires an entire bridge design in all cases. Since the objective of this 

work is to address the degree of strengthening of individual girder elements, a variation of this 

equation was developed. If it assumed that the capacity of the as-built girder corresponds exactly 

to RF0 = 1; that is:  C0 = γDCDC + γDWDW + γLL(LL+IM), and the existing or damaged capacity 

is  CD, then the rating factor for the damaged structure is: 

DWDCC
DWDCC

RF
DWDC0

DWDCD
D γγ

γγ
−−
−−

=       (Eq. 5-2) 
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Therefore analyses are effectively normalized by the AASHTO-prescribed inventory RF value 

(Eq. 5-1). Thus, the normalized undamaged girder rating factor RF0 = 1.0 as shown in Table 5-2, 

showing the results of the rating exercise for the AB 3-2-0 prototype example presented in 

Appendix A. This formulation removes the need to calculate LL, which is a function of specific 

bridge geometry. If RF for the as-built structure is known (RF0), then the C0 term in Equation 2 

may be replaced with RF0C0. In either case, ratings may proceed since the focus of the study is to 

consider the capacity of the repaired girder (CR) relative to CD and a target capacity C0 (or 

another specified capacity). A rating factor less than unity based on Equation 5-2 does not 

necessarily imply structural deficiency as is the case when a rating factor less than unity is found 

from Equation 5-1. A value of less than unity from Eq. 5-2 simply indicates that the girder 

capacity is lower than the original design capacity. Thus, the decision to repair, replace or do 

nothing to an individual girder must still be made in the context of the entire structure.  

 It should be noted that the rating factors calculated in Table 5-2 use the appropriate dead 

load- and live load-demands according to the section being investigated. For the example in 

Appendix A, the critical section for the damaged structure is identified as the extreme location of 

damage, 0.375L or 30.3 ft. Therefore, the dead load and live load demands on the structure are 

determined for this location, as seen in Steps 1 and 3. However, after performing the repair, the 

rating factors are compared to those calculated at all other sections. As seen in Table 5-2, RFD = 

2.24 at the critical location and the rating factor at 0.5L remains 2.32. Therefore, in order to 

restore the girders original capacity, this damage must be repaired. After performing the repair, 

RFR = 2.60 at 0.375L. In comparing rating factors at the repaired section and 0.5L, the critical 

section for the repaired girder is once again at 0.5L and the rating factor for the structure are 

those calculated in Step 8. 



104 

This study adopts the ‘repair objective’ of restoring the original girder capacity, C0; that 

is ensuring that CR ≥ C0 or RFR ≥ 1.0. Different objectives are certainly possible and a repair that 

does not restore the original girder capacity may be acceptable, particularly if there is a great 

deal of overstrength (reserve capacity) in the first place. This decision must, however, be made 

on a case-by-case basis. Additionally, in many instances, posting the structure is acceptable and 

thus this option needs to be acknowledged. Regardless of the goal of the repair (undamaged 

capacity or an acceptable posting level), the approach to girder repair discusses here remains 

valid. 

5.5 APPLICABILITY OF EB-CFRP REPAIRS TO AB PROTOTYPE GIRDER 

To illustrate the approach described in previous sections and to assess the viability of using 

externally-bonded CFRP (EB-CFRP) to repair impact damaged adjacent box girders (AB), a 

parametric study, of sorts, was carried out. 

Using the prototype example described in Section 5.1 and presented in Appendix A, a 

range of damage was considered. Twelve damage cases ranging from AB 3-2-0 (9% strand loss), 

presented in Appendix A, to AB 6-5-2-2 (26% strand loss) were considered. All analyses were 

conducted using XTRACT as described in Section 5.1.1. Using the fiber analysis method of 

XTRACT is more rigorous than the AASHTO or ACI-prescribed plane sections analysis 

presented in Appendix A. The difference in results is marginal; the XTRACT-derived values are 

about 2% greater than those based on code approaches as is shown in Table 5-2 for AB 3-2-0. 

Finally, all assessments were carried considering only the damaged girder; thus the rating factor 

derived from Eq. 5-2 was used. 



105 

As described in Section 5.3, the practical limit of the EB-CFRP repair considered is 24 2 

in. wide strips. To illustrate the range of repair possible - and therefore to identify the range of 

repair objectives possible - four degrees of repair were considered corresponding to 25, 50, 75 

and 100% of the greatest practical repair. Thus all damaged beams were assessed for their repair 

capacity assuming 6, 12, 18 and 24 2 in. EB-CFRP strips. Including the damaged, unrepaired 

girders, 65 ratings were carried out. The results of these ratings are presented in Table 5-3 in 

terms of both the member critical moment capacity and the resulting rating factor (Eq. 5-2).  

The resulting damaged and repaired rating factors are shown graphically in Figure 5-4. In 

this figure, each vertical line represents a damage case. The lowest data point on each line is the 

rating factor for the unrepaired damaged girder, RFD. The highest data point is the rating factor 

for the repair having 24-2 in. EB-CFRP strips - the maximum practical repair. Data points for 

each of the repairs having 6, 12 and 18 EB-CFRP strips are also shown.  

A number of conclusions can be drawn from Figure 5-4 (recognizing that this is 

presented for 48 x 45 in. AB girders): 

Considering the AB 3-2-0 example presented in Appendix A, the damaged rating factor 

RFD = 0.88. The repair design (Appendix A) having the objective of restoring the original girder 

capacity (RFR ≥ 1.0) concluded that 15 – 2 in. EB-CFRP strips are sufficient to restore 

undamaged capacity, resulting in a repaired rating factor of 1.05. Maximizing the repair, using 

24 EB-CFRP strips, the capacity of the repaired girder could be increased well above the original 

capacity to a rating factor RFR = 1.20. 

At the other end of the spectrum, AB 6-5-2-2 has a damaged rating factor of RFD = 0.65 

and its capacity cannot be fully restored even with the maximum practical EB-CFRP strips 

applied. In this case, the maximum repaired RFR = 0.97.  
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Assuming the predefined objective of the ‘repair or replace’ question was that the repair 

must restore the original capacity of the girder, AB 6-5-2-2 could not be repaired and would 

require replacement. Interestingly, this conclusion is consistent with a rule-of-thumb used for 

prestressed girder repair: a girder must be replaced if strand loss exceeds 25% (Washington State 

DOT, reported in Kasan 2009). 

Using an approach such as that presented in Figure 5-4, defining the required repair as a 

horizontal line at the desired capacity (RFR = 1.0 was used here), one can quickly establish repair 

or replace criteria based on viable repairs (that may also be defined differently than done here) 

that fall above this line.  

The same approach may also be calibrated using Eq. 5-1 although separating individual 

girder damage from global bridge performance is rather complex. The nature of repairable 

vehicle impact damage most often only affects exterior girders which raises a third alternative to 

the repair/replace decision. Exterior girders may simply be removed (physically or lane restricted 

so that they are not loaded) from the bridge altogether without affecting the load capacity of this 

bridge. Such an approach clearly, however, affects the traffic-carrying capacity of the span. 

Plots similar to that shown in Figure 5-4 can be created for various girder types and repair 

technologies to illustrate the decision making criterion for the ‘repair or replace’ decision and 

will be completed in support of NCHRP 20-07. 
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5.6 CONCLUSIONS 

A new methodology to approaching PC bridge girder repair is presented. First and foremost, 

when accepting strand redevelopment, it is imperative for the repair designer to identify the 

critical section, which may or may not be midspan. Often, the damaged section, with the design 

truck placed over the location of the damage is the controlling section. Next, a repair technology 

can be selected. Realistic and practical limitations can be identified for specific girder shapes and 

repair technologies. Often, girder geometry will limit the viable repair techniques. Limitations 

are also inherent to repair technologies. For example, for the AB girder repaired with EB-CFRP 

plates example discussed here, CFRP debonding controlled the repair design. Increasing the 

number of layers of CFRP yields diminishing returns, suggesting that it is not practical to use 

more than one-layer of CFRP. Equally significant, applying the CFRP to the web of the girder 

decreases the lever arm and uses the material inefficiently (as compared to bonding to the girder 

soffit). As a result, the upper bound that can be affected by EB-CFRP plates for an AB girder 

repair becomes apparent; it is limited to one-layer of CFRP bonded across the entire girder soffit.  

For the AB 3-2-0 example presented in Appendix A, only 15 EB-CFRP strips were 

required to restore the original girder capacity. However, if more severe damage were considered 

(AB 6-5-2-2), a practical repair (24 EB-CFRP strips) would be inadequate to restore the original 

girder capacity and the repaired structure may require posting. A posting may be acceptable to 

the owner and thus this is not necessarily a shortcoming of the repair technique. Ultimately, each 

structure must be assessed individually and the goal of each repair must be clearly expressed. 

The objective of the repair is easily expressed as a target value of RFR in Eq. 5-2. This approach 

also allows for easy comparison of the effectiveness of various repair types. In some instances, 

the damage location or the damage severity may yield an RFD which is greater than RF0 for the 
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undamaged structure. This suggests that the damage does not need to be structurally repaired; 

however, corrosion mitigation and patching and painting practices (as suggested in Kasan 2009) 

should be followed to arrest further corrosion and damage. Following this methodology, the 

lower bound of an effective structural repair for the member can be determined. This lower 

bound solution is to only repair the girder aesthetics (patching and painting) and take 

preventative measures to mitigate further damage. Lower bound solutions do not include 

structural repair measures. 

The approach to girder repair described in this Chapter is significantly different than most 

conventional practice. A new paradigm to select and evaluate and identify the ‘upper-bound’ 

contribution of girder repair technologies has been provided and illustrated through an AB girder 

repaired with EB-CFRP plates. Employing this approach will benefit repair designers and state 

transportation agencies by providing rational criterion for the selection and application of repair 

technologies. 
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Table 5-1 Modeled Material Properties. 

 Concrete 
Grade 250 

Prestressing 
Steel 

Grade 40 A615 
Reinforcing Steel CFRP 

modulus of elasticity Ec = 4,227 ksi Ep = 28,500 ksi Es = 28,500 ksi Ef = 23,200 ksi 
tensile yield strength - fpy = 230 ksi fy = 40 ksi - 
tensile ultimate stress - fpu = 250 ksi fu = 70 ksi ff = 406 ksi 
tensile ultimate strain - εpu = 0.0430 εsu = 0.1200 εf = 0.017 
strain hardening strain - - εsh = 0.0150 - 
compressive strength fc

’ = 5.5 ksi - - - 
strain at fc’ εc

’ = 0.0028 - - - 
crushing strain εcu = 0.0060 - - - 
spalling strain εsp = 0.0070 - - - 

ultimate compressive strain 
(fc = 0) εcmax = 0.0080 - - - 

failure criteria used in analysis εcF = 0.003 εpF = 0.015 εsF = 0.035 εfF = 0.0059 
 

 
Table 5-2 Comparison of Rating Factor Calculation Methods for AB 3-2-0 presented in Appendix A. 

 Mn 
(kft) 

AB320 EB-CFRP 15 
strips Inventory Operating 

MDAM
 

(kft) 
MR

 

(kft) RF0 RFD RFR RF0 RFD RFR 
Conventional1 

(AASHTO/ACI) at 0.5L 
3511 3218 3562 

2.32 2.32 2.32 3.01 3.01 3.01 

Conventional1 
(AASHTO/ACI) at 

0.375L 
2.55 2.24 2.60 3.31 2.91 3.37 

XTRACT fiber 
analysis2 at 0.5L 3573 3275 3698 

1.00 1.00 1.00 1.30 1.30 1.30 

XTRACT fiber 
analysis2 at 0.375L 1.00 0.88 1.05 1.30 1.14 1.36 

1Equation 5-1.  
2Equation 5-2. 
 
 

Table 5-3 Capacity and Inventory Rating Factor for EB-CFRP Repaired AB Girders. 

 AB Damage Case 
 320 420 422 530 4222 631 641 42222 6322 652 752 6522 65222 

strand loss 9% 10% 14% 14% 18% 18% 19% 21% 23% 23% 25% 26% 30% 
CR (kft) 

RFR 
3275 
0.88 

3213 
0.86 

3102 
0.81 

3090 
0.81 

2899 
0.73 

2972 
0.76 

2913 
0.74 

2998 
0.77 

2811 
0.70 

2795 
0.69 

2731 
0.66 

2689 
0.65 

2586 
0.59 

              

EB-CFRP 
6 strips 

3316 
0.90 

3253 
0.87 

3142 
0.83 

3132 
0.82 

2937 
0.75 

3015 
0.78 

2956 
0.75 

3039 
0.79 

2854 
0.71 

2840 
0.71 

2777 
0.68 

2734 
0.66 

2633 
0.61 

EB-CFRP 
12 strips 

3571 
1.00 

3511 
0.98 

3398 
0.93 

3388 
0.93 

3193 
0.85 

3270 
0.88 

3210 
0.85 

3293 
0.89 

3111 
0.82 

3096 
0.81 

3033 
0.78 

2988 
0.77 

2888 
0.72 

EB-CFRP 
18 strips 

3826 
1.10 

3764 
1.08 

3653 
1.03 

3640 
1.03 

3445 
0.95 

3526 
0.98 

3465 
0.96 

3546 
0.99 

3363 
0.92 

3350 
0.91 

3288 
0.89 

3243 
0.87 

3143 
0.82 

EB-CFRP 
24 strips 

4080 
1.20 

4018 
1.18 

3907 
1.13 

3894 
1.13 

3698 
1.05 

3780 
1.08 

3719 
1.06 

3799 
1.09 

3618 
1.02 

3604 
1.01 

3543 
0.99 

3498 
0.97 

3395 
0.93 

C0=3573kft;  RF0=1.0 
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a) prototype girder in situ(photo from 

PennDOT inspection report dated August 8, 
2007). 

b) impact damage location, considered in the 
Appendix A example. 

Figure 5-1 Prototype AB Girder. 

 

 

Figure 5-2 Prototype AB Girder Cross Section. 

 

Figure 5-3 Prototype AB Bridge Cross Section. 
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Figure 5-4 Girder Moment Envelopes. 

 

Figure 5-5 Repaired versus Damaged Rating Factor Plot. 
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6.0  CONCLUSIONS AND FUTURE WORK 

An overview of the conclusions and findings from each aspect of this dissertation are reiterated 

here. Additionally, topics identified which require further investigation beyond this work are 

noted in Section 6.2. 

 

6.1.1 Redevelopment length 

 

The findings of this study demonstrate that severing prestressing strand is a ‘local effect’. That 

is, the effects of the lost strand affect the section at the damage location. To either side of the 

damaged concrete region, the effective prestress in the strand is ‘redeveloped’ over the transfer 

length, ℓtr. This approach implies the need to consider not only the critical section of a girder but 

all sections along its length when rating the girder or designing repair measures for a damaged 

girder (Harries et al. 2009). 
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6.1.2 Eccentrically Loaded Girder Analysis 

A parametric study which analyzed the effects of varying levels of damage to eight prototype AB 

beams was conducted; in all, 106 analyses were carried out. The relationship proposed by 

Equation 3-4 represents the true behavior of the asymmetric members because both damage to 

the structure due to lost strands and the rotation of the neutral axis are accounted for. 

Additionally, this relationship is useful in assessing an existing structure since it is based on the 

original undamaged, 1D capacity; essentially the original design capacity.  

 It is common for the barrier wall and curb slab to be composite with the girder. This 

composite action will increase the moment capacity as compared to the original girder. However, 

additional loadings beyond those which the original member is intended to resist must also be 

considered, such as the entire dead load of the barrier wall and curb slab assembly is acting only 

on the exterior girder and additional live load demands resulting from ineffective shear keys. It is 

acceptable for the barrier wall and curb slab to be considered composite with the girder, however 

this new section will experience loadings different than the original member which must be 

accounted for in the analysis and rating of the member. 



114 

6.1.3 Assessment of a Damaged Prestressed Concrete Bridge Girder: Case study 

The techniques described in Chapters 2 and 3 were used in an analysis to predict the failure of a 

damaged 40-year old exterior AB girder. The ultimate capacity and behavior of the AB girder 

was accurately predicted using multiple biaxial section analyses over the length of the member. 

The approach demonstrated accounts for geometric asymmetry resulting from the presence of a 

composite barrier wall and observed asymmetric strand loss. The application of the 125% rule in 

considering the reduction in prestressing strand area in damaged regions is also demonstrated 

and shown to be appropriate for the case where a rigorous inspection of damage was carried out. 

Finally, the appropriateness of the allowing for ‘redevelopment’ of damaged strand once it is re-

established in sound concrete is demonstrated. This analysis demonstrated the applicability of the 

techniques described in Chapters 2 and 3 and compares analytical to experimental results of a 

full-scale girder. The analytical results matched the experimental results to a considerable degree 

and thus confirming their validity. 

6.1.4 Determination of Repair Limitations 

A new methodology to approaching prestressed concrete bridge girder repair is presented. First, 

when accepting strand redevelopment (Chapter 2), it is imperative for the repair designer to 

identify the critical section, which may or may not be midspan. Often, the damaged section, with 

the design truck placed over the location of the damage is the controlling section. In some 

instances, the damage location or the damage severity may yield a rating factor (RFD) which is 

greater than that for the undamaged structure (RF0). This suggests that the damage does not need 
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to be structurally repaired; however, corrosion mitigation and patching and painting practices 

should be followed to arrest further corrosion and damage. Additionally, the lower bound of an 

effective structural repair for the member can be determined. This lower bound is the ‘do 

nothing’ solution to the ‘repair or replace’ question addressing impact-damaged girders. 

Realistic and practical limitations can be identified for specific girder shapes and repair 

technologies, which in turn, dictate the applicable repair technology. For the EB-CFRP AB 3-2-0 

example, the limitations of this repair technique are: a) complete utilization of girder soffit; and 

b) limited to one layer on CFRP. Geometrically, the bridge type limits access to the webs. 

Additionally, application of FRP material to the webs decreases the lever-arm, in turn using the 

material less efficiently. Most EB-FRP repair designs are governed by plate debonding failures. 

The debonding strain of FRP is inversely proportional to the square root of the number of FRP 

layers. Therefore, these repairs were limited to one layer to retain good debonding behavior. The 

approach demonstrated in the example presented can assist in determining rational repair 

technique limitations based on member geometry and repair technology. 

If the repair technology’s contribution is maximized and the girder still does not acheive 

the original girder’s capacity, a structure posting may be required. Posting may be acceptable to 

the owner and thus this is not necessarily a shortcoming of the repair technique. An expression 

was developed (Equation 5-2) to address a single girder rating factor (RF). This expression 

allows the designer to quickly ‘rate’ the effectiveness of the selected repair technique since it 

refers to the original girder capacity. This basis is useful in the context of impact damaged 

prestressed concrete bridge members by allowing for easy comparison of the effectiveness of 

different repair techniques. Conveniently, Equation 5-2 can be utilized with a target capacity 
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different than the original member capacity, thus allowing for the repair to be customized to the 

project needs. 

6.2 TOPICS FOR FURTHER INVESTIGATION 

6.2.1 Additional Considerations for Quantifying Redevelopment Length 

Although not directly studied in this investigation, effects due to concrete material properties, 

concrete cover, strand diameter and in situ prestress force on transfer length of a ‘redeveloped’ 

severed strand can be significant and must be considered. A parametric study to quantify any of 

the effects listed here and their influence on the transfer length of a ‘redeveloped’ severed strand 

in the experimental investigation completed should be performed to quantify these effects.  

6.2.2 Eccentrically Loaded Girder Analysis 

The α factor presented in Eq. 3.5 is believed to be acceptable for adjacent box girder girders. 

However, more research is required to establish the α term for other girder geometries. It should 

be noted that the method presented in Chapter 3 can be utilized and adapted to determine this 

term and the corresponding capacity equation for other girder shapes. Additionally, an effort 

should be made to identify measures which can be taken to reduce or negate the eccentric 

loading effect on the exterior girder.  
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6.2.3 Prestressing Strand Assessment 

The redevelopment length of severed prestressing strand experimental program also identified 

lower-than-expected values of prestress force in the sound strands. While not affecting ultimate 

capacity, this would be expected to affect serviceability of these girders. Beyond destructive tests 

similar to those conducted here, there is no practical method for assessing prestressing force in 

situ. However, it is recommended that prestressing loss calculations be revisited, including an 

experimental program to reevaluate the accuracy of code prescribed prestressing force loss 

calculations. 

Although not specifically addressed in this study, non-destructive testing and similar 

evaluation techniques need to be advanced in order to quantify the extent of corrosion for 

prestressing strands, in-situ. Such information would allow for a more accurate assessment of in-

situ members and greatly benefit repair designers. 

 

6.2.4 Repair Technology Limitations 

The approach to impact-damaged girder repair presented in Chapter 5 can be applied to other 

girder shapes and repair techniques, but however, is not specifically completed in this document. 

This is the goal of a study currently in progress (NCHRP 20-07) by teams at the University of 

Pittsburgh (Dr. Kent Harries and the author) and the University of Cincinnati. This work will 

expand upon the number of girder types and repair technologies investigated in similar fashion. 
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APPENDIX A 

ADJACENT BOX GIRDER BRIDGE EXAMPLE 

This example presents the capacity calculation, rating and subsequent repair methodology and 

calculations for the impact damaged AB girder described in Section 5.1, repaired with externally 

bonded CFRP. The example is intended to be illustrative rather than definitive. 
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GIVEN CONDITIONS  
Span Length: 
Critical Section Location (see Section 5.2): 
Year Built: 
Concrete Compressive Strength: 
Prestressing Steel: 
Mild-reinforcing steel: 
Number of beams: 
Skew: 

 
81 ft. simple span 
0.375L = 30.4 ft. 
c1960 
f’c = 5.5 ksi (P/S beam) 
3/8 in. diameter, 250 ksi low-lax strands 
Grade 40 
12  
0 degrees 

Damage Description: Impact damage occured to the exterior girder 
and is 45 in. long and centered at 28.4 ft. from 
girder end. See Figure 5-2 for cross section 
details. 

SECTION PROPERTIES  
48 in. x 42 in. adjacent box beams: 

Acg = 742 in2  
Ix =  181,800 in4 
Sb =  9,619  in3 
St =  7,870  in3 

 
Composite Section Properties: 

Acg,C = 886 in2  
Ix,C =  255,300 in4 
Sb,C =  11,197  in3 
St,C =  11,500  in3 

 
calculated 

from bridge 
drawings 

 

STEP 1: DEAD LOAD ANALYSIS 
Components and Attachment: DC (per girder) 

Beam Self Weight: ft/k773.0150.0
144

"742
=






 ×  

Composite Deck Slab: ft/k150.0
girders12

1150.0
144

"576"3
=






 ×

×  

Parapet (exterior): ft/k068.0
12
1150.0

144
"9"16

144
"15"42

=







×





 ×

+
×

 

Parapet (center): ft/k008.0
12
1150.0

144
"8"24"5.0

=





 ×

××  

Total DC:  0.999 k/ft 
 

Wearing Surface: DW (per girder) 

Asphalt thickness = 2 in.: ft/k096.0
12
1144.0

144
"576"2

=





 ×

×  

 

At 0.5L 
Moment due to DC:  

kft3.819
8

81999.0M
2

DC =
×

=   

Moment due to DW:  

kft7.78
8

81096.0M
2

DW =
×

=  

At 0.375L 
Moment due to DC:  

kft3.767
2

)3.3081(3.30999.0MDC =
−××

=  

Moment due to DW:  

kft7.73
2

)3.3081(3.30096.0MDC =
−××

=  
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STEP 2: LIVE LOAD ANALYSIS 
Type F cross section; effective shear keys are present 
 
COMPUTE LIVE LOAD DISTRIBUTION FACTORS FOR INTERIOR 
GIRDERS 
Compute Live Load Distribution Factors 

Nb = 12 
k = 2.5(Nb)-0.2 = 2.5(12)-0.2 = 1.52 ≥ 1.5 

LRFD 
T4.6.2.2.1-1 

 
 
 

LRFD 
T4.6.2.2.2b-

1 
For closed thin wall shapes: 

A0 = Area enclosed by the centerlines of elements 
A0 = (48-2.5-2.5) x (45-3-2.5) = 1698.5 in2   

S = length of a side element 

( ) ( ) ( )
4

22
0 in563,365

5
5.23452

6
548

5
548

5.16984

t
s

A4J =
−−

+
−

+
−

×
==

∑
 

LRFD 
C4.6.2.2.1-3 

Distribution Factor for Moment – Interior Girders, gint 
One Lane Loaded: 

( ) 185.0
563,365
300,255

813.33
4852.1

J
I

L3.33
bkg

25.05.025.0
x

5.0

1mint, =















=
















=  

Two Lanes Loaded: 

( ) 269.0
563,365
300,255

8112
48

305
4852.1

J
I

L12
b

305
bkg

06.02.06.006.0
x

2.06.0

2mint, =





















=






















=  

gint = gint,m2 = 0.269  

LRFD 
T4.6.2.2.2b-

1 

Distribution Factor for Moment – Exterior Girders, gext 
One Lane Loaded: 

gext,m1 = e x gint,m1 

0.1125.1
30
d125.1e e ≥=+=  with de = 0 

gext,m1 = 1.125 x 0.185 = 0.208 
Two Lanes Loaded: 

0.104.1
25
d04.1e e ≥=+=

 
gext,m2 = 1.04 x 0.269 = 0.280 

gext = gext,m2 = 0.280  

LRFD 
T4.6.2.2.2d-

1 

STEP 3: MOMENT DEMAND  
Maximum Live Load (HL-93) 
Moment at 0.5L 

Design Lane Load  = 525 kft 
Design Truck  = 1169 kft  
Design Tandem  = 962 kft 

IM  =  33% 
MLL+IM =  LL + TRUCK*IM 

MLL+IM =525 + 1.33 x 1169 = 2080 kft 
g x MLL+IM =  0.280 x 2080 = 582.4 kft 

Maximum Live Load (HL-93) 
Moment at 0.375L 

Design Lane Load  = 492 kft 
Design Truck  = 1099 kft  
Design Tandem  = 759 kft 

IM  =  33% 
MLL+IM =  LL + TRUCK*IM 

MLL+IM =492 + 1.33 x 1099 = 1954 kft 
g x MLL+IM =  0.280 x 1954 = 547.1 kft 

LRFD 
T3.6.2.1-1 
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STEP 4: COMPUTE NOMINAL FLEXURAL RESISTANCE 











−=

p
pups d

ck1ff  

fpu = 250 ksi and k = 0.28 for low lax strands 
dp = distance from extreme compression fiber to C.G. of prestressing tendons 

original cg strands = 4.3 in;   dp = 45 – 4.3 = 40.7 in 
For rectangular section behavior: 

with Aps = 57 x 0.08 = 4.56in2; b = 48in; fc
’ = 5.5ksi; and β = 0.78 

Assume As = As
’ = 0 in2. 

in23.6

7.40
25056.428.04878.05.585.0

025056.4

d
f

kAbf85.0

fAfAfA
c

p

pu
ps1

'
c

'
s

'
ssspsps =

××+×××

−×
=

+

−−
=

β
 

a = β1c = 0.78 x 6.23 = 4.9 in < 6 in 
Therefore, rectangular section behavior assumption is valid 

ksi6.241
7.40
9.428.01250fps =





 −=  

kft3511
12
1

2
9.47.406.24156.4

2
adfAM ppspsn =×






 −×=






 −=  

 
LRFD Eq. 
5.7.3.1.1-1 
LRFD Eq.    

TC5.7.3.1.1
-1 
 
 

LRFD 
5.7.2.2 

LRFD   Eq. 
5.7.3.1.1-4 

 
 
 
 
 
 
 

LRFD   Eq. 
5.7.3.2.2-1 
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STEP 5: EFFECTIVE PRESTRESS 
Determine Effective Prestress, Ppe: 

Ppe = Aps x fpe 
Total Prestress Losses: 

ΔfpT = ΔfpES + ΔfpLT immediately before transfer 
Effective Prestress: 
fpe = Initial Prestress – Total Prestress Losses 
Loss Due to Elastic Shortening,  ΔfpES : 

gcp
ct

p
pES f

E
E

f =∆  

I
eM

I
eP

A
Pf D

2
ii

gcp −+=  

Initial Prestress immediately prior to transfer = 0.7fpu. 
For estimating Pi immediately after transfer, use 0.90(0.7fpu). 

Pi = 0.90 x (0.7 x 250) x 57 x 0.08 = 718.2 kips 
Acg = 742 in2;   Ix = 181,800 in4;   e = 22.8 – 4.3 = 18.5 in 

MD = moment due to self-weight of the member 

kft634
8

81773.0M
2

D =
×

=  

ksi546.1774.0352.1968.0
800,181

5.1812634
800,181

5.182.718
742

2.718f
2

gcp =−+=
××

−
×

+=  

K1 = 1.0 
wc = 0.140 + 0.001f’

c = 0.140 + 0.001(5.5)= 0.146 kcf 
( ) ( ) ksi43175.5146.00.133000fwK33000E 5.1'

c
5.1

c1c =××==  
Ep = 28,500 ksi 

ksi2.10546.1
4317

500,28fpES =×=∆  

 
 
 
 
LRFD Eq. 
5.9.5.1-1 

 
 
LRFD Eq. 

5.9.5.2.3a-1 
 
 
 

LRFD 
T5.9.3-1 
LRFD 

C5.9.5.2.3a 
 

 
 
 
 
 

LRFD 
5.4.2.4 

LRFD Eq. 
5.4.2.4-1 

 

Approximate Lump Sum Estimate of time-Dependent Losses, ΔfpLT : 
Includes creep, shrinkage and relaxation of steel. 

pRsthsth
C,cg

pspi
pLT f0.12

A
Af

0.10f ∆+++=∆ γγγγ  

with H = 70%; γh = 1.7-0.01H = 1.7 - 0.01(70) = 1.0 
77.0

)5.51(
5

)f1(
5

'
c

st =
+

=
+

=γ
 

ΔfpR = an estimate of relaxation loss = 2.5 ksi; fpi = 0.70 x 250 = 175 ksi 

( )( ) ( )( ) ksi4.225.277.00.10.1277.00.1
886

56.41750.10fpLT =++
×

+=∆  

Total Prestress Losses, ΔfpT:  
ΔfpT = ΔfpES + ΔfpLT = 10.2 + 22.4 = 32.6 ksi  

 
 

LRFD 
5.9.5.3-1 

 
LRFD Eq. 
5.9.5.3-2 

LRFD  Eq. 
5.9.5.3-3 

 
 
 

LRFD Fig. 
5.9.5.1-1 
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STEP 6: MAXIMUM REINFORCEMENT  
The factored resistance (φ factor) of compression controlled sections shall be 
reduced in accordance with LRFD 5.5.4.2.1. This approach limits the capacity 
of over-reinforced (compression controlled) sections. 
The net tensile strain, εt, is the tensile strain at the nominal strength determined 
by strain compatibility using similar triangles. 
Given an allowable concrete strain of 0.003 and depth to the neutral axis c = 4.9 
in. and a depth from the extreme concrete compression fiber to the center of 
gravity of the prestressing strands, dp = 40.7 in. 

9.47.409.4
003.0

cdc
ttc
−

=→
−

=
εεε

 
εt = 0.022 > 0.005  Therefore the section is tension controlled. 

φ = 1.0,  for flexure 

 
EVAL. 

MANUAL 
C6A.5.5 
EVAL. 

MANUAL 
C5.7.2.1 

 
 

LRFD 
5.7.2.1 & 

5.5.4.2 
LRFD 
5.5.4.2 

STEP 7: MINIMUM REINFORCEMENT 
Amount of reinforcement to develop Mr equal to the lesser of 1.33Mu or 1.2Mcr 

Mr = Mn = 3511 kft 
Mu = 1.75(582.4) + 1.25(819.3) + 1.5(78.7) = 2161 kft 

1.33Mu = 1.33(2161) = 2874 kft 
Mr > 1.33Mu (3511 kft > 2874 kft)  

Therefore, minimum reinforcement check is satisfied  

 
LRFD 

5.7.3.3.2 
LRFD 
5.7.3.2 

 
 

STEP 8: LOAD RATING OF UNDAMAGED GIRDER RFR 
Critical section for undamaged simple span girder is at MIDSPAN. 

Assemble γ factors for both Inventory and Operating Levels: 
Inventory: γDC = 1.25; γDW = 1.50; γLL+IM = 1.75 
Operating: γDC = 1.25; γDW = 1.50; γLL+IM = 1.35 
Assume P = 0 k. 
 
Inventory: 

32.2
)4.582(75.1

)7.78(50.1)3.819(25.13511
)IMLL(

PDWDCC
RF

LL

PDWDC =
−−

=
+

±−−
=

γ
γγγϕ

 
 

Operating: 

01.3
35.1
75.132.2RF ==    

 

 
EVAL. 

MANUAL 
T6A.4.2.2-1 

 
EVAL. 

MANUAL 
Eq.  

6A.4.2.1-1 
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STEP 9: DAMAGED CAPACITY 
Damage occurs at 0.35L 
Determining the damaged capacity will follow the same procedure the nominal 
capacity, but will include the effects of the lost strands at the damaged section. 











−=

p
pups d

ck1ff  

fpu = 250 ksi and k = 0.28 for low lax strands 
dp = distance from extreme compression fiber to C.G. of prestressing tendons 

dp = 45 – 4.5 = 40.5 in 
5 strands (of 57) have been lost, therefore: Aps = 52 x 0.08 = 4.16in2  

in70.5

5.40
25016.428.04878.05.585.0

025016.4

d
f

kAbf85.0

fAfAfA
c

p

pu
ps1

'
c

'
s

'
ssspsps =

××+×××

−×
=

+

−−
=

β
 

a = β1c = 0.78 x 5.70 = 4.4 in < 6 in 
Therefore, rectangular section behavior assumption is valid 

ksi4.242
5.40

4.428.01250fps =





 −=  

kft3218
12
1

2
4.45.404.24216.4

2
adfAM ppspsn =×






 −×=






 −=

 

 
 
 

LRFD Eq. 
5.7.3.1.1-1 

 
 
 
 
 

LRFD   Eq. 
5.7.3.1.1-4 

 
 
 
 
 
 
 

LRFD   Eq. 
5.7.3.2.2-1 

 
STEP 10: LOAD RATING OF DAMAGED GIRDER, RFD 

Critical section for damaged girder is at 0.375L (see Section 5.2). 
Inventory: 

24.2
)1.547(75.1

)7.73(50.1)3.767(25.13218
)IMLL(

PDWDCCRF
LL

PDWDC =
−−

=
+

±−−
=

γ
γγγϕ

 
Operating: 

90.2
35.1
75.124.2RF ==  OK   

 

 
EVAL. 

MANUAL 
Eq.  

6A.4.2.1-1 

STEP 11: DEFINE OBJECTIVE OF REPAIR 
Restore undamaged moment capacity: Mn = 3511 k-ft 
Capacity of damaged girder without repair: M3-2-0 = 3218 k-ft  
Capacity will be restored with the use of externally bonded CFRP plates. 
 
All equation, figure and table references for FRP repair design are from ACI 
440.2R-08, unless otherwise noted. 

 

STEP 12: CALCULATE FRP SYSTEM DESIGN MATERIAL 
PROPERTIES 

CE = 0.85 
ffu = CE x f*

fu = 0.85 x 406 = 345 ksi 
εfu = CE x ε*

fu = 0.85 x 0.017 = 0.0145 in/in 

 
ACI T9.1 
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STEP 13: ASSEMBLE BEAM PROPERTIES 
Assemble geometric and material properties for the beam and FRP system. An 
estimate of the area of FRP (Af) is chosen here. If the section capacity does not 
meet the demand after the completion of all steps in this procedure, the FRP 
area is iterated upon. 

 

Ec = 4.23x106 psi 
Acg,C = 886 in2 

h = 45 in 
yt = 22.2 in 
yb =22.8 in 
e = 18.3 in 

Ix,C = 255,300 in4 
r = 17.0 in 

 

Aps = 4.16 in2 
Eps = 28.5x106 psi 

εpe = 0.0050 
Pe = 592,400 lb  

cg strands = 4.5 in  
dp = 40.5 in 

Af = 0.463 in2 (assumed) 
Ef = 23.2x106 psi 
df = 45.0235 in 

STEP 14: DETERMINE STATE OF STRAIN ON BEAM SOFFIT, AT 
TIME OF FRP INSTALLATION 
The existing strain on the beam soffit is calculated. It is assumed that the beam 
is uncracked and the only load applied at the time of FRP installation is dead 
load. MD is changed to reflect a different moment applied during CFRP 
installation. If the beam is cracked, appropriate cracked section properties may 
be used. However, a cracked prestressed beam may not be a good candidate for 
repair due to the excessive loss of prestress required to result in cracking.  

gc

bD
2
b

cgc

e
bi IE

yM
r

ey
1

AE
P

+





 +

−
=ε  

in/in0002.0
2553001023.4

8.22)12000)0.823.819((
)6.15(

8.225.181
8861023.4

592400
626 −=
××

××+
+









 ×
+

××
−

=  

 

STEP 15: ESTIMATE DEPTH TO NEUTRAL AXIS 
Any value can be assumed, but a reasonable initial estimate of c is ~ 0.2h. The 
value of c is adjusted to affect equilibrium. 

c = 0.2 x 45in = 9.0 in 
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STEP 16: DETERMINE DESIGN STRAIN OF THE FRP SYSTEM 
The limiting strain in the FRP system is calculated based on three possible 
failure modes: FRP debonding (Eq. 10-2), FRP rupture (Eq. 10-16) and FRP 
strain corresponding to prestressing steel rupture (Eq. 10-17). The strain in the 
FRP system is limited to the minimum value obtained from (Eq. 10-2), (Eq. 10-
16) and (Eq. 10-17). 
FRP Strain corresponding to FRP Debonding: 

in/in0059.0
047.0102.231

5500083.0
tnE

f083.0 6
ff

'
c

fd =
×××

==ε
 

FRP Strain corresponding  to Concrete Crushing: 
 

fdbi
fcu

fe in/in0122.0)0002.0(
0.9

)0.90235.45(003.0
c

)cd(
εε

ε
ε ≤=−−

−×
=−

−
=

 
FRP Strain corresponding  to PS Steel Rupture: 

fdbi
p

fpipu
fe )cd(

)cd)((
εε

εε
ε ≤−

−

−−
=

 
where 

in/in0053.0
)0.17(
)5.18(1

8861023.4
592400

16.4105.28
592400

r
e1

AE
P

AE
P

2

2

662

2

cc

e

pp

e
pi =










+

××
+

××
=










++=ε

in/in0341.0)0002.0(
)0.95.40(

)0.90235.45)(0053.0035.0(
fe =−−

−
−−

=ε
 

Therefore, the limiting strain in the FRP system is εfd =0.0059 in/in and the 
anticipated mode of failure is FRP debonding. 

 
 
 
 
 
 

ACI  
Eq. 10-2 

 
 
 

ACI 
Eq. 10-16 

 
ACI 

Eq. 10-17
  

 
ACI 

Eq. 10-18
  

 

STEP 17: CALCULATE THE STRAIN IN THE EXISTING 
PRESTRESSING STEEL 
The strain in the prestressing steel can be calculated with the following 
expression: 

035.0
r
e1

AE
P

pnet2

2

cc

e
peps ≤+










++= εεε

 
Prestressing Steel Strain corresponding to concrete crushing: 

in/in0105.0
0.9

)0.95.40(003.0
c

)cd(
003.0 p

pnet =
−

=
−

=ε  

035.0in/in0158.00105.0
)0.17(
)5.18(1

7901023.4
5924000050.0

2

2

6ps ≤=+









+×

××
+=ε

 
Prestressing Steel Strain corresponding to FRP rupture or debonding: 

in/in0050.0
)0.90235.45(

)0.95.40()0002.00059.0(
)cd(
)cd(

)(
f

p
bifepnet =

−
−

−=
−

−
+= εεε  

035.0in/in0104.00050.0
)0.17(
)5.18(1

8861023.4
5924000050.0 2

2

6ps ≤=+









+×

××
+=ε

 

Therefore, FRP debonding represents the expected failure mode of the system 
and εps = 0.0104 in/in. 

 
 
 

ACI 
Eq. 10-22 

 
 

ACI 
Eq. 10-23a 

 
 
 
 
 

ACI 
Eq. 10-23b 
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STEP 18: CALCULATE STRESS LEVEL IN THE PRESTRESSING 
STEEL AND FRP 

 
fps = 28500 x εps   (when εps ≤ 0.0076) 

or 

0064.0
04.0250f

ps
ps −

−=
ε

  

(when εps ≥ 0.0076) 

εps = 0.0104 > 0.0076 therefore use ksi9.239
0064.0)0104.0(

04.0250fps =
−

−=  
ffe = Ef x εfe = 23.2x106 x 0.0059 = 136.9 ksi  

 
 
 

ACI 
Eq. 10-24 

 
 
 
 

ACI 
Eq. 10-9 

STEP 19: CALCULATE EQUIVALENT STRESS BLOCK 
PARAMETERS 
From strain compatibility, the strain in the concrete at failure can be calculated 
as: 

( ) in/in0014.0
0.90235.45

0.90002.00059.0
)cd(

c)(
f

bifec =
−

×−=
−

+= εεε  

The strain '
cε  corresponding to '

cf  is calculated as: 

in/in0022.0
1023.4

55007.1
E

f7.1
6

c

'
c'

c =
×

×
==ε  

Using ACI 318-08, the equivalent stress block factors can be calculated as: 

712.0
0014.020022.06

0014.00022.04
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4

c
'
c

c
'
c
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×−×

−×
=

−

−
=

εε
εε

β  

703.0
)0022.0(713.03

)0014.0(0014.00022.03

3

3
2

2

2'
c1

2
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'
c
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××

−××
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−
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εβ

εεε
α  

 

STEP 20: CALCULATE THE INTERNAL FORCE RESULTANTS 

in6in03.8
48712.0)1000/5500(703.0

9.136463.09.23916.4
bf

fAfA
c

1
'
c1

fefpsp >=
×××

×+×

×××

×+×
=

βα
 

c is found to be greater than the height of the flange (6 in), so c needs to be 
recalculated accounting for the neutral axis extending into the web. This 
calculation yields c = 15.2 in. 

 
 

ACI 
Eq. 10-25 

STEP 21: ACHIEVE EQUILIBRIUM 
The value of c calculated in Step 20 must be equal to that of the c value 
assumed in Step 15. If not, the value of c must be iterated upon until these 
values are equal. 
 
Upon iteration of c, flexural strength must be checked as in Step 22. If the 
calculated strength is not sufficient, the area of FRP reinforcement must be 
increased and Step 15 through Step 22 must be repeated, as is the case with this 
design. Af is increased to 1.389in2 and the process repeated. 
 
By iteration,  c = 11.5 in.   
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STEP 22: CALCULATE THE FLEXURAL STRENGTH 
CORRESPONDING TO THE PRESTRESSING STEEL AND FRP 
COMPONENTS 
The nominal capacity of the section is found as: 

Mn = Mnp = ψMnf 
The corresponding contribution of prestressing steel and FRP, respectively, are 
found as: 
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ψ = 0.85 

The nominal section capacity of the repaired girder is: 

( )( ) kft3562
12
1775085.036159MM REPn =+==  

 
 
 

ACI 
Eq. 10-26 

STEP 23: CALCULATE REPAIR RATING FACTOR, RFR     
Inventory: 

←=
−−

=
+

±−−
= 60.2

)1.547(75.1
)7.73(50.1)3.767(25.13562

)IMLL(
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RF
LL
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R γ
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Operating: 

←== 37.3
35.1
75.160.2RFD   

The Inventory and Operating Rating Factor are compared to those calculated 
at all other sections in this example. The critical section is once again at 
MIDSPAN and the girder rating factors are those calculated in Step 8. 

 

STEP 24: DESIGN SUMMARY 
Use 15 – 2 in wide CFRP strips. 
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