PREDICTING BIOLOGICAL DEGRADATION AND TOXICITY OF STEROIDAL ESTROGENS

by

William J. Barr

B.S. Chemical Engineering, University of Pittsburgh, 2005

M.A.T. Secondary Mathematics Education, University of Pittsburgh, 2006

Submitted to the Graduate Faculty of

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science in Civil Engineering

University of Pittsburgh

UNIVERSITY OF PITTSBURGH SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

William J. Barr

It was defended on

November 15, 2011

and approved by

Jason D. Monnell, Ph.D., Assistant Professor, Civil and Environmental Engineering

Department

Vikas Khanna, Ph.D., Assistant Professor, Civil and Environmental Engineering Department

Thesis Advisor: Willie F. Harper Jr., Ph.D., Associate Professor, Civil and Environmental

Engineering Department

Copyright © by William J. Barr

2011

PREDICTING BIOLOGICAL DEGRADATION AND TOXICITY OF STEROIDAL ESTROGENS

William J. Barr, M.S.

University of Pittsburgh, 2011

This study was to construct a model to predict a variety of biological transformations of Ethinylestradiol (EE₂) using electronic theory and to analyze the estrogenic potential of EE₂ and its metabolites. As a secondary goal, Frontier Electron Density (FED) theory was applied to the natural steroidal estrogens, estrone (E₁), estradiol (E₂) and estriol (E₃) to determine if similar initiating reactions could be expected. Electron density profiles were calculated for EE₂ metabolites to determine possible metabolic pathways up to the cleavage of the first ring. The pathways predicted in this study assume that enzymes commonly found in wastewater treatment systems will be available to attack EE₂ and each metabolite. Predictive pathways were generated for EE₂ based on the electron density and well established degradation rules. A number of metabolites were shown to be consistent with FED theory.

There are many methods available for effectively calculating the electron density of a given molecule. Calculations were carried out on the Pittsburgh Supercomputer (PSC) using the computational chemistry software Gaussian 03. Two molecular orbital theories available for use in Gaussian 03 were used and results compared to determine if the level of theory significantly affected the accuracy of the electron density calculations. In the beginning of this study only one theory was used but after studying the available theories in more detail I implemented a theory that was shown to be more accurate in literature. Using this information and well established degradation rules, metabolic pathways leading up to the first ring cleavage were predicted. Experimentally measured metabolites appear in the predicted pathways.

In order to evaluate the environmental impacts of steroidal estrogens and their subsequent metabolites the estrogenic potential is calculated using chemaxon software. The estrogenic potential was estimated for EE_2 and each of its metabolites both predicted and experimental as well as E_1 , E_2 and E_3 and known experimentally measured metabolites that are similar to EE_2 . In all cases the estrogenic potential of the metabolites indicate that they have a lower toxicity than the parent compounds but may still retain estrogenic potential after biotransformation.

TABLE OF CONTENTS

1.0		INTRODUCTION	1
	1.1	ENVIRONMENTAL IMPACT	1
	1.2	BIOLOGICAL REMOVAL OF STEROIDAL ESTROGENS	2
	1.3	DETECTION OF EE ₂	4
	1.4	ESTROGENICITY	6
	1.5	BIOLOGICAL METABOLITES	10
	1.6	FRONTIER ELECTRON DENSITY	11
	1.7	FED CALCULATIONS	12
	1.8	OBJECTIVES	17
2.0		METHODOLOGY	19
	2.1	METHOD DESCRIPTION	19
	2.2	FRONTIER ELECTRON DENSITY	20
	2.3	DEGRADATION RULES	24
	2.4	ESTROGENIC POTENTIAL	26
3.0		RESULTS	27
	3.1	FRONTIER ELECTRON DENSITY	27
	3.2	INITIATING REACTIONS	28
	3.3	THEORY AND BASIS SET COMPARISON	22

3.4	PATHWAYS	37
3.5	ESTROGENIC POTENTIAL	39
4.0	CONCLUSION	42
APPEND	IX A	44
APPEND	IX B	50
APPENDI	IX C	51
APPEND	IX D	54
APPENDI	IX E	74
APPENDI	IX F	79
BIBLIOG	SRAPHY	83

LIST OF TABLES

Table 1. Analysis of Basis Sets	36
Table 2. Analysis of Level of Theory	36
Table 3. Estrogenic Potential analysis for metabolic pathways	40
Table 4. Estrogenic potential analysis of steroidal estrogens and sulfate conjugates	78
Table 5. 2OH-EE ₂ pathway information	80
Table 6. 6HCYC-EE ₂ pathway information	81
Table 7. SO ₄ -EE ₂ pathway information	82

LIST OF FIGURES

Figure 1. One Electron Hamiltonian	12
Figure 2. HF extension of the one electron Hamiltonian	13
Figure 3. Gaussian 03 input file	21
Figure 4. FED equation	23
Figure 5. Degradation Rules	25
Figure 6. Hydrophobicity of E ₂	26
Figure 7. EE ₂ with atom labels	27
Figure 8. EE ₂ FED at each carbon site	28
Figure 9. Initiating metabolites	29
Figure 10. 2OH-EE ₂ compared to EE ₂ based on the initial transformation	30
Figure 11. 6HCYC-EE ₂ FED compared to the parent compound	31
Figure 12. SO ₄ -EE ₂ FED compared to the parent compound	32
Figure 13. Electron density comparison of basis sets STO-3G vs. 6-31G(D)	33
Figure 14. Theory comparison HF vs. DFT	35
Figure 15. 2OH-EE ₂ pathway	37
Figure 16. 6HCYC-EE ₂ pathway	38
Figure 17. Gaussian Input Structure	50
Figure 18. Estrogenic Potential: Direct Metabolites	75

Figure 19. Estrogenic Potential: 2OH-EE ₂ pathway	. 76
Figure 20. Estrogenic Potential: 6HCYC-EE ₂ pathway	. 77

ABBREVIATIONS

ACM - Adiabatic Connection Method

AOB - Ammonia-Oxidizing Bacteria

AR – Androgen Receptor

B3LYP - Becke, 3 parameter ACM, LYP

CAFO – Concentrated Animal Feeding Operations

CBR – Conventional Bioreactor

CPRG – Chlorophenol red-β-D galactopyranoside

DFT – Density Functional Theory

ECD – Electron Capture Detection

EDC - Endocrine Disrupting Compound

ELISA – Enzyme Linked Immunosorbent Assays

ERE – Estrogen Receptor Enzyme

 E_1 – Estrone

 $E_2-17\beta\text{-}Estradiol$

 $EE_2 - 17\alpha$ -Ethinylestradiol

 E_3 – Estriol

FMO – Frontier Molecular Orbitals

GC – Gas Chromatography

GGA – Generalized Gradient Approach

GR – Glucocorticoid Receptor

H-Bond – Hydrogen Bond

HF – Hartree-Fock

HOMO – Highest Occupied Molecular Orbital(s)

HRGC – High Resolution Gas Chromatography

KS - Kohn Sham

LC – Liquid Chromatography

LOD - Limit of detection

LUMO – Lowest Unoccupied Molecular Orbital(s)

LYP – Lee, Yang and Parr, 1988

MBR – Membrane Bioreactor

MP2 – Moller-Plesset perturbation theory

MR- Mineral Corticoid Receptor

MS-Mass Spectrometry

NAS – Nitrifying Activated Sludge

NCI – Negative Chemical Ionization

PAH – Polycyclic Aromatic Hydrocarbon

PR – Progesterone Receptor

PSC – Pittsburgh Supercomputer

QSAR – Quantitative Structural Activity Relationship

RIER – Redox Induced Electron Rearrangement

SCF - Self Consistent Field

SPE – Solid Phase Extraction

STW – Sewage Treatment Works

TR – Thyroid Receptor

Vg-Vitel logen in

WWTP – Wastewater Treatment Plant

ACKNOWLEDGEMENTS

I would like to thank the National Science Foundation, GEM fellowship and University of Pittsburgh for their financial support. I would like to thank the members of my committee for their guidance in completing this project. I would like to thank Dr. Willie F. Harper Jr., for his invaluable mentorship and patience throughout my time here.

I am thankful for the encouragement and unending support of Dr. Sylvanus Wosu and Alaine Allen who encouraged me to come back to school and continually assisted me in finding funding. I wish to thank my family and friends who has been patient with me as I transitioned from one career to another.

Finally, I give thanks to my Lord and Savior Jesus Christ for grace and mercy throughout this arduous yet fulfilling process.

1.0 INTRODUCTION

1.1 ENVIRONMENTAL IMPACT

Highly active endocrine disrupting compounds (EDC) can be found in the environment as both natural and synthetic steroidal estrogens. Natural estrogens are excreted from the human body in quantities that are still estrogenically active (Aldercreutz 1986). Ethinylestradiol (EE₂), the primary component in birth control pills, is a synthetic estrogen based on estradiol. EE₂ is excreted from the body and primarily reaches the aquatic ecosystem via municipal wastewater as both unused estrogen and as conjugated metabolites. As a result EE₂ has been detected in surface waters that have come into contact with wastewater effluents (Ternes 1999; Kolpin 2002; Kuch and Ballschmiter 2001; Baronti 2000). This has led to the detection of EE₂ in these water bodies in the ng/L concentration range. (Kolpin 2002; Kuch and Ballschmiter 2001; Baronti 2000).

Feminization of male fish has been observed in a number of different studies. Purdom et al. (1994) found that sewage treatment plant effluent had an estrogenic effect on fish. Parkkonen et al. (2000) showed that contraceptive pills which contain EE₂ have an estrogenic effect on fish. Pawlowski et al. (2004) showed that exposure to EE₂ led to gonadal defects in male fathead minnows. Routledge et al. (1998) has shown that exposure to Sewage treatment works (STW) effluent can have an estrogenic effect on trout and roach. Desbrow et al. (1998) has verified the

estrogenicity found in wastewater treatment plants (WWTP) can be attributed to EE_2 and the natural steroidal estrogens E_1 and E_2 using the Yeast Estrogen Screen (YES).

1.2 BIOLOGICAL REMOVAL OF STEROIDAL ESTROGENS

EE₂ has been shown to be a powerful EDC and an environmental threat even at trace levels (low ng/L). EE2 is biodegradable via the activated sludge process. To determine how to improve the biodegradation of EE₂, the current work refers to a number of different studies that have examined different methods of biological removal. Yi and Harper (2007) tested the removal of EE₂ by coupling it with the nitrification process. They used an enriched culture with autotrophic ammonia oxidizers to determine how EE₂ reacted during the nitrification process. indicated that EE₂ undergoes electrophilic initiating reactions on the phenolic ring (ring A see appendix A2). Furthermore, they also showed that ring A was the first ring that is cleaved. Shi et al. (2004) further demonstrated the removal of EDCs by carrying out batch experiments using both nitrifying activated sludge (NAS) and ammonia oxidizing bacteria (AOB) where they tested four estrogens and observed the degradation rate kinetics. They concluded that NAS was the more effective method and that E2 was the easiest to degrade obeying first order reaction rates. In another study involving AOBs and continuous-flow reactors, Khunjar et al. (2011) found that AOBs degraded EE₂ five times faster than heterotrophs. This study also detected the presence of the previously reported sulfo-EE₂ conjugate indicating that it may be recalcitrant. These three studies demonstrated that treatment plants have the capabilities to degrade EE₂. A number of potentially active metabolites have been detected during these studies and authors expressed

concerns about the reactivation of inert conjugated estrogens and the estrogenic activity that is retained after treatment is complete.

Other studies have examined the treatment of WWTP effluent using non-conventional systems that ranged from more intensive and costly techniques to systems that could be deployed in developing countries. Shi et al. (2010) investigated the removal of E₁, E₂ and EE₂ in stabilization ponds using algae and duckweed. They used two different enzyme-linked immunosorbent assay (ELISA) methods in conjunction with solid phase extraction (SPE) to measure the estrogens in the ng/L concentration range. The rate of degradation increased when synthetic wastewater was in the presence of duckweed and algae. The degradation of the estrogens was attributed to both biodegradation and sorption with authors stating that sorption occurred early in the treatment process and that sorbed estrogens were subsequently biodegraded by microorganisms, algae or duckweed. Della-Greca et. al. (2008) identified different metabolites using algae including coupled metabolites and a transformation where the active ring was modified. Clouzot et al. (2010) compared the degradation of EE_2 in membrane bioreactors (MBR) using acclimated activated sludge with removal of activated sludge (AS) directly from a wastewater treatment plant. After the acclimated sludge was well established the concentration of EE₂ was controlled to reach 1 mg/L in both vessels. They determined that removal could reach 99% using the acclimated activated sludge and only 88% using standard activated sludge from a wastewater treatment plant. Authors attributed the difference in removal efficiency to the nitrifying capabilities of the system designed in this study. Yi et al. (2011) also tested the removal of EE₂ in an MBR and conventional bioreactor (CBR) at >50μg/L. The MBR was shown to perform better than the CBR because of better sorption to MBR biomass. Both systems were shown to have similar rates of complete mineralization and the MBR biomass was

capable of quickly producing metabolites over an extended period of time. This second set of studies indicate that the performance of wastewater treatment plants (WWTP) can be improved by using more advanced wastewater treatment methods but may still result in the production of potentially active metabolites and are often significantly more costly than using conventional methods.

1.3 DETECTION OF EE₂

 EE_2 requires analytical techniques with limit of detection (LOD) low enough to measure EE_2 at levels as low as 0.1 ng/L. Huang, 2001 compared the detection capabilities of (Gas Chromatography/Mass Spectrometry) GC/MS/MS to the ELISA method for detecting both E_2 and EE_2 in wastewater effluent and surface water. In conventional wastewater treatment effluent, the remaining endocrine disrupting component was measured at 0.2 and 4.1 ng/L for E_2 and EE_2 respectively. Using reverse osmosis, removal was <0.4 ng/L total between both hormones which is below the LOD. This result indicates that E_2 which is active at 1 ng/L is inactivated but does leaves some doubt about the activity of EE_2 which may be active as low as 0.1 ng/L. This study identified EDC contamination in wastewater effluents at biologically active concentrations and shown the capabilities and limitations of prominent and commercially available EDC detection methods

While WWTPs are capable of removing EDCs the sludge may also be used in land applications and effect feeding operations. Hutchins et al. (2007) analyzed CAFOs to determine the effect of land application as a potential source of estrogen runoff into the environment. To detect free estrogens in their samples they used SPE in conjunction with GC/MS/MS. A

different method was used for the conjugates replacing GC/MS/MS with LC/MS/MS. The limit of detection (LOD) was 20 ng/L. In the swine sow lagoon they were able to detect E_1 $E_2\beta$, and E_3 at 9940, 194 and 6290 ng/L respectively. Conjugates of EE_2 have been identified using nitrifying bacteria in activated sludge experiments (Yi 2007) in wastewater samples using the ELISA (Huang 2001) and in sewage and river waters using SPE/LC/MS (Gentili 2002). In most cases Hutchins et al. detected less than 1 ng/L of conjugated steroidal estrogens in runoff.

Wastewater effluent can come into contact with surface waters and find their way to drinking water. Kuch and Ballschmiter (2001) detected steroidal estrogens among other potential non-steroidal EDCs in a number of different types of waters including surface and drinking water. Detection was done using high resolution GC negative chemical ionization MS (HRGC-NCI-MS) and confirmed using a similar method but replacing NCI with ECD. The LOD for this technique is 50 pg/L in drinking water and 200 pg/L in sewage water effluent. The concentration ranges for steroidal estrogens were 200 pg/L to 5 ng/L and 100 pg/L to 2 ng/L in surface waters and drinking waters respectively.

There are a number of difficulties associated with the detection of steroidal estrogens at the lower end of the active concentration range. Many methods exist for detection but frequently utilize chromatography and mass spectrometry individually or in tandem. In any case the aforementioned combination requires skilled personnel and very expensive equipment. Hintemann et al. (2006), in an attempt to assuage many of the difficulties associated with the detection of EDCs, developed two immunoassays for detecting E₂ and EE₂. Both methods were ELISAs and were optimized based on previous studies to allow for the broader use of the methods. The LOD for E₂ and EE₂ were 0.05 ng/L and 0.01 ng/L respectively. The concentrations detected for E₂ and EE₂ were 12 and 1.8 ng/L in effluent and 4 and 0.7 ng/L in

surface water respectively. In each of these studies, despite the extremely small concentrations detected, EE₂ was frequently detected at concentrations known to exert estrogenicity on biological systems.

1.4 ESTROGENICITY

The toxicity of steroidal estrogens is based on the estrogenicity that they exert upon the environment where they are located. Estrogenicity is the result of an estrogenic compound first interacting with the estrogen receptor enzyme (ERE) and causing the enzyme to yield some biological activity. This can include the production of female hormones Vitellogenin (Vg) and the growth of female hormonal parts such as ovaries. These potent EDCs become hazardous when excreted from the body or after synthetic drugs designed to specifically affect the endocrine system are disposed of unused. In order to determine the extent to which these compounds retain their estrogenicity a number of methods have been developed based on the effect of known estrogenic molecules. Routledge and Sumpter (1996) developed a method that has become widespread for measuring estrogenicity. This method involves a recombinant yeast strain (Saccharomyces cerevisiae) that has the human estrogen receptor integrated into it. With this gene the expression of β -galactosidase is controlled by the ERE. When estrogenic activity takes place β -galactosidase is excreted into the system. In this method β -galactosidase causes a color change with a color changing agent known as Chlorophenol red-β-D galactopyranoside (CRPG) that will turn the solution from yellow to red. Using spectrophotometry, the level of estrogenic activity can be calculated based on the amount of β -galactosidase released. A blank, containing only deionized water, is used and set at 0 and the natural steroidal estrogen E2, one of

the most potent estrogens, is used as the standard. They did not actually look for steroidal estrogens but rather the estrogenicity of surfactants. However, this method known as the YES screen has become prominent in the wastewater community for testing wastewater samples.

Gibson et al. (2005) analyzed fish bile that has been exposed to WWTPs to determine the level of estrogenicity and identify specific contaminants. HPLC-SPE was used to get quality readings of fish bile and compared fish exposed only to tap water and fish exposed to EDC containing WWTP effluent. The YES method was implemented as developed by Rougtledge and Sumpter (1996). E₂ was detected in the ng/L concentration range in fish that were exposed to tap water. In fish bile where estrogenic activity was detected E1, E2, EE2 and a number of nonylphenolics were detected in the low ng/L and pg/L concentration ranges.

There are a number of other methods that have also been developed to calculate the estrogenicity of not only steroidal estrogens but in other contaminants such as xenobiotics. Nishikawa et al. (1999) developed a system not only to test estrogenicity but to test the effect of toxicants on other receptors including the androgen, progesterone, and thyroid hormone receptors (AR, PR and TR respectively). This assay employs a two hybrid assay that uses coactivators known for receptor expression that come from actual mammals as opposed to recombinant yeast. The test is able to identify which receptors are affected by which chemicals based on known results. Instead of using yeast, they use coactivators that have been derived from mammals to get more genuine results and avoid interferences by unknown factors. This method has a lower sensitivity than the YES assay.

Another method was used to measure estrogenicity by measuring the production of an actual hormone instead of using an assay to find an additive as an indicator. Shilling and Williams (2000) implemented a method using cut liver slices and the induction of Vitellogenin Vg. They

were able to demonstrate the level of estrogenicity expressed in vitro by E_2 by exposing liver slices to 1000 nM of E_2 . They also tested the estrogenicity of two weak environmental estrogens over the concentration range of 0 to 250 μ M. The two contaminants tested were o.p. DDE (2-(2-Chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethene) and bisphenol A. They show that both contaminants have an EC50 value at least 4 orders of magnitude lower than E_2 . These studies have shown that it is possible to measure estrogenicity using a number of methods and to determine the relative estrogenicity of a number of different contaminants. However, many of these methods, much like the detection of EDCs require significant amounts of time and highly skilled personnel.

It has been shown that measuring the estrogenicity of a molecule is not a trivial matter and could potentially be costly in both time and money. Fang et al. 2001 studied natural and synthetic steroids to determine what structural properties contribute to estrogenicity. They utilized a QSAR model to analyze 230 molecules (with and without phenolic rings) and they found that the number of hydrogen bond (H-bond) donating groups (n_d) correlated negatively with estrogenicity. They also found that the octanol-water partitioning coefficient (log P) was positively correlated with estrogenicity. Lipinski et al., 2001 found similar results for their analysis of approx. 2500 organic compounds. Schultz et al., 2001 developed structure-activity relationships for 120 aromatic compounds and found that n_d correlated well with estrogenicity but hydrogen bond accepting groups (n_a) had a negative correlation. They also determined that the hydrophobicity of rings B, C, and D (but not A) was positively correlated with estrogenicity. These parameters (log P, n_d, n_a) can be determined from the chemical structures using computational chemistry methods and understanding of which functional groups are capable of hydrogen bonding.

In order to determine the parameters that will affect estrogenic potential it is necessary to understand the mechanism of estrogenicity in terms of how the ligand binds to the receptor. E₂ was used as the standard for estrogenicity as is the case with laboratory estrogenicity tests first performed by Routledge and Sumpter (1996) for developing the YES assay. The estrogen and receptor interactions are governed partially by the hydrogen bonding properties of the ligand and the hydrophobicity (Waller et al. 1996; Schultz et al. 2002). Hydrogen bond donor groups interact with the binding domain of the estrogen receptor and hydrophobicity relates to the potential of the molecule as a whole to contain some level of estrogenicity with no regard to potency.

Hydrogen bond acceptor groups must be considered as they can form intramolecular hydrogen bonds with donor groups. This interaction may affect the ability of the donor group to interact with the receptor. In determining receptor interactions for drugs in general, Lipinski et al. (2001) indicated that hydrogen bond acceptors must be considered when attempting to computationally quantify hydrogen bond donor strength. Saliner et al. (2003) attempted to use a pharmacophore model to predict the estrogenic activity of 120 aromatic chemicals. They separated the analyzed molecules into active and inactive and used quantum similarity methods to determine what functional groups made certain ligands active with the human estrogen receptor. However, four compounds were misidentified as active by their model. They hypothesized that this may be a result of intramolecular hydrogen bonding which their pharmacophore model does not consider. Based on the literature and experimental data the three properties H-bond donors, acceptors and hydrophobicity provide a framework for predicting estrogenic potential.

1.5 BIOLOGICAL METABOLITES

Biodegradation has been shown to occur in wastewater treatment plants (Baronti 2000, Andersen 2003). Yi and Harper (2007) and Gusseme et al. (2009) have examined biotransformation of EE_2 using nitrifying bacteria and identified a number of metabolites for EE_2 . Yi and Harper (2007) identified three different metabolites including one metabolite with the phenolic ring cleaved. Pitak et al. (2008) examined a number of different studies using multiple environments to detect metabolites of both estradiol (E_2) and EE_2 degradation. The biodegradation methods include activated sludge, ammonia oxidizing bacteria, nitrifying activated sludge and microalgae. Transformation products differed dramatically based on the system that was used for degradation. Metabolites involved addition reactions, conjugations on the phenolic hydroxyl group, shifting of the π bonds within the aromatic ring resulting in a loss of aromaticity and ring cleavage. The significance in determining the transformations associated with the steroidal estrogens is an important part of the discussion on toxicity.

For the most part, the primary focus has been the parent compounds and needs to be expanded to include metabolites that may retain estrogenicity. When examining the toxicity of the steroidal estrogens, ring cleavage is a critical step in transformation pathways because "deringed" structures are easier to assimilate (Lehninger 1999) and without rings, metabolites are unlikely to bind to estrogen receptors (Fang 2001). A number of studies have detected ring cleavage showing both ring A and ring B cleavage. Yi et al. (2007) and Khunjar et al. (2011) both reported metabolites that show that ring A is the first to be cleaved during biotransformation. While Haiyan et al., 2007, based on the daughter products they detected, proposed ring B cleavage occurred first. This previous research raises the question of whether ring A or B is cleaved first.

1.6 FRONTIER ELECTRON DENSITY

Frontier Electron Density (FED) has received considerable attention within the computational chemistry community for predicting reactivity. The current work aims to apply FED theory to explore EE₂ biotransformation. FED calculations were used elucidate the fundamental principles governing EE₂ reactivity by predicting which positions on the molecule will most likely undergo electrophilic attack.

Fukui et al. (1952) established the use of FED theory by explaining the role of frontier molecular orbitals (HOMO and LUMO) in regards to the reactivity of aromatic hydrocarbons. After validating the theory with experimental data, Fukui further goes on to explain its validity. This study explained the critical importance of electrons in the frontier molecular orbitals (FMO) as the key factors governing the reactivity of active sites for electrophilic, nucleophilic and radical reactions. Electrophilic reactions, which involve an electron-poor molecule attempting to react with the substrate, examine the electron density for the HOMO electrons because of the electrophiles attraction to electrons and the ease of access to those electrons in comparison to all other electrons in the molecule.

Liu et al. (2000) calculated the FED for the dye alizarin red in the presence of a TiO₂ catalyst and compared those results to experimentally determined byproducts. They were able to show that the initiating photo oxidation took place at the highest FED carbon site but that the intermediate was unstable and so a subsequent molecule in the degradation process was detected. Lee et al. (2001) applied Fenton oxidation to five recalcitrant PAHs and identified the oxidation products using GC/MS. Frontier electron density was calculated for each PAH and compared to the oxidation products to determine if the experimental results agreed with the theory. It was shown that four of the five PAHs did agree with FED theory. Ohura et al. (2005) examined

airborne PAH's and determined that abiotic chlorination of these molecules coincided with high FED positions. Wang et al. (2007) showed that photo degradation of bis (4-hydroxyphenyl)ethane could be enhanced under UV irradiation in the presence of β-cyclodextrin. The improved removal was associated with certain reaction sites having higher electron density when preceded by UV irradiation. This led to a more than 50% increase in photo degradation. Although these previous attempts focused on abiotic reactions, they bolster the potential for predicting biological oxidations in the same way. Previous efforts to conduct a priori predictions of biodegradation have been very successful when focusing on readily degradable substrates (e.g. glucose) that enter well-characterized metabolic pathways (e.g. glycolysis). FED-based techniques present the promise of predicting biodegradation on complex organics like EE₂; a contribution here can eventually make a significant impact.

1.7 FED CALCULATIONS

Calculating the FED requires the use of well-defined quantum chemistry theories and calculation techniques. The first equation is the one electron Hamiltonian as defined by the equation below (Figure 1). This equation is used in conjunction with the Schrodinger equation to calculate the energy of each electron in a system (atom or molecule).

$$h_{i} = -\frac{1}{2} \nabla_{i}^{2} - \sum_{k=1}^{m} \frac{Z_{k}}{r_{ik}}$$

Figure 1. One Electron Hamiltonian

In this, equation the ∇ represents the laplacian operator, m represents the total number of nuclei. Z_k is an atomic number and r_{ik} is the distance between nuclei i and k. This equation must satisfy the following: $h_i\psi_i=E_i\psi_i$. E is the energy eigenvalue and ψ is an eigenfunction that satisfies this equation known as the Schrodinger equation. This equation does not account for interaction potentials between the electron in question and other electrons in the system. This equation underwent two extensions that allowed for easier solutions and for an additional term to represent that potential. These extensions make up what is known as the Hartree-Fock (HF) theory and modifies the one electron Hamiltonian into the following equation:

$$f_{i} = -\frac{1}{2}\nabla_{i}^{2} - \sum_{k=1}^{nucleii} \frac{Z_{k}}{r_{ik}} + V_{i}^{HF}\{j\}$$

Figure 2. HF extension of the one electron Hamiltonian

The additional term in this equation is the interaction potential between the electron in question and other electrons occupying orbital j. This extension also involved the validation of extending this equation to a many electron eigenfunction in what is known as the "Hartree Product" This extension is a critical factor in improving the use of quantum chemistry in defining molecular orbitals and further solving the Schrodinger equation.

Solving the above equations is not a trivial task and has led to consistent development and extension of computational chemistry software packages and theory. One such approach was proposed by Hartree in 1928 (Cramer 2002) known as the self-consistent field method (SCF). This method involves estimating what the eigenfunction will be followed by solving the Schrodinger equation and calculating a second eigenfunction. This function becomes the new estimate and the process is repeated until the calculated eigenfunction converges on the estimated eigenfunction. This process has two primary limitations when it comes to computational chemistry software. The first problem occurs when the initial estimation

calculates an eigenfunction that is drastically different and then the second eigenfunction reports a different solution that is drastically different from the second. In this case the software will continue to attempt to find a solution but will not converge and yet will keep attempting to solve until the program reports an error, the computer fails to continue or the time allotted expires and reports the job as being in the middle of processing though it may never finish. The second problem occurs when the first eigenfunction reports a second eigenfunction and in the second iteration the second eigenfunction reproduces the first eigenfunction leading to another infinite and undetectable loop in the SCF method.

In density functional theory electrons interact with one another and with an external potential. The nature of the external potential depends on the constituent being examined. In terms of molecules the external potential is electrons attraction to the nuclei. This interaction has been defined in earlier theories. A major breakthrough in density functional theory is the revelation of the Kohn-Sham (KS) theory. As in the case of the Hartree-Fock theory, DFT was still limited by the difficulty in computing a real interacting system. KS theory defines a new type of molecular orbital where a non-interacting system is equated to a real system with electron interactions. It is noteworthy to mention that KS theory has a number of similarities to the earlier HF theory. Determination of the KS orbitals continues in the same manner as molecular orbital theory by defining the orbitals in a basis set of functions. The kinetic energy and nuclear interaction terms are also identical to those seen in the Fock matrix from HF theory. Solution of the KS orbital also requires an SCF method. However, there is a critical difference between the two theories; DFT has no approximations. The final obstacle to overcome is to relate the exchange energy to the electron density.

The exchange correlation (E_{XC}) has two features. First it is the difference between the classical and quantum mechanical electron-electron repulsion. Second it is the difference between the kinetic energy of the fictitious non-interacting system and the real system. The second portion of E_{XC} is not solved explicitly. Different theories alleviate this deficiency in different manners. In some cases it is ignored in others it is introduced as an empirical parameter. In order to determine E_{XC} the generalized gradient approach (GGA) came to the forefront. The most popular method for determining the exchange functional is the Becke method (1988). For the GGA of the correlation functional the LYP method (1988) is most widely used (Cramer 2002). This method calculates the full correlation energy. The exchange correlation calculations were extended when the extent to which electrons interacted with one another was quantified. This was done using the Adiabatic Connection Method (ACM). Becke optimized this method using 3 parameters in EXC calculations. The ACM method is then applied to the exchange and correlation functional and in our case becomes the B3LYP which is one of the most commonly used theories in computational chemistry.

To analyze the primary differences between the two functions, Cramer compares the method that both DFT and HF use for measuring molecular properties and the calculations of a number of different properties for accuracy analysis. The first major difference is the use of wave functions for HF and electron densities for DFT. This difference is critical because there are semi-empirical components in the HF theory that are not present in DFT. This means that the property being calculated must depend on the electron density which is specifically the case here and so that limitation to DFT is not relevant in this study. The difference between the two types of orbitals used for calculations is the primary reason for shifting from HF to DFT. The KS orbitals used in DFT are similar to the HF orbitals but do not suffer from excessive energy

calculations introduced to HF theory because of the way the external potential is calculated. In the case of the KS orbitals all electrons experience the same external potential whereas certain orbitals in HF theory feel the external potential as if an additional electron was added to the molecule. This overestimates energy in HF theory in a manner not seen in DFT. Many molecules were measured using both to compare the results between the two at the same basis sets but the majority of the molecules were analyzed using DFT.

The second major specification that must be made is the basis set to use. A basis set is a mathematical description of orbitals in a system used for theoretical calculations and modeling. Molecular orbitals are represented by equations that will be present in the function representing nodal surfaces (places where the orbital changes signs). The functions that are used are a combination of atom-centered basis functions. The equations use hydrogen atomic orbitals as a foundation but this leads to extremely complex integrals that are too time consuming to solve. This difficulty led to the use of Cartesian Gaussian functions centered on the nuclei. These functions act similar to the hydrogenic atomic orbitals with the exception of an overly ambitious decrease near the nucleus. To account for this linear combinations are used to imitate the atomic orbital behavior. For example, the basis set STO-3G uses a linear combination of three Gaussian equations for the description of the slater type orbitals. STO-3G is a minimal basis set where one basis function is selected for every atomic orbital that is required. In the case of a methane molecule for example this would involve 4 basis functions for hydrogen (1s orbital X 4 molecules) and 5 basis functions for carbon (1s, 2s, 2px, 2py and 2pz X 1 molecule) for a total of 9 basis functions. 6-31G(D) is a split valence basis set with polarization. This means 6 Gaussians are used for non-valence orbitals and then valence orbitals are contracted into two orbitals with the inner orbital employing three Gaussians and the outer orbital using one

Gaussian. An additional set of d-type functions are added to any non H atoms. These functions give a better description of the orbital distortion caused by polarization affects. For example instead of rigidly forcing the shape of a p-orbital to remain unchanged, adding the d-orbital allows a shift in the orbital shape away from what a perfect p-orbital should be. This addition greatly increases the accuracy of bond angles and lengths. Examples of other split basis-sets include 4-31G and 3-21G. (Handbook of Gaussian Basis sets, 1985). The basis sets are affected by the theory in terms of computational cost but based on the different theories and basis sets used it is the basis set that is the primary deciding factor in the length of time for running jobs using Gaussian '03.

1.8 OBJECTIVES

This research is design to assuage the process of identifying environmental toxicants using computational chemistry as a predictive model for the degradation of steroidal estrogens. Experimental techniques are necessary for identification and determining the effect of EE₂ on the environment but these techniques are often extremely costly, difficult and require a significant amount of time and resources. Coupling experimental techniques with the research done in this study will ease the burden of experimental work by explaining current experimental results and predicting potential results. The hypothesis of this study is that biological oxidation will occur at high FED carbon sites. It has been shown in a number of studies that the phenolic ring is often susceptible to electrophilic attacks. FED theory has been used to predict the reactivity of a number of non-substituted aromatic hydrocarbons as well. Non-specific Oxygenase enzymes are present in wastewater treatment systems and are capable of initiating electrophilic substitution on

substrates in the system. EE_2 would be a prime candidate for these enzymatic attacks and the nature of this potential reaction fits within Fukui's theoretical basis for the frontier electrons being the critical factor in electrophilic attacks (1952).

The objectives of this study are as follows:

- Use FED theory to predict initiating reactions involved in EE₂ transformation
- Investigate different computational chemical methods for calculating FED
- Generate predictive pathways up to the ring cleavage phenomenon for EE₂
- Analyze the estrogenic potential of the steroidal estrogens and metabolites

2.0 METHODOLOGY

2.1 METHOD DESCRIPTION

Three primary methods have been used in order to analyze the reactivity and toxicity associated with the steroidal estrogens. FED calculations are carried out using Gaussian 03 on the Pittsburgh Supercomputer (PSC). Gaussian 03 is a versatile computational chemistry software package that allows for a number of different calculations using a vast array of different theories and the freedom to define molecular orbitals to the specific intent of the researcher. Jobs can be inserted into Gaussian 03 using a number of different methods that will be discussed in detail in a later section.

Well-established degradation rules are used in conjunction with FED theory to determine what types of reactions will take place at the identified reactive location. These rules are applied to the steroidal estrogens and used in conjunction with FED theory to validate the use of frontier electron density and to generate metabolic pathways up to the ring cleavage. Validation will be determined based on the hypothesis that high electron density carbon sites have a significantly higher probability of being attacked by enzymes that are commonly present in wastewater treatment systems. The common enzymes that were used are the oxygenase enzymes. Other enzymes that may have a significant affect specifically on the metabolites discussed in this study are deconjugation enzymes such as sulfatase enzymes. All of the steroidal estrogens were

analyzed to determine the affect the ring D-functional group has on the four steroidal estrogens in terms of estrogenicity and reactivity. Metabolic pathways will be generated up to the ring cleavage metabolite for all EE₂.

When evaluating the environmental impacts of EE₂ it is necessary to determine the estrogenicity. The estrogenic potential is the ability of a molecule to interact with the ERE and was estimated for every molecule in this study based on the known estrogenicity of the parent compounds and specific metabolites found in nature. Estrogenic potential does not account for the biological activity that occurs after the estrogen binds to the ERE. The toxicity of EDCs is based on receptor interactions, specifically ER in this study but this analysis could have potential bearing on other prominent receptors that may be interacted with by toxicants. When an estrogen does interact with the estrogen receptor certain estrogenic activity takes place. Male fish exposed to EDC contaminated water have been shown to produce proteins typically produced only in females (Shillings and Williams 2000) is a primary example. There has also been evidence of intersex fish (Gibson 2005) when exposed to EDC exposed effluent. The goal of this section is to predict the extent to which each metabolite and parent compound is capable of reacting with the ER based on known factors affecting estrogenicity.

2.2 FRONTIER ELECTRON DENSITY

After selecting a theory and basis set based on computational chemistry literature, calculating the energy eigenfunctions requires two steps; first, optimization to the lowest energy conformation and then the actual energy calculation. Figure 3 shows an example input file made using notepad. For ease of explanation this file was made using CO₂. There are a number of different sections

to be specified in the Gaussian 03 input file. The first section, the %section is file specifications where a checkpoint file is specified for storing the processes that take place in all calculations relevant to the job being run. This is also where the computer memory and number of processors to be used is specified. The route section is where the job specifications are entered. The third section is the title of the molecule. The fourth section defines the charge of the molecule (specifically if radicals are used) and the spin multiplicity of each atom in the molecule. The final section is where all molecular data is presented including connections, estimated bond lengths and bond types. The size of the molecule being calculated in Gaussian 03 depends tremendously the size of the input file, the time of calculation, the size of the output file and the number of iterations required for completing each objective. None of the specifications used in this study are present in the example file. Appendix 1 contains certain complete input files to give readers an idea of what input files look like.

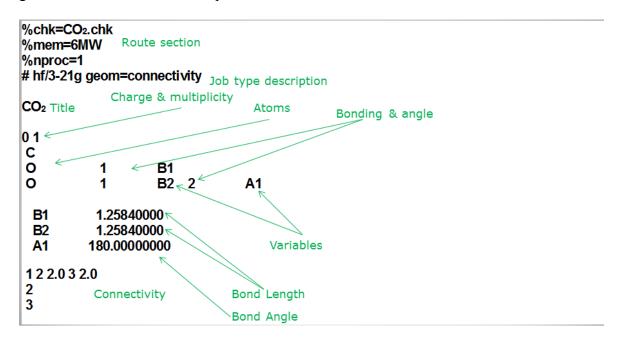


Figure 3. Gaussian 03 input file

The checkpoint file records all of the calculations made by the program for use with different jobs being run on the same molecule (optimization and energy). This section is also where the computer usage was specified. The number of processors and the amount of memory used was specified based on the advice of the PSC. The major advantage of using the PSC is that the researcher is given access to a multiplicity of computers. Once the researcher has the skill to use Gaussian 03, supercomputing resources and to unify the two it is possible to make much more efficient use of computational time by uploading multiple jobs onto different resources at once. The effectiveness of the supercomputing software after some level of mastery was achieved counteracted the disadvantage of spending so much time waiting for the outputs (6-10 hours). Uploading only one at a time would limit the researcher to run one job per day and two if there were smaller compounds (ring cleavage metabolites). The job type description specifies the theory and the basis sets but can also specify special details to calculate different things or to limit how the calculations will change the molecule during optimization. The chargemultiplicity section specifies the charge of the molecule and the spin multiplicity (singlet or triplet) allowed within orbitals. The next sections involve the specific molecular composition. The connectivity is a special section using the special keyword GEOM to ensure that the molecule is not changed during optimization.

After the optimization and energy calculations have been completed the output files are analyzed the electron density can be calculated. The highest occupied molecular orbitals (HOMO) are identified and the energy of those orbitals is used to calculate the frontier electron density. These orbitals are used when electrophilic reactions occur. The LUMO orbitals are used when nucleophilic reactions are of interest and both are used when radical transformations

take place. The following equation is used with the energy of the HOMO orbitals to calculate the FED.

$$f_{r} = \sum 2*C_{fr}^{2}$$

Figure 4. FED equation

In this equation C_{fr} represents the energy of the HOMO and f_r is the electron density of the given electron. FED is calculated for each carbon atom. The FED of EE₂ and a number of metabolites were calculated using both theories and basis sets but all molecules were calculated using DFT/6-31g(d) basis set.

A comparison of the basis sets STO-3G and 6-31G(D) and theory were carried out to determine the viability of the lesser methods in favor of computational costs time wise. The first comparison was between the two different basis sets. The first calculations were done using the STO-3G basis set with the HF theory. These calculations represent the lowest level of calculation. Consequently, these calculations also took the least amount of time. The second set of calculations involved calculating the electron density using a much higher and more accurate split valence basis set; 6-31G(D). The third set of calculations compared the two theories; HF and DFT at the higher basis set after the comparison of the first two basis sets. After all comparisons were complete FED profiles were generated for all experimentally measured and predicted metabolites and sorted into metabolic pathways starting from EE₂ and when possible, extending to the first ring cleavage.

2.3 DEGRADATION RULES

After determining high probability reaction sites, degradation rules based on the work of several separate research groups were applied to produce metabolic pathways leading up to ring cleavage. The following 6 rules have been applied to the FED calculations. (Kamath and Vaidyanathan1990; Hay and Focht 1998; Nosova et al. 1997; Nagy and Fabian 2006; Stephan et al. 1997; Casellas et al. 1997; Dean-Ross et al. 2001; Brzostowicz et al. 2005; Nakazawa and Hayashi and Hayashi 1978; Olsen et al. 1994)

Rule 1 – The enzyme attacks the carbon atom at the highest FED. The carbon atom being oxidized must be bound to a -H, =O, or -OH group.

Rule 2 - The phenol ring is cleaved after being oxidized to catechol. Oxygenolytic cleavage of the phenol ring occurs via Ortho- or meta-cleavage. Ring cleavage takes place between the hydroxylated carbon with highest FED value and carbon with higher FED out of two adjacent carbons.

Rule 3 – The cyclohexane and cyclopentane rings are opened after oxidation to cyclohexanone and cyclopentanone, respectively. Ring cleavage of either cylcohexanone or cyclopentanone is determined by the same rule with phenol ring cleavage.

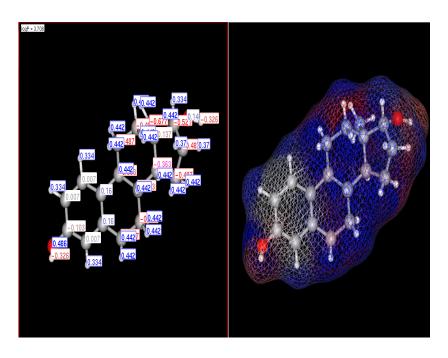
Rule 4 - After ring cleavage, carbon chains are degraded to hydroxyl-, ketone, and carboxylic acid, followed by a de-carboxylation step.

Rule 5 – Resonance can cause the phenol ring to be converted to a semiquinone tautomer, which can be oxidized according to degradation rules 1-4.

Rule 6 – If the degradation rules are not applicable to rules 1 through 4, enzymatic attack proceeds at the carbon atom with the second highest FED value.

Figure 5 illustrates degradation rules 2-5.

Rule 2:


Rule 3:

Rule 4:

Figure 5. Degradation Rules

2.4 ESTROGENIC POTENTIAL

The three factors for determining estrogenic potential are n_a , n_d , and hydrophobicity. The number of donor groups is calculated based on the number of hydrogens attached to atoms capable of participating in hydrogen bonding. In this study, only oxygen was capable of forming hydrogen bonds and each functional group was counted as one. For hydrogen bond acceptors, in a fashion similar to Lipinski et al. (2001) all oxygen atoms (no nitrogen is present) were counted as n_a . The method for calculating the hydrophobicity was an additive approach that assigns each atom a value based on the surrounding bonds. Figure 6 shows an example of how logP is calculated using this additive method (Viswanadhan et al., 1989). This method has been validated using experimental results for a number of different molecules to determine the octanol-water coefficient. This calculation was done using the free online chemaxon software (2009). The blue values are positive hydrophobicity, the red are negative and the grey is neutral.

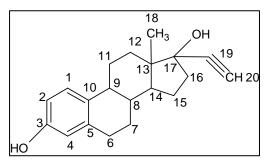


Figure 6. Hydrophobicity of E₂

3.0 RESULTS

3.1 FRONTIER ELECTRON DENSITY

The frontier electron density of EE₂ was calculated using all basis sets and theories. In order to relate the carbon site numbers in charts containing FED data to the actual structure the standard numbering procedure was applied to the figure as presented in Gaussian 03. Figure 7 shows EE₂ with the atoms numbered.

Figure 7. EE_2 with atom labels

These labels will be used for all of the steroidal estrogens and metabolites. The rings shall be referred to by letters starting from the left going right letters A through D. After each carbon is assigned a number it is possible to get a better look at the electron density profile for EE₂. Figure 8 shows the electron density profile of EE₂ using DFT. Referring to both figure 7 and 8 the first thing that is apparent is that the highest reactive sites are in Ring A.

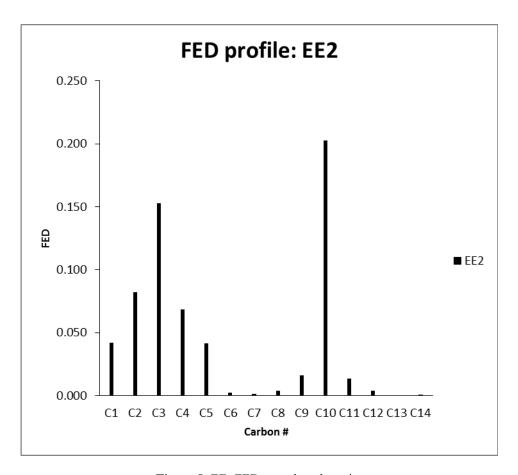


Figure 8. EE₂ FED at each carbon site

The carbon sites with relevant electron density are carbons 1, 2, 3, 4, 5 and 10 which are the six carbons that make the phenolic ring. This is consistent with the two studies mentioned earlier (Yi 2007 and Khunjar 2011) with metabolites detected with ring A cleavage.

3.2 INITIATING REACTIONS

Figure 9 illustrates the three metabolites that have been published in literature based on experiments for investigating the biodegradation of EE₂. Initiating reactions occur at carbon units with high electron density.

Figure 9. Initiating metabolites

Each of these reactions occurs at one of the highest three electron density sites. In the case of 2OH-EE₂, hydroxylation at the C2 carbon site is the initiating reaction. This is the third highest electron density site and the highest site where an addition reaction is possible without any transformation to the phenolic ring. This is the type of transformation that would generally be expected to occur on a phenolic ring. This oxidation is an electrophilic substitution at the ortho position which plays a role in further biodegradation based on the rules established for this study. The second metabolite, 6HCYC-EE₂ is a transformation at the C10 carbon that occurs after tautomerization of ring A. Prior to this process, it is impossible for a hydroxylation to occur at the C10 carbon. The third transformation is actually a conjugation from a hydroxyl group to a sulfate functional group in its place. The third carbon is the second highest electron density position. The detection of these three initial metabolites is consistent with FED-based theory.

The electron density profiles for the three initial metabolites were also calculated. These charts were to illustrate the effect of each biological transformation on the electron density. Each transformation only involves one step and so it is expected that the change in electron density should only take place at or near the carbon site where the biotransformation takes place. Figure 10 compares the electron density of EE₂ to 2OH-EE₂. The electrophilic reaction occurs at C2.

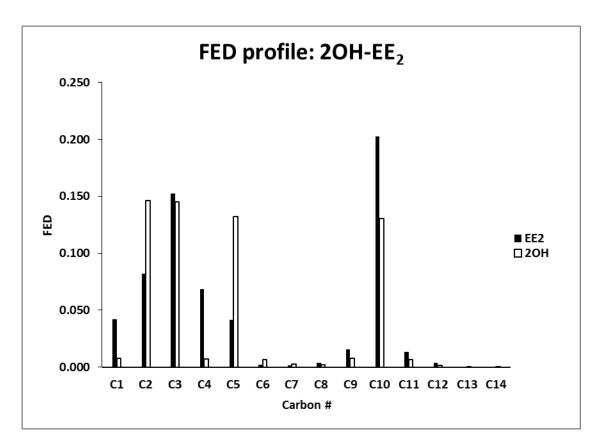


Figure 10. 2OH-EE₂ compared to EE₂ based on the initial transformation

The profile of 2OH-EE₂ is interesting because of the increase of electron density at that location. The electrophilic attack should draw electrons away from that location, because of the higher electronegativity of the hydroxyl group in comparison to the carbon atom, but that is not the case. This has been attributed to the phenomenon redox induced electron rearrangement (RIER). RIER asserts that upon oxidation the removal of an electron causes local orbitals to relax which leads to a reconfiguration of the electron density that results in an increase in the electron density. Figure 11 illustrates the electron density profile for 6HCYC-EE₂. This is the only transformation at the highest FED value of the parent compound but unlike the other two byproducts the shifting of electrons occurs in multiple locations.

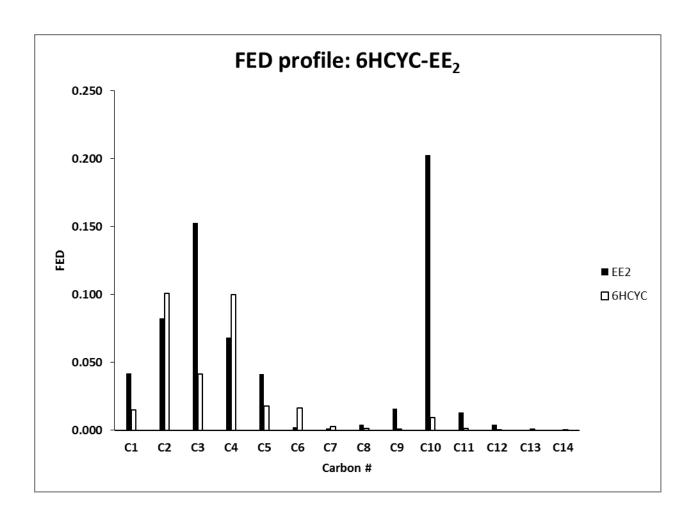


Figure 11. 6HCYC-EE₂ FED compared to the parent compound

This pathway shows a dramatic decrease in the total electron density of the molecule. The electron density has decreased by over 50% from EE₂ to 6HCYC-EE₂ (0.631 to 0.309). This result is not surprising because ring A is no longer aromatic and has lost much of its reactivity and stability. Also the oxidation at C10 removes nearly all of the electron density unlike the first pathway. Figure 12 shows the FED profile for SO₄-EE₂ and EE₂.

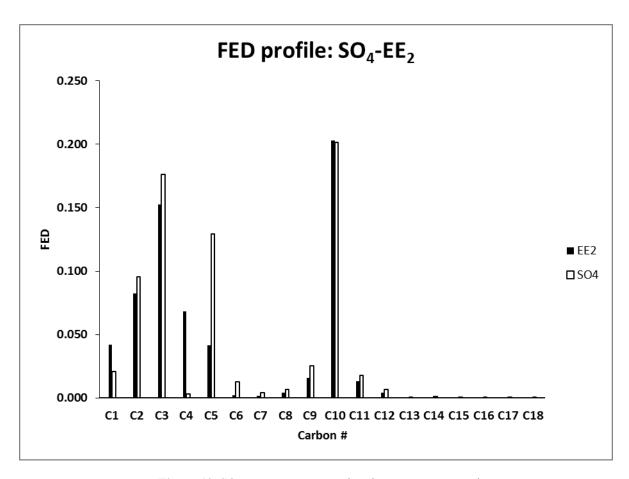
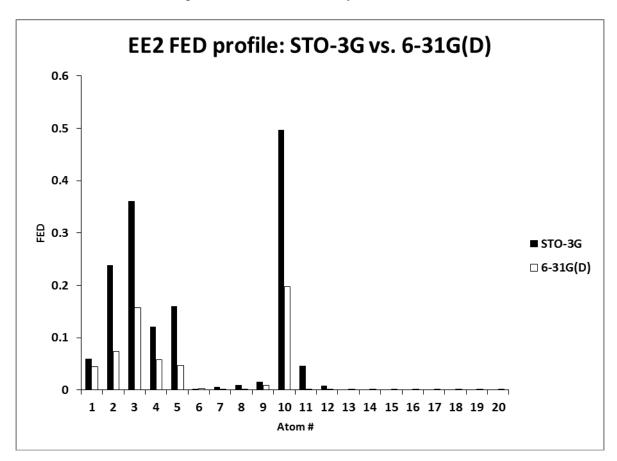



Figure 12. SO₄-EE₂ FED compared to the parent compound

Sulfo-EE₂ appears to be recalcitrant. Khunjar et al., 2011, recently found that Sulfo-EE₂ was not degraded by heterotrophic cultures that were otherwise active. Further, I hypothesize based on the increase in the size of the functional group, that steric interferences cause sulfo-EE₂ to be significantly less reactive than the other initiating metabolites. C3 contains the much larger sulfate group (compared to hydroxyl) which may interfere with the reactivity of both adjacent carbons (C2 and C4). Despite the increase in electron density the presence of the sulfate group may end up being responsible for limiting the reactivity of this metabolite. C10 and C5, which make up the majority of the electron density, are also unavailable for addition reactions for reasons stated during the discussion of 6HCYC-EE₂

3.3 THEORY AND BASIS SET COMPARISON

After successfully completing Gaussian 03 jobs, HF theory was applied to both basis sets and results were compared. In all cases for geometric optimization the lower basis set was faster than the higher basis set by a number of hours (data not shown). Figure 13 shows a comparison of the two basis sets when implemented with HF theory.

Figure 13. Electron density comparison of basis sets STO-3G vs. 6-31G(D)

Figure 13 shows the electron density calculation for EE₂ using two different basis set. Ideally, these profiles should be identical. The magnitude of the difference at each carbon site illustrates the need to employ the better basis set if feasible. The comparison of the FED profile for EE₂ shows that the lower basis set over-estimates the electron density at all relevant carbon sites (C2,

C3, C4, C5 and C10). The largest difference is 0.29 for C10. The lower basis set FED value was more than double the value at the higher basis set. This result is within expectations because the first step of the process is an optimization to the lowest energy conformation. The lower STO-3G basis set uses less rigor and so the lowest energy conformation it is capable of calculating is not as low as the conformation calculated by the higher basis set. The lower basis set does however show the same high electron density sites (and carbon site higher than 0.1) as the higher basis set. In the case of both basis sets the highest three reactive sites follow the same trend (C10>C3>C2). The difference in the accuracy can be further illustrated by the time it takes to run Gaussian 03 jobs using both basis sets. The lower basis set takes approximately one hour to complete. The split valence basis set takes between 6 and 10 hours. This data indicates that the limiting factor in using the Gaussian 03 software is the basis set being applied. Given that the more accurate basis set was available without too much of a difference in computational time, (~9 hour difference between them in the worst case), the higher basis set was used for developing transformation pathways.

HF and DFT show similar FED profiles for EE₂. DFT is slightly higher than HF at all relevant carbon sites (FED>0.05). The two theories also predict the same reactive carbon sites and nearly identical absolute electron densities. The largest difference between the two theories in this case occurred at C2 and was 0.01652. In most cases using DFT required more time than HF (~8 or 9 hours). However, the highest calculation time was for HF using SO₄-EE₂. (~10 hours) This work shows that the basis set selected has a much greater effect on the FED calculation than the level of theory. The basis set affects the time and the calculated energy eigenfunctions. The theory plays a much less significant role in calculation. This is not entirely surprising as both theories define molecular orbitals in similar fashion and require the same

solution method as defined by Fock. For consistency, the rest of the FED results figures were calculated using DFT as the more advanced theory. Other comparisons are presented in the Appendix.

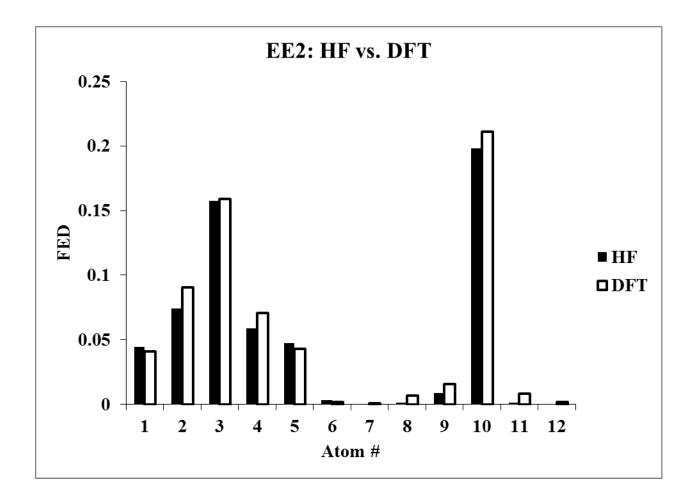


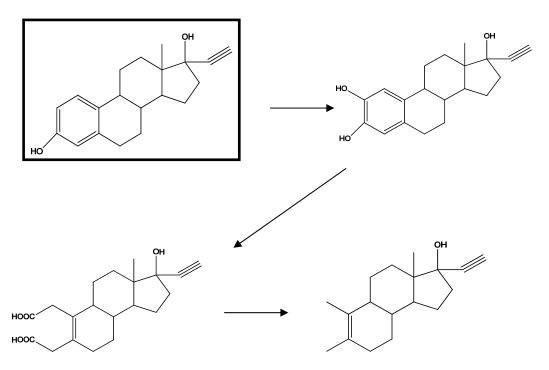
Figure 14. Theory comparison HF vs. DFT

In deciding which method to use for the duration of the study the calculation times were examined as well as the accuracy based on a review of the literature (refer to methods section) Table 1 gives the results of the comparison between the two basis sets. This table was used to compare the pros and the cons of the basis sets to determine which one should have been used or if either one would have been acceptable.

Table 1. Analysis of Basis Sets

	STO-3G	6-31G(D)
Pros	-Very short run time	-Noticeably better definitions of
	-Highest sites correctly	molecular orbitals
	predicted	-Time disadvantage alleviated by
		using PSC
Cons	-all FED values are	-Takes 6 to 10 hours per job
	severely overestimated	

Based on the results presented in Figure 13 and the analysis done in Table 1 it was necessary to employ the higher basis set to confidently present quantitative results. Table 2 compares the two theories based on Figure 14 and other theory comparisons that have been performed.


Table 2. Analysis of Level of Theory

	HF	DFT
Pros	-Slightly shorter run times usually -Highest sites correctly predicted -Differences to DFT are almost negligible	-Better definition of molecular orbitals -sometimes shorter than HF
Cons	-Theoretically not as accurate as DFT -Not always shorter -Takes 6-10 hours per job	-8-9 hours per job

The two theories showed very similar FED trends and either could have been used. HF could have been used if it always proved to have a shorter runtime than DFT. In most cases HF was shorter than DFT, but for sulfo-EE₂, the HF runtime was longer than the DFT runtime. DFT and HF had similar run times in most cases making time a much smaller issue in this study, therefore DFT was selected because it is the more rigorous theory. Appendix 4 contains additional figures comparing the basis sets and the theories.

3.4 PATHWAYS

Figure 15 illustrates the pathway that was generated, starting with the initiating reaction that produces 2OH-EE₂.

Figure 15. 2OH-EE₂ pathway

After the hydroxylation of EE₂ at the C2 carbon site 2OH-EE₂ is produced. This molecule contains a catechol molecule in the first ring. The next step is ring A cleavage, followed by the degradation of the hydroxyl groups to carboxylic acid groups. The final metabolite in this pathway is ETDC, which occurs after decarboxylation, and has been detected by Yi and Harper, 2007. The existence of this pathway shows the capabilities of the coupled FED theory and degradation rules not only to predict initiating reactions but also ring cleavage metabolites. The second pathway is represented in Figure 16 and starts with the tautomerization, which removes one of the double bonds out of the ring to form the ketone group in place of the hydroxyl group.

This transformation exposes the highest FED position for oxidation. The second transformation step produces 6HCYC-EE₂, which was detected in the effluent of a microalgae-based bioreactor (Della-Greca et al. 2008). The next step is an ortho-transformation which leads to the third metabolite, also similar to a catechol molecule with one of the hydroxyl groups changed to a ketone group prior to ring cleavage. This is followed by ring cleavage and then transformation of the hydroxyl and ketone functional group to carboxylic acid groups. The final metabolite shows the decarboxylation step.

Figure 16. 6HCYC-EE₂ pathway

Prior to tautomerization, the C10 carbon is already single bound to two carbons and double bound to a third. This makes it impossible for any type of addition reaction to take place at the C10 carbon. This is a critical pathway for two reasons. It is the only pathway with a transformation occurring at the highest electron density and it is the only pathway where ring A has its aromaticity removed. For the final metabolite, SO₄-EE₂ there is no pathway. This is significant because while it has been detected in activated sludge it also exists in other areas.

Specifically fish are known to conjugate EE₂ into SO₄-EE₂ to detoxify and make SO₄-EE₂ easier to excrete (Kotov 1999; Zamek-Gliszczynski 2006). This is an important factor not only in terms of reactivity but also toxicity. Khunjar et al. (2011) detected sulfo-EE₂ as well but did not detect any further degradation while using a nitrifying culture followed by a heterotrophic culture in series. Hutchins et al. (2007) indicated that sulfatase enzymes were capable of deconjugating SO₄-EE₂ but the only conjugates they were able to detect above 1 ng/L were sulfate conjugates. This is consistent with our results showing sulfo-EE₂ being recalcitrant. SO₄-EE₂ also does not fit within the established degradation rules of this study. Sulfo-EE₂ may either be a "dead-end" metabolite, or it may be transformable after desulfurization, which may be a slow process (Hutchins et al. 2007). Wastewater treatment plants that are interested in EE₂ should look for Sulfo-EE₂ in secondary effluent.

3.5 ESTROGENIC POTENTIAL

The estrogenic potential of the pathways and metabolites presented in the previous sections was analyzed based on the factors indicated in literature using structural analysis relationships. This data does not quantify estrogenic potential but estimates the direction and magnitude of the change qualitatively based on those key factors that are calculated. Table 3 illustrates the change of estrogenic potential for EE₂ and each metabolic pathway. The most important factor to consider was the hydrogen bond donor groups followed by the acceptor groups that are capable of competing with the estrogen receptor. The hydrophobicity was the lowest impact factor because it involves the entire ligand and receptor while the other two factors focus only on the active sites. Based on the estrogenic potential rules discussed previously, EHMD is predicted to

have a lower estrogenic potential than EE_2 because the n_a is greater (3 vs. 2), the n_d is unchanged, and the log P is smaller than that of EE_2 (2 vs. 3.7). Sulfo- EE_2 also appears to have lower estrogenic potential than EE_2 for similar reasons. OH- EE_2 has a lower log P (3.4 vs. 3.7) and higher n_a (3 vs. 2) compared to EE_2 , but it also has an additional hydrogen bond donating group, a fact that may counterbalance the changes in log P and n_a .

Table 3. Estrogenic Potential analysis for metabolic pathways

Pathway	Compound	H-bond donors	H-bond acceptors	logP	Change in estrogenic potential
	EE ₂	2	2	3.72	
2OH-EE ₂	2OH- EE ₂	3	3	3.43	Slight Decrease
	EDMC	3	5	1.48	<u>Decrease</u>
	ETDC	1	1	3.77	<u>Decrease</u>
	EHMD	1	2	3.19	<u>Decrease</u>
6HCYC-EE ₂	6HCYC-EE ₂	2	3	2.02	<u>Decrease</u>
	ETMD	3	4	1.11	<u>Decrease</u>
	CEDM	4	6	0.82	<u>Decrease</u>
	EDMC	2	2	1.99	<u>Decrease</u>
SO ₄ -EE ₂	SO ₄ -EE ₂	2	5	2.96	<u>Decrease</u>

Thus, in this case the change in relative estrogenic potential is not as clear, however, we hypothesize that $2OH-EE_2$ has less estrogenic potential than EE_2 because previous work has shown that $2OH-E_2$ (not $2OH-EE_2$) is less estrogenic than E_2 . If hydroxylation at C2 reduces estrogenicity for E_2 , it seems reasonable to expect the same for EE_2 (Lee 2008).

Estrogenic potential changes during the course of the transformation pathways. For example, during the EE₂-to-EDMC pathway (Figure 15), there are clear indications that estrogenic

potential decreases during the steps leading to ring cleavage; the log P decreases and the n_a increases. The last compound in the pathway (EDMC) is without the active phenolic ring, and is therefore likely to have lower estrogenic potential. There are, however, two predicted metabolites (i.e. ETMD and CEDM) that have a higher n_d (3 and 4 respectively) than EE₂. These two compounds should probably be tested for estrogenicity in future efforts. During the EE₂-ETDC pathway, there are also indications that estrogenic potential is reduced (Figure 16). OH-EE₂ (as mentioned earlier) is likely less estrogenic than EE₂, and EMDC has less estrogenic potential than OH-EE2 (or EE2) because it has lower log P and higher na. The last compound in this pathway (ETDC) has lost the active ring and likely has lower estrogenic potential than EE₂. Finally, it has been shown that Sulfo-EE₂ has less estrogenicity than EE₂ (Kotov 1999; Buikema 1979). We hypothesize this based on previous studies that have linked hydrogen bonding and hydrophobicity to receptor activity (Lipinski 2001) because Sulfo-EE₂ has a lower log P than EE₂ (i.e. 3.0<3.7, Figure 17) and Sulfo-EE₂ has a higher n_a (5>2, Figure 17). The higher number of acceptors limits the probability that the remaining hydrogen bond donor group will interact with the ERE. Sulfate conjugation does not change n_d.

4.0 CONCLUSION

FED theory was used to successfully predict the initiating reactions for EE₂ transformation. One reaction showed an oxidation at the highest available non-substituted carbon site. The second reaction modified ring A to make it susceptible to an electrophilic attack at the highest FED value of EE₂ after the occurrence of tautomerization; a process rarely seen in biological removal of EE₂. The third reaction showed the sulfate conjugation of the 3-hydroxyl group attached to the second highest FED position to occur in activated sludge. The occurrence of these reactions at high electron density indicates that frontier electrons play a pivotal role in biological transformations of EE₂.

The use of Gaussian 03 with the PSC made it possible to explore more than one method of calculating the electron density. The basis sets were shown to have a dramatic effect on the calculation procedure in terms of time and accuracy. Access to the PSC allowed for the implementation of the higher basis set that would not have been possible with an individual personal computer. HF and DFT showed similar performance in determining electron density. HF uses a broad account of electron-electron interactions by using a central field approximation. This approximation gives an electron-electron correlation embedded within the solution to the wave function that represents the electron. The electron density calculated by DFT shows higher results than those calculated by HF theory but the order of highest electron density sites is consistent between the two theories. DFT is more accurate for calculating electron density but

HF theory is still viable for judging the order of the reactive sites when calculating the electron density for EE₂.

Determining which ring is cleaved first is a critical step in analyzing the detoxification of EE₂. All initiating reactions occurred on ring A in this study. Application of the degradation rules to the initial metabolites led to two instances of ring A cleavage metabolites and one dead end pathway. The existence of the first ring A cleavage metabolite; ETDC indicates that ring A is the first ring cleaved in biological transformations and the use of the degradation rules and FED further reinforce this supposition.

All pathways showed a decrease in estrogenic potential but some of that potential may be retained. The importance of the steroidal estrogens has been a critical concern in the environmental community for years. This use of methods capable of predicting the reactivity of such potent EDCs as well as their toxic nature is a novel method in analysis without the use of expensive and difficult experimental techniques. With supercomputing resource and brief, readily available training, companies can better predict the fate of their products and active ingredients prior to fully marketing a product. This step is neither difficult nor costly and should be considered as a logical step for any company preparing to release a product that will have significantly affect bodily functions and potentially reach unintended consumers via recalcitrant toxicants further burdening wastewater treatment. FED theory by no means replaces experiment, but can rather provide a map of what researchers should be looking for when attempting to identify EDCs in trace amounts and quantify their toxic effects.

APPENDIX A

GAUSSIAN INPUT FILES

The following file contains the molecular specification of E_1 as an example of what a Gaussian 03 input file looks like. Refer to Figure 3 for an explanation of each section when CO_2 was used as the input file.

```
%mem=6MW
%nprocs=1
# ub3lyp/6-31g(d) guess=(read,only) geom=connectivity
1
0 1
\mathbf{C}
C
           1
                   B1
C
           2
                   B2
                        1
                                A1
C
                        2
           3
                                             D1
                   B3
                                A2
                                     1
C
           4
                        3
                                     2
                   B4
                                             D2
                                A3
C
                        2
                                     3
           1
                   B5
                                A4
                                             D3
C
                                     2
           6
                   B6
                        1
                                A5
                                             D4
C
                                     3
           5
                   В7
                        4
                                A6
                                             D5
C
           8
                   B8
                        5
                                A7
                                     4
                                             D6
C
           9
                        8
                                     5
                   Β9
                                A8
                                             D7
C
           7
                   B10 6
                                 A9
                                              D8
                                     1
C
           11
                   B11
                                 A10 6
                                               D9
C
                         9
           10
                   B12
                                 A11
                                       8
                                              D10
C
           11
                   B13
                         7
                                 A12
                                              D11
                                       6
C
           14
                   B14 11
                                 A13
                                               D12
C
           13
                   B15
                        10
                                  A14
                                       9
                                               D13
C
           15
                                               D14
                   B16 14
                                  A15
                                      11
O
           15
                   B17 14
                                  A16
                                      11
                                                D15
```

%chk=1.chk

O	3	B18 2	A17 1	D16
C	14	B19 11	A18 7	D17
Н	1	B20 2	A19 3	D18
Н	2	B21 1	A20 6	D19
Н	4	B22 3	A21 2	D20
Н	7	B23 6	A22 1	D21
Н	8	B24 5	A23 4	D22
Н	8	B25 5	A24 4	D23
Н	9	B26 8	A25 5	D24
Н	9	B27 8	A26 5	D25
Н	10	B28 9	A27 8	D26
Н	11	B29 7	A28 6	D27
Н	11	B30 7	A29 6	D28
Н	12	B31 11	A30 7	D29
Н	12	B32 11	A31 7	D30
Н	13	B33 10	A32 9	D31
Н	16	B34 13	A33 10	D32
Н	16	B35 13	A34 10	D33
Н	17	B36 15	A35 14	D34
Н	17	B37 15	A36 14	D35
Н	19	B38 3	A37 2	D36
Н	20	B39 14	A38 11	D37
Н	20	B40 14	A39 11	D38
Н	20	B41 14	A40 11	D39
D.1	1 2020	2204		

B1	1.39203384
B2	1.39758486
В3	1.39400685
B4	1.39842832
B5	1.40222384
B6	1.52834980
B7	1.51749145
B8	1.52994854
B9	1.53274874
B10	2.58876945
B11	1.54416233
B12	1.54527743
B13	1.54417836
B14	1.54335444
B15	1.55506537
B16	1.52493284
B17	1.21300836
B18	1.36885561
B19	1.54237918
B20	1.08606621
B21	1.08808657

B22	1.08627572
B23	1.10156336
B24	1.10000574
B25	1.09617596
B26	1.09628652
B27	1.09909057
B28	1.10168795
B29	1.09723546
B30	1.09451617
B31	1.09532745
B32	1.09561053
B33	1.09967193
B34	1.09333123
B35	1.09744697
B36	1.09270933
B37	1.09270933
B38	0.96605039
B39	1.09579107
B40	1.09411194
B41	1.09335041
A1	119.35064534
A2	119.45169162
A3	121.12422670
A4	122.16112515
A5	119.90793401
A6	118.78402358
A7	112.69771662
A8	110.57682001
A9	141.01188262
A10	33.55463788
A11	112.57362234
A12	84.28985868
A13	109.49844419
A14	112.98986547
A15	109.63635616
A16	124.38301406
A17	122.88446608
A18	111.08707082
A19	118.36672634
A20	120.27965650
A21	118.49912810
A22	106.58267508
A23	109.00138233
A24	109.52216912
A25	109.81511222
A26	109.84033204

A 27	107 24151207
A27	107.24151297
A28	103.53182375
A29	140.95612029
A30	109.73081908
A31	108.65675959
A32	107.87365079
A33	112.40319470
A34	109.49451378
A35	111.44035866
A36	107.14760418
A37	108.88743413
A38	111.11042214
A39	109.81771019
A40	111.90412287
D1	-0.31314026
D2	0.32751060
D3	-0.19566235
D4	178.65991442
D5	179.44273691
D6	160.35826789
D7	50.08482979
D8	65.21868424
D9	-40.86560805
D10	173.07259589
D11	171.41901636
D12	-156.27516768
D13	-76.84129286
D14	122.69448572
D15	-57.67689736
D16	179.98782657
D17	85.50367664
D18	179.66274319
D19	179.96725153
D20	-179.49480442
D21	-75.56823955
D22	-78.45731387
D23	36.88706045
D24	172.57266219
D25	-70.37021259
D26	54.40037022
D27	63.56705564
D28	-74.52685399
D29	-122.77884625
D30	121.58256797
D31	42.76741200
D32	81.89631590
	31.07031070

```
D33
           -36.79864884
 D34
          -148.19675849
 D35
           94.83586742
 D36
            -0.00955701
 D37
          -178.79659846
 D38
           61.88938727
 D39
           -58.65942782
1 2 1.5 6 1.5 21 1.0
2 3 1.5 22 1.0
3 4 1.5 19 1.0
4 5 1.5 23 1.0
5 6 1.5 8 1.0
671.0
7 10 1.0 12 1.0 24 1.0
8 9 1.0 25 1.0 26 1.0
9 10 1.0 27 1.0 28 1.0
10 13 1.0 29 1.0
11 12 1.0 14 1.0 30 1.0 31 1.0
12 32 1.0 33 1.0
13 14 1.0 16 1.0 34 1.0
14 15 1.0 20 1.0
15 17 1.0 18 2.0
16 17 1.0 35 1.0 36 1.0
17 37 1.0 38 1.0
18
19 39 1.0
20 40 1.0 41 1.0 42 1.0
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
```

- 42

APPENDIX B

GAUSSIAN INPUT STRUCTRUE

The following figure represents how the input file is visually translated from notepad. Each ring is labeled from left to right as A, B, C, D

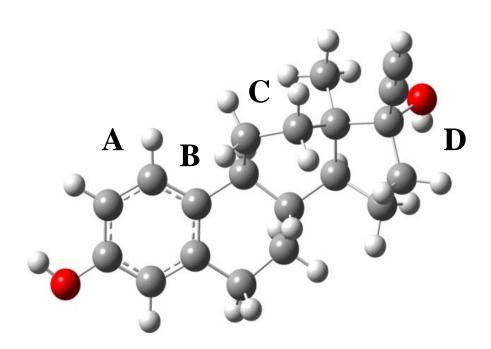


Figure 17. Gaussian Input Structure

APPENDIX C

GAUSSIAN OUTPUT FILE (OPTIMIZATION)

This section contains a small portion of the output file from Gaussian 03 after the figure given in Appendix A1 is optimized. This file contains the final iteration of the atomic charges and the calculated bond lengths. The entire optimization output file would translate to over 800 pages and as such cannot be included.

Atomic charges with hydrogens summed into heavy atoms:

1

- 1 C -0.051150
- 2 C -0.069898
- 3 C 0.329300
- 4 C -0.066704
- 5 C 0.078924
- 6 C 0.078026
- 7 C -0.016447
- 8 C -0.030852
- 9 C -0.005979 10 C 0.017388
- 11 C 0.022817
- 12 C 0.007055 13 C 0.006612
- 14 C -0.022507
- 15 C 0.428951
- 16 C 0.000601
- 17 C -0.006180
- 18 O -0.465116 19 O -0.248457
- 20 C 0.013615

```
21 H 0.000000
```

Sum of Mulliken charges= 0.00000

Electronic spatial extent (au): <R**2>= 6697.0369

Charge= 0.0000 electrons

Dipole moment (field-independent basis, Debye):

Quadrupole moment (field-independent basis, Debye-Ang):

Traceless Quadrupole moment (field-independent basis, Debye-Ang):

Octapole moment (field-independent basis, Debye-Ang**2):

XXX= -134.4729 YYY= -6.2828 ZZZ= -4.6691 XYY= -29.2246

XXY= -12.7060 XXZ= 24.1423 XZZ= 10.6286 YZZ= 1.7080

YYZ= 0.8925 XYZ= -7.8296

Hexadecapole moment (field-independent basis, Debye-Ang**3):

XXXX= -7125.1968 YYYY= -1398.9593 ZZZZ= -402.4347 XXXY= 669.5795

XXXZ= 113.7159 YYYX= 13.2577 YYYZ= -0.4206 ZZZX= -6.8430

ZZZY= 3.3584 XXYY= -1305.1304 XXZZ= -1252.0368 YYZZ= -310.4520

XXYZ= -24.2541 YYXZ= 8.2023 ZZXY= 0.2766

N-N= 1.578020226609D+03 E-N=-5.128653545564D+03 KE= 8.416414506965D+02 No NMR shielding tensors so no spin-rotation constants.

Leave Link 601 at Mon Sep 26 20:13:52 2011, MaxMem= 1207959552 cpu: 2.5 (Enter /usr/local/packages/g03/l9999.exe)

1\1\GINC-BL0\FOpt\RB3LYP\6-31G(d,p)\C18H22O2\WBARR\26-Sep-2011\0\\#p B 3LYP/6-31G(D,P) OPT GEOM=CONNECT\\1\\0,1\C,0.0283758632,0.1249419383,-0.0281850015\C,-0.0182049088,-0.0292983508,1.3544933267\C,1.1714233029 ,-0.2188004586,2.0630964921\C,2.3818755321,-0.2565521865,1.3727083855\ C,2.4269220835,-0.1012549166,-0.0163394728\C,1.2352771138,0.1009606969 ,-0.7416580939\C,1.224048294,0.2448573754,-2.2631776906\C,3.7748316766 ,-0.1385699222,-0.712419701\C,3.6585688935,-0.4363038551,-2.2086085878 \C,2.6240519894,0.4863434984,-2.8626827648\C,0.6392713864,1.9528847775 ,-4.1185494075\C,0.2342541191,1.3384505471,-2.7610265671\C,2.591100650 1,0.3442554606,-4.4010611201\C,1.2949846017,0.9204910343,-5.0612527987 \C,1.7867488865,1.6303401068,-6.3404027777\C,3.7773729337,1.0641240003 ,-5.1030418389\C,3.2825235246,1.391303935,-6.5163067042\O,1.0750249109 ,2.2709410608,-7.0850299686\0,1.2097101743,-0.3778106062,3.4221457511\ C,0.2798268571,-0.1554117437,-5.4980850077\H,-0.9060834813,0.265666142 2,-0.5634636719\H,-0.9720964115,-0.0051082958,1.8774052853\H,3.2962596 299,-0.4129696006,1.9378895209\H,0.8827763265,-0.7211867943,-2.6678180 118\H,4.274496128,0.8320958752,-0.5776798583\H,4.419761242,-0.87727263 29,-0.2225362973\H,4.6381032187,-0.3220678034,-2.6874678384\H,3.353622 $8644, -1.4815711742, -2.3583572273 \ H, 2.9120159032, 1.522179429, -2.6221854$ 512\H,1.3491176178,2.7717291227,-3.9466851935\H,-0.2243623708,2.404212 9167,-4.6169530831\H,-0.7740194142,0.9164796307,-2.8322098577\H,0.1768 87387,2.1402359754,-2.016572188\H,2.6472803899,-0.7271499733,-4.642330 8013\H,4.6907555768,0.4632177813,-5.0988215636\H,4.0058859996,1.996803 4856,-4.5717411111\H,3.7683514423,2.2408999596,-7.0022806371\H,3.39610 82971,0.5257259121,-7.1851194665\H,0.3085187998,-0.3350499097,3.767513 6274\H,0.7500322757,-0.9001573461,-6.1500207954\H,-0.538255574,0.31091 32554,-6.0551889422\H,-0.1430571052,-0.6885768307,-4.6423285998\\Versi on=EM64L-G03RevE.01\State=1-A\HF=-849.6589576\RMSD=9.854e-09\RMSF=3.82 3e-06\Thermal=0.\Dipole=0.143936,-0.5171096,0.5980362\PG=C01 [X(C18H22 02)]\\@

FAULTILY FAULTLESS, ICILY REGULAR, SPLENDIDLY NULL...

MAUDE BY TENNYSON

Job cpu time: 0 days 5 hours 20 minutes 29.0 seconds.

File lengths (MBytes): RWF= 123 Int= 0 D2E= 0 Chk= 22 Scr= 1

Normal termination of Gaussian 03 at Mon Sep 26 20:14:04 2011.

APPENDIX D

GAUSSIAN OUTPUT FILE (ENERGY)

This appendix is a portion of the output file from the energy calculation based on the optimization in appendix A3. Each of the numbers along the top represents an orbital. The column with the last O before V represents the HOMO and is the column that is used for calculating the electron density. The bottom section of the file lists all of the orbitals and is a guide to finding this set amount all of the orbitals being calculated.

```
71
                72
                     73
                          74
                                75
          (A)--O (A)--O (A)--V (A)--V
  EIGENVALUES -- -0.23972 -0.23258 -0.21128 -0.01481 -
0.00098
 11 C 1S
            -0.00032 -0.00075 -0.00030 0.00237 0.00124
 2
     2S
           3
     2PX
            0.02424 0.00272 -0.01171 -0.00422 -0.03129
 4
     2PY
           -0.02205 -0.00755 0.01601 0.00454 0.03139
 5
     2PZ
           -0.26228 -0.01525 0.14169 -0.01774 0.32576
 6
     3S
           -0.00535 -0.00490 -0.01140 0.00236 0.03792
            0.01047 0.00163 0.00522 -0.00488 0.00229
 7
     3PX
     3PY
 8
           -0.02469 -0.01660 0.01311 0.03238 0.08911
 9
     3PZ
           -0.18680 -0.00815 0.11012 -0.02930 0.43461
            10
      4XX
            -0.00004 -0.00031 0.00154 -0.00035 0.00015
 11
      4YY
      4ZZ
            0.00144 0.00014 0.00065 -0.00014 0.00225
 12
 13
      4XY
            0.00058 0.00022 0.00051 -0.00009 0.00205
 14
      4XZ
            0.00995 0.00144 0.01435 -0.00074 0.01439
            15
      4YZ
 162 C 1S
            -0.00008 -0.00025 -0.00008 -0.00087 0.00019
 17
      2S
            0.00026 0.00069 -0.00058 0.00271 0.00042
      2PX
            0.02387 0.00324 0.01713 0.00253 0.02703
 18
```

```
-0.02249 -0.00061 -0.01707 0.00140 -0.02381
19
     2PY
20
     2PZ
            -0.27100 -0.02809 -0.20229 0.01415 -0.28203
           -0.00324 0.00330 0.01449 -0.00669 -0.00057
21
     3S
22
     3PX
            0.01480 0.00369 0.02379 -0.00254 0.05373
23
            3PY
            -0.20237 -0.02219 -0.16500 0.01943 -0.37692
24
     3PZ
            25
     4XX
            0.00013 -0.00011 -0.00143 -0.00002 -0.00030
26
     4YY
27
            -0.00156 -0.00001 0.00284 -0.00010 0.00349
     4ZZ
            -0.00089 -0.00039 0.00195 0.00017 0.00236
28
     4XY
            -0.00899 -0.00043 0.00952 -0.00105 0.01921
29
     4XZ
            0.00119 -0.00031 -0.01037 0.00036 -0.00284
30
     4YZ
             0.00015 0.00002 0.00000 0.00034 0.00037
313 C 1S
           -0.00061 0.00020 0.00061 -0.00094 -0.00138
32
     2S
33
     2PX
            -0.00257 0.00066 0.02441 -0.00042 0.00520
     2PY
            0.00107 -0.00399 -0.02040 0.00274 -0.00121
34
            0.02357 -0.00694 -0.27372 0.00495 -0.04020
35
     2PZ
           -0.00200 -0.00684 -0.00702 0.00564 0.01808
36
     3S
            0.00231 -0.00187 0.00647 0.00522 0.01066
37
     3PX
            0.00110 -0.00379 -0.01588 -0.00104 -0.02286
38
     3PY
            0.01410 -0.00378 -0.16425 0.00634 -0.04540
39
     3PZ
            -0.00061 0.00013 0.00290 0.00020 0.00054
40
     4XX
            0.00280 0.00012 0.00045 -0.00024 0.00387
41
     4YY
42
     4ZZ
            -0.00219 -0.00026 -0.00340 0.00017 -0.00398
            -0.00141 -0.00024 -0.00189 -0.00016 -0.00273
43
     4XY
44
     4XZ
            0.00378 -0.00053 -0.01981 -0.00001 0.00212
45
            0.01998  0.00154  0.00200 -0.00152  0.02997
     4YZ
            -0.00070 -0.00156 0.00042 0.00043 0.00093
464 C 1S
            0.00220 0.00318 -0.00198 -0.00071 0.00015
47
     2S
            -0.02701 0.00465 0.01315 -0.00017 -0.02440
48
     2PX
            0.02494 0.00324 -0.01335 -0.00059 0.01885
49
     2PY
            50
     2PZ
           -0.00786 0.01485 0.01820 -0.00964 -0.04075
51
     3S
            -0.02788 0.00133 0.01767 -0.00488 -0.05376
52
     3PX
            0.01938 -0.00379 -0.01967 0.00240 0.02341
     3PY
53
            54
     3PZ
55
     4XX
            -0.00162 -0.00008 -0.00128 -0.00001 0.00208
            -0.00056 -0.00023 0.00139 0.00000 0.00086
56
     4YY
            0.00191 0.00005 0.00015 0.00012 -0.00238
57
     4ZZ
            0.00079 -0.00001 -0.00009 0.00033 -0.00138
58
     4XY
59
            0.00977  0.00091  0.00971  0.00042 -0.01405
     4XZ
60
     4YZ
            -0.00219 0.00018 0.00954 -0.00026 0.00168
61 5 C 1S
            -0.00019 -0.00048 -0.00051 -0.00073 0.00106
```

```
-0.00145 0.00111 0.00106 0.00074 0.00452
62
     2S
            -0.02697 -0.00550 -0.00962 0.00075 0.02561
     2PX
63
            0.02427 0.00717 0.01041 0.00361 -0.02534
64
     2PY
65
     2PZ
            0.01836 -0.00070 0.00225 0.01771 -0.08926
66
     3S
            -0.02489 0.00557 0.01302 -0.00671 -0.05071
67
     3PX
            68
     3PY
            69
     3PZ
70
            0.00201 0.00111 -0.00247 -0.00058 0.00311
     4XX
            -0.00110 -0.00111 -0.00092 0.00042 0.00012
71
     4YY
            -0.00120 -0.00002 0.00354 0.00016 -0.00344
72
     4ZZ
73
            -0.00047 0.00037 0.00215 0.00011 -0.00136
     4XY
            -0.01255 -0.00034 0.01266 0.00118 -0.01937
74
     4XZ
            -0.00292 -0.00030 -0.01178 -0.00063 0.00293
75
     4YZ
766 C 1S
            -0.00029 -0.00220 0.00140 -0.00003 0.00134
           -0.00045 0.00543 -0.00026 -0.00098 -0.00213
77
     2S
            0.00296  0.01713  -0.03421  -0.00017  -0.00207
78
     2PX
            -0.00131 -0.00389 0.02555 0.00256 -0.00444
79
     2PY
            80
     2PZ
            0.01694 0.01390 -0.03571 -0.00875 -0.01679
81
     3S
            -0.00374 -0.01248 -0.04519 0.03622 0.02372
82
     3PX
            -0.01042 -0.00203 0.02061 0.00748 0.10413
83
     3PY
            84
     3PZ
85
     4XX
            0.00020 0.00041 0.00088 0.00003 0.00035
            0.00266 0.00017 0.00028 -0.00042 -0.00413
86
     4YY
87
     4ZZ
            -0.00243 -0.00034 -0.00145 0.00004 0.00353
            -0.00123 -0.00014 -0.00036 -0.00042 0.00185
88
     4XY
            -0.00015 -0.00001 -0.00800 0.00037 -0.00321
89
     4XZ
            0.01714 0.00102 0.00089 0.00165 -0.02974
90
     4YZ
            -0.00103 -0.00363 -0.00127 0.00585 0.00359
917 C 1S
            0.00163 0.00648 0.00506 -0.00753 -0.00088
92
     2S
            -0.00038 -0.00465 0.01519 -0.01050 -0.00360
93
     2PX
            0.00875 -0.00221 0.00325 0.01046 -0.00890
94
     2PY
            -0.00534 -0.01465 -0.08480 0.00740 -0.01364
95
     2PZ
            0.01188 0.02901 0.02093 -0.09376 -0.10149
96
     3S
            0.00858 -0.01070 -0.03215 -0.00097 -0.03972
97
     3PX
98
     3PY
            0.03428 -0.00248 0.00280 -0.00690 -0.17233
            -0.00549 -0.01443 -0.02184 0.01401 -0.02862
99
     3PZ
             0.00050 0.00235 0.00315 -0.00029 -0.00096
100
      4XX
             0.00037 -0.00148 0.00523 0.00028 -0.00231
101
      4YY
            -0.00103 -0.00097 -0.00782 0.00040 0.00308
102
      4ZZ
             0.00011 -0.00026 -0.00099 0.00111 0.00042
      4XY
103
104
      4XZ
            -0.00074 -0.00160 -0.01302 -0.00040 0.00217
```

```
105
             0.00062 0.00043 0.00396 -0.00025 -0.00368
      4YZ
1068 C 1S
             0.00153 -0.00328 0.00096 0.00043 -0.00253
            -0.00449 0.00808 0.00052 0.00023 -0.00251
107
      2S
108
      2PX
             109
      2PY
            -0.01099 -0.00892 0.00006 0.00112 -0.00931
            -0.10059 -0.00191 -0.03232 -0.00255 -0.01473
110
      2PZ
            111
      3S
             0.01960 0.02015 -0.02183 -0.02015 0.07260
112
      3PX
            -0.00376 0.00331 0.02480 0.00392 -0.09849
113
      3PY
            -0.03191 0.00147 -0.01195 -0.00286 -0.08047
      3PZ
114
            -0.00295 -0.00025 -0.00144 -0.00047 0.00281
115
      4XX
            -0.00374 -0.00122 -0.00124 -0.00003 0.00367
116
      4YY
             0.00658 0.00062 0.00268 0.00029 -0.00623
117
      4ZZ
             0.00336  0.00178  0.00138  0.00076 -0.00338
118
      4XY
119
      4XZ
            -0.00548 0.00061 -0.00181 0.00002 0.00581
            -0.01253 -0.00125 -0.00633 -0.00070 0.01657
120
      4YZ
1219
             0.00623 0.00395 0.00040 -0.00319 -0.00792
     C 1S
            -0.01551 -0.00835 -0.00923 0.00229 0.03195
122
      2S
             0.03070 -0.02442 0.02424 0.00622 -0.01951
123
      2PX
             124
      2PY
             0.03095 0.00425 -0.00060 0.00300 0.00301
125
      2PZ
            -0.02910 -0.01409 0.04816 0.05425 -0.02118
126
      3S
             0.02924 -0.01284 0.00299 -0.00762 0.03937
127
      3PX
128
      3PY
            -0.02608 0.01835 -0.03710 0.01800 0.12814
            129
      3PZ
130
      4XX
            0.00024 -0.00111 0.00148 -0.00003 -0.00087
131
      4YY
             0.00386 -0.00040 -0.00116 -0.00083 0.00208
132
      4ZZ
             0.00207 -0.00030 0.00130 -0.00010 -0.00195
133
      4XY
             0.00090 0.00135 0.00025 -0.00049 0.00138
134
      4XZ
      4YZ
            -0.00128 -0.00123 -0.00030 0.00000 0.00206
135
              0.00394 -0.00580 -0.00513 -0.00701 -0.00310
136 10 C 1S
            -0.00206 0.01087 0.01284 0.00821 -0.01412
137
      2S
            -0.00021 0.06253 -0.02164 0.01211 -0.00503
138
      2PX
            -0.01731 -0.01675 -0.03105 -0.00576 0.00027
      2PY
139
            -0.01069 0.01016 0.01161 0.00195 0.00370
140
      2PZ
141
      3S
            -0.06439 0.02691 0.02589 0.08805 0.18939
             142
      3PX
            -0.01248 -0.00870 -0.04898 -0.04559 -0.03594
143
      3PY
            -0.00919 0.00591 -0.01738 0.02831 0.03006
144
      3PZ
            -0.00064 0.00139 -0.00076 -0.00141 0.00162
145
      4XX
            -0.00009 -0.00200 0.00288 -0.00030 0.00050
      4YY
146
147
      4ZZ
             0.00188 -0.00030 -0.00230 -0.00146 -0.00334
```

```
4XY
              0.00091 0.00266 0.00109 -0.00054 -0.00060
148
      4XZ
             -0.00025 0.00211 0.00012 0.00040 0.00167
149
             -0.00005 0.00034 0.00197 0.00032 0.00103
      4YZ
150
151 11 C 1S
              -0.00089 0.00068 0.00523 -0.03162 0.00127
      25
             -0.00040 -0.00458 -0.00955 0.05058 0.00385
152
             -0.00436 -0.04631 0.04121 0.05241 0.01029
153
      2PX
      2PY
             0.00155 -0.04546 -0.00337 0.08294 0.00703
154
             -0.00155 -0.01081 -0.01256 0.05147 -0.00381
155
      2PZ
             156
      3S
             -0.01102 -0.03882 0.03670 0.03667 0.04455
      3PX
157
             0.00138 -0.05081 0.00670 0.14062 0.01621
158
      3PY
             0.00388 -0.00440 -0.01193 0.05352 -0.02378
159
      3PZ
             -0.00039 0.00695 -0.00051 -0.00672 -0.00084
160
      4XX
             -0.00006 -0.00143 0.00090 -0.00095 0.00059
161
      4YY
162
      4ZZ
             0.00036 -0.00633 0.00021 0.00223 0.00013
             -0.00030 0.00291 -0.00289 -0.00343 0.00055
163
      4XY
             -0.00069 0.00005 -0.00040 0.00306 0.00187
164
      4XZ
             -0.00028 -0.00173 0.00056 0.00187 0.00054
165
      4YZ
               0.00247 -0.00773 -0.01373 0.01174 0.00035
166 12 C 1S
             -0.00497 0.02063 0.02668 -0.02144 0.00176
167
      25
168
      2PX
              0.00769  0.06620  -0.05735  -0.04731  -0.01152
             -0.00141 0.02414 0.04554 -0.00400 -0.01349
169
      2PY
      2PZ
             0.01478 -0.00332 0.02481 0.00575 -0.03224
170
171
      3S
             -0.01273 0.00927 0.09795 -0.11422 -0.02351
             -0.01719 0.03223 -0.01438 -0.06793 0.08080
172
      3PX
173
      3PY
             -0.00410 0.01014 0.03325 0.01755 0.00520
174
             0.02595 -0.00578 -0.00222 0.01219 -0.10785
      3PZ
              0.00023 0.00057 -0.00338 0.00198 -0.00103
175
      4XX
             0.00083 -0.00032 0.00321 0.00040 0.00012
176
      4YY
             -0.00084 -0.00162 -0.00149 -0.00008 0.00165
177
      4ZZ
             -0.00009 -0.00190 -0.00041 0.00354 0.00031
178
      4XY
             -0.00050 -0.00290 0.00018 0.00289 0.00051
179
      4XZ
             -0.00060 -0.00009 0.00097 -0.00125 -0.00021
180
      4YZ
181 13 C 1S
               0.00131 0.00081 -0.00002 -0.00646 -0.00540
             -0.00216 0.00513 0.00272 -0.00108 0.00550
182
      2S
              0.00918 -0.05189 0.01152 0.01673 -0.01395
183
      2PX
184
      2PY
             185
      2PZ
             -0.00719 -0.06187 -0.02193 0.16898 0.09027
186
      3S
              0.00753 -0.04576 0.01890 0.11728 -0.02442
187
      3PX
             -0.00564 0.06517 0.01142 0.05959 0.00425
188
      3PY
      3PZ
             0.00052 0.00907 0.01916 -0.04628 -0.03387
189
190
      4XX
             -0.00035 0.00595 -0.00001 0.00467 -0.00031
```

```
4YY
             0.00084 -0.00850 0.00031 -0.00125 -0.00038
191
192
      4ZZ
             0.00016 0.00302 0.00004 -0.00440 -0.00106
              0.00044 -0.00256 0.00035 0.00398 0.00029
193
      4XY
194
      4XZ
             0.00000 0.00001 -0.00049 0.00145 -0.00020
195
      4YZ
             -0.00007 0.00207 0.00035 0.00070 -0.00016
196 14 C 1S
               0.00299 -0.02262 0.00040 0.00078 -0.00219
             -0.00424 0.03694 -0.00353 0.00064 0.00294
197
      2S
             -0.01373 0.25231 -0.00661 0.00234 -0.00308
198
      2PX
      2PY
             0.00112 0.01891 0.00034 -0.00779 -0.00890
199
             0.01198 -0.08910 0.00677 -0.01196 -0.00935
200
      2PZ
             -0.02635 0.20926 0.01252 -0.02051 0.01988
201
      3S
             -0.00685 0.17974 -0.01056 0.06465 -0.01084
202
      3PX
             -0.00063 0.06610 0.00202 -0.03941 -0.02949
203
      3PY
             0.00709 -0.05589 0.00483 0.21385 0.00830
204
      3PZ
205
      4XX
             -0.00021 0.00697 -0.00176 0.01436 0.00023
             0.00056 -0.00652 0.00084 -0.00080 -0.00051
206
      4YY
             0.00023 -0.00319 0.00041 -0.01329 -0.00034
207
      4ZZ
             -0.00017 0.00352 -0.00077 0.00381 -0.00066
208
      4XY
             0.00027 -0.00473 -0.00021 0.01998 0.00121
209
      4XZ
             -0.00021 -0.00183 0.00038 0.01314 0.00064
210
      4YZ
               0.00004 -0.00561 0.00157 0.00168 0.00078
211 15 C 1S
             212
      2S
      2PX
              0.00769 -0.13293 0.00987 0.17187 0.01213
213
214
      2PY
              0.00729 -0.12024 0.00409 -0.02949 0.00020
             -0.00200 0.04230 -0.00112 0.46218 0.02173
215
      2PZ
216
      3S
             0.00053 0.02037 -0.00795 -0.08406 -0.00545
217
      3PX
             -0.00405 0.02404 0.00435 0.12965 0.00817
             3PY
218
             0.00046 -0.01274 0.00081 0.41979 0.02532
219
      3PZ
             220
      4XX
221
      4YY
             0.00261 -0.03739 0.00109 -0.00274 0.00038
             -0.00023 0.00424 -0.00025 0.01204 0.00058
222
      4ZZ
             -0.00011 0.00012 0.00001 0.00897 0.00147
223
      4XY
             0.00075 -0.01419 0.00067 -0.01570 -0.00029
224
      4XZ
             0.00028 -0.00278 0.00013 0.01980 0.00071
225
      4YZ
               0.00022 0.00034 -0.00050 -0.01468 -0.00539
226 16 C 1S
227
      2S
             0.00019 -0.00732 0.00175 0.05188 0.00868
228
             -0.00665 0.06598 -0.00493 0.04539 0.00037
      2PX
             -0.00007 -0.02866 -0.00206 -0.00156 0.00452
229
      2PY
             0.00471 -0.03481 -0.00304 -0.00734 -0.00603
230
      2PZ
             -0.00341 0.04786 -0.00131 0.02301 0.04889
231
      3S
             -0.00459 0.07334 -0.00218 0.06464 0.00776
      3PX
232
233
      3PY
             -0.00053 -0.03400 -0.00292 0.20242 0.02291
```

```
234
      3PZ
             0.00394 -0.01701 -0.00521 -0.06165 -0.01776
235
      4XX
            -0.00036 0.00613 -0.00060 0.00190 -0.00092
      4YY
             0.00069 -0.00780 0.00045 -0.00562 -0.00084
236
237
      4ZZ
             0.00000 0.00013 0.00050 0.00405 -0.00024
238
      4XY
            -0.00030 0.00386 -0.00008 0.00031 0.00046
239
            -0.00011 0.00066 0.00005 0.00017 -0.00024
      4XZ
             0.00011 -0.00219 -0.00025 -0.00659 -0.00017
240
      4YZ
241 17 C 1S
             -0.00189 0.02956 -0.00037 -0.00358 -0.00053
      2S
            0.00369 -0.05431 0.00058 -0.00327 0.00095
242
             0.00145 -0.00404 0.00305 -0.01042 0.00387
243
      2PX
            244
      2PY
            -0.00285 0.02607 0.00000 -0.00363 0.00050
245
      2PZ
            0.01445 -0.23424 0.00490 0.11718 0.00263
246
      3S
            -0.00010 0.03082 0.00144 -0.04905 0.00903
247
      3PX
            248
      3PY
            -0.00219 0.02753 -0.00075 0.17046 0.00717
249
      3PZ
            -0.00037 0.00561 -0.00007 0.00136 0.00018
250
      4XX
             0.00030 -0.00487 0.00004 0.00359 0.00024
251
      4YY
            -0.00018 0.00411 0.00001 -0.00548 -0.00060
252
      4ZZ
253
      4XY
             0.00019 0.00000 -0.00004 -0.01017 -0.00108
254
      4XZ
            -0.00023 0.00053 0.00002 -0.01422 -0.00012
            -0.00003 -0.00054 -0.00006 -0.02736 -0.00127
255
      4YZ
256 18 O 1S
              0.00002 -0.00044 0.00025 -0.00117 0.00020
257
      2S
            -0.00013 0.00485 -0.00072 -0.00061 -0.00213
            258
      2PX
259
      2PY
            260
             0.00549 -0.10782 0.00821 -0.36222 -0.01900
      2PZ
            0.00021 -0.01435 -0.00134 0.02304 0.00622
261
      3S
            -0.01958 0.25965 -0.00607 -0.14184 -0.00880
262
      3PX
            -0.01955 0.26444 -0.00659 0.03560 0.00025
263
      3PY
             0.00390 -0.07863 0.00544 -0.36580 -0.01862
264
      3PZ
             0.00091 -0.01071 0.00015 -0.00205 -0.00037
265
      4XX
            266
      4YY
             0.00004 -0.00017 0.00001 -0.00046 -0.00045
267
      4ZZ
            -0.00002 -0.00013 0.00018 0.00051 0.00014
268
      4XY
            269
      4XZ
270
      4YZ
            -0.00016 0.00115 0.00024 0.00242 0.00010
              -0.00010 -0.00029 0.00034 -0.00008 -0.00040
271 19 O 1S
            -0.00015 0.00049 -0.00030 0.00011 0.00148
272
      2S
             0.00299 -0.00091 -0.02678 0.00128 0.00070
273
      2PX
            -0.00242 0.00172 0.02354 -0.00108 0.00048
274
      2PY
      2PZ
            -0.03488 0.00924 0.29547 -0.00235 0.01914
275
276
      3S
            0.00265 0.00205 -0.00481 0.00196 0.00226
```

```
0.00309 -0.00066 -0.02226 0.00172 -0.00002
       3PX
277
278
       3PY
              -0.00251 0.00136 0.02020 -0.00062 0.00219
              -0.02894 0.00731 0.24145 -0.00245 0.01948
279
       3PZ
280
       4XX
              -0.00011 -0.00005 0.00051 -0.00007 0.00002
       4YY
              0.00034 -0.00020 -0.00120 -0.00001 0.00076
281
              -0.00054 -0.00002 0.00117 0.00001 -0.00053
282
       4ZZ
              -0.00033 -0.00007 0.00082 0.00014 -0.00036
283
       4XY
              0.00017 0.00000 -0.00226 0.00010 -0.00056
284
       4XZ
              0.00333 -0.00015 -0.00977 -0.00018 0.00471
285
       4YZ
               -0.00049 0.00238 -0.00255 0.02916 0.00255
286 20 C 1S
              0.00115 -0.00669 0.00542 -0.04882 -0.00306
287
       25
              0.00038 -0.02721 -0.01685 0.00719 0.00709
288
       2PX
       2PY
              0.00351 -0.04081 0.00162 -0.07177 -0.00005
289
              -0.00443 0.03273 0.00122 0.07093 0.00028
290
       2PZ
291
       3S
              0.00295 0.00689 0.01372 -0.31719 -0.04227
              -0.00084 -0.01123 -0.01156 0.05890 0.01931
292
       3PX
              0.00393 -0.05442 -0.00566 -0.14315 -0.00046
293
       3PY
              -0.00390 0.02610 0.00437 0.09042 0.00506
294
       3PZ
              -0.00006 0.00156 -0.00022 0.00639 0.00048
295
       4XX
296
       4YY
              0.00019 -0.00158 -0.00023 0.00048 -0.00028
              -0.00006 0.00018 -0.00015 -0.00071 0.00018
297
       4ZZ
              -0.00030 0.00533 0.00044 0.00609 0.00016
298
       4XY
299
       4XZ
              0.00044 -0.00755 -0.00050 -0.00563 -0.00037
300
       4YZ
              -0.00004 -0.00160 -0.00026 -0.00118 0.00019
                0.00006 0.00210 -0.00101 -0.00283 -0.00098
301 21 H 1S
302
       2S
             -0.00534 -0.01060 0.00273 0.02997 0.02884
       3PX
               0.00083 -0.00027 -0.00046 0.00071 -0.00167
303
       3PY
              -0.00064 -0.00001 0.00037 -0.00009 0.00099
304
              -0.00703 -0.00027 0.00366 -0.00084 0.01238
305
       3PZ
               -0.00017 -0.00194 0.00100 0.00045 0.00089
306 22 H 1S
              0.00009 -0.00202 0.00280 -0.00238 -0.00139
307
       2S
               0.00070 0.00009 0.00031 0.00001 0.00065
308
       3PX
       3PY
              -0.00063 -0.00009 -0.00040 0.00003 -0.00088
309
              -0.00736 -0.00074 -0.00535 0.00050 -0.01087
310
       3PZ
                0.00051 0.00004 0.00064 -0.00020 0.00086
311 23 H 1S
             -0.00236 -0.00162 0.00446 -0.00320 0.01073
312
       2S
              -0.00066 0.00002 0.00035 0.00011 -0.00070
313
       3PX
       3PY
              0.00043 -0.00003 -0.00039 -0.00004 0.00132
314
              0.00782 0.00038 -0.00468 -0.00063 0.01179
315
       3PZ
               -0.00631 -0.00798 -0.08202 0.00051 0.01276
316 24 H 1S
             -0.01265 -0.00663 -0.10921 0.00828 0.08528
317
       2S
       3PX
               0.00003 -0.00031 -0.00136 -0.00086 0.00009
318
319
       3PY
               0.00016 -0.00005 -0.00034 -0.00044 -0.00027
```

```
320
             0.00012 0.00008 0.00119 0.00055 0.00017
      3PZ
321 25 H 1S
               0.08925 0.00677 0.03363 0.00297 -0.05782
             322
      2S
323
      3PX
              324
      3PY
              0.00030 -0.00019 0.00029 0.00016 -0.00237
325
             0.00152 0.00017 0.00057 0.00005 -0.00050
      3PZ
              -0.05808 -0.01704 -0.01959 -0.00360 0.04087
326 26 H 1S
             -0.06141 -0.02476 -0.04508 -0.01565 0.19610
327
      25
             -0.00219 0.00028 -0.00037 0.00012 0.00036
328
      3PX
             0.00004 0.00010 0.00029 0.00005 0.00073
329
      3PY
             330
      3PZ
               0.00608 0.00036 0.01088 0.00314 -0.01363
331 27 H 1S
             0.02039 -0.00806 0.02870 -0.02739 -0.11500
332
      2S
              0.00011 -0.00084 0.00018 -0.00070 -0.00062
333
      3PX
334
      3PY
              0.00013 0.00047 -0.00024 -0.00014 0.00027
             0.00088 0.00019 0.00034 0.00023 0.00022
335
      3PZ
               0.02272 -0.00256 -0.00457 -0.00019 0.00954
336 28 H 1S
337
      2S
             0.05309 0.00019 0.00126 -0.00874 -0.04362
              0.00048 -0.00020 0.00022 -0.00016 0.00063
338
      3PX
              0.00018 0.00044 0.00015 0.00017 0.00066
339
      3PY
             -0.00034 0.00022 0.00002 -0.00029 -0.00012
340
      3PZ
               0.00800 -0.00411 -0.01291 -0.00143 -0.01413
341 29 H 1S
342
      2S
             0.01686 -0.00720 -0.04511 -0.00771 -0.02902
      3PX
             -0.00022 0.00098 -0.00053 -0.00020 -0.00043
343
              0.00002 -0.00038 -0.00008 -0.00001 -0.00085
      3PY
344
345
      3PZ
             -0.00006 0.00006 -0.00030 0.00078 0.00008
               0.00386 -0.02048 0.00087 0.01287 -0.00211
346 30 H 1S
             0.00470 -0.02616 -0.00082 -0.11168 -0.02365
347
      2S
             0.00001 -0.00045 0.00071 -0.00284 -0.00047
348
      3PX
      3PY
              0.00003 0.00009 -0.00026 -0.00099 -0.00030
349
             0.00002 -0.00028 -0.00020 0.00052 -0.00002
350
      3PZ
              -0.00057 -0.00077 0.01773 -0.00408 -0.00203
351 31 H 1S
             0.00392 -0.05625 0.02889 0.01291 -0.00327
352
      2S
              0.00015 -0.00228 0.00063 0.00165 -0.00026
353
      3PX
              0.00008 -0.00147 0.00059 0.00162 -0.00012
      3PY
354
             -0.00007 -0.00035 -0.00008 0.00153 0.00013
355
      3PZ
356 32 H 1S
               0.00419 -0.01053 0.00263 0.00880 0.00635
             -0.00040 -0.00972 0.00277 0.05929 0.06325
357
      2S
              0.00050 0.00168 -0.00148 -0.00129 -0.00133
358
      3PX
             -0.00027 0.00012 0.00083 0.00013 0.00094
359
      3PY
             0.00000 0.00044 0.00038 0.00044 0.00016
360
      3PZ
361 33 H 1S
              -0.01136 -0.02315 0.00322 0.01417 0.01091
362
      2S
             0.00679 -0.03554 -0.04120 0.04872 -0.05797
```

```
3PX
             -0.00053 0.00111 0.00027 -0.00166 0.00155
363
      3PY
             -0.00003 0.00051 0.00007 -0.00043 -0.00022
364
365
             0.00000 -0.00084 0.00069 0.00084 -0.00037
      3PZ
366 34 H 1S
              -0.00184 0.02352 0.00221 -0.01111 -0.00140
367
      25
             0.00003 -0.00100 0.00038 0.00007 -0.00057
368
      3PX
      3PY
             0.00015 0.00105 0.00000 -0.00057 -0.00028
369
             0.00019 -0.00087 0.00000 -0.00031 -0.00034
370
      3PZ
               0.00316 -0.04851 -0.00050 -0.02875 0.00023
371 35 H 1S
             0.00523 -0.05955 0.00192 -0.21415 -0.03170
372
      2S
             -0.00031 0.00180 -0.00023 0.00041 0.00052
373
      3PX
             -0.00003 0.00083 0.00006 -0.00040 -0.00027
374
      3PY
             0.00007 -0.00005 0.00000 0.00020 -0.00015
375
      3PZ
              -0.00144 0.00955 0.00361 0.01891 0.00148
376 36 H 1S
377
      2S
             -0.00021 0.00106 0.00011 0.00057 0.00064
378
      3PX
             0.00000 -0.00038 0.00006 0.00085 0.00010
379
      3PY
380
      3PZ
             0.00004 -0.00027 0.00018 0.00003 0.00001
               0.00068 0.01229 -0.00031 0.06561 0.00063
381 37 H 1S
382
      25
            383
      3PX
             0.00002 -0.00051 0.00009 -0.00128 0.00001
             -0.00024 0.00375 -0.00014 0.00231 -0.00002
384
      3PY
             -0.00006 0.00080 -0.00003 0.00006 0.00011
385
      3PZ
386 38 H 1S
              -0.00255 0.03073 -0.00004 -0.10934 -0.00424
387
      2S
            388
      3PX
             0.00006 -0.00087 0.00005 0.00045 0.00025
389
      3PY
             -0.00033 0.00513 -0.00024 -0.00547 -0.00047
             0.00006 -0.00065 0.00001 0.00094 -0.00008
390
      3PZ
              -0.00030 -0.00075 0.00070 0.00050 -0.00022
391 39 H 1S
            -0.00018 -0.00152 0.00147 0.00053 -0.00130
392
      25
             0.00015 -0.00004 -0.00089 0.00001 0.00018
393
      3PX
394
      3PY
             -0.00016 0.00005 0.00083 0.00000 -0.00004
             -0.00179 0.00026 0.00987 0.00000 -0.00105
395
      3PZ
               0.00000 -0.01770 -0.00243 -0.01242 0.00068
396 40 H 1S
            -0.00036 -0.02154 -0.00352 0.05601 0.00324
397
      2S
             0.00005 -0.00056 -0.00039 0.00193 0.00019
398
      3PX
399
      3PY
             0.00007 0.00001 0.00020 0.00029 -0.00013
             -0.00006 0.00073 -0.00003 -0.00063 -0.00002
400
      3PZ
401 41 H 1S
               0.00039 -0.01081 -0.00475 -0.00732 -0.00075
             0.00421 -0.07157 -0.00606 -0.06350 -0.00153
402
      2S
             0.00009 -0.00158 -0.00019 0.00007 0.00015
403
      3PX
404
      3PY
             0.00011 -0.00173 -0.00013 -0.00187 0.00004
405
      3PZ
             -0.00017 0.00178 -0.00025 0.00186 -0.00003
```

```
406 42 H 1S
            -0.00278 0.04754 0.00709 0.03887 0.00181
407
      2S
           408
      3PX
           -0.00003 0.00090 0.00075 -0.00001 -0.00046
409
      3PY
           0.00000 -0.00060 -0.00024 -0.00213 0.00012
410
      3PZ
           -0.00013 0.00070 0.00005 0.00214 0.00017
```

- 1 (A)--O -19.17528 29.02622
- 2 (A)--O -19.13522 29.02542
- 3 (A)--O -10.26542 15.88665
- 4 (A)--O -10.24389 15.88486
- 5 (A)--O -10.19718 15.89180
- 6 (A)--O -10.19239 15.88150
- 7 (A)--O -10.19118 15.88880
- 8 (A)--O -10.19117 15.89001
- 9 (A)--O -10.19089 15.88344
- 10 (A)--O -10.19047 15.88811
- 11 (A)--O -10.18821 15.88979
- 12 (A)--O -10.18645 15.88593
- 13 (A)--O -10.18620 15.87674
- -10.18502 15.88213 14 (A)--O
- 15 (A)--O -10.18452 15.88431
- 16 (A)--O -10.18406 15.88674
- 17 (A)--O -10.18350 15.88639
- 18 (A)--O -10.18282 15.88696
- 19 (A)--O -10.17975 15.88381
- 20 (A)--O -10.17692 15.87986
- -1.05516 2.55112
- 21 (A)--O 22 (A)--O

-1.03438 2.65831

- 23 (A)--O -0.86850 1.34878
- 24 (A)--O -0.84864 1.45118
- 25 (A)--O -0.80714 1.45256 26 (A)--O -0.79205 1.35629
- 27 (A)--O -0.76452 1.46857
- 28 (A)--O -0.74300 1.56793
- 29 (A)--O -0.72868 1.57599
- 30 (A)--O -0.71115 1.49350
- 31 (A)--O -0.68258 1.51817
- 32 (A)--O -0.65446 1.46871
- 33 (A)--O -0.63078 1.43434
- 34 (A)--O -0.61485 1.43495
- 35 (A)--O -0.60767 1.52326
- 36 (A)--O -0.58241 1.35964

- 37 (A)--O -0.56898 1.58912 38 (A)--O -0.55137 1.22770
- 39 (A)--O -0.52208 1.37705
- 40 (A)--O -0.50200 1.36134
- 41 (A)--O -0.48635 1.10525
- 42 (A)--O -0.47970 1.32353
- 43 (A)--O -0.47873 1.35044
- 44 (A)--O -0.45790 1.13578
- 45 (A)--O -0.45257 1.38049
- 46 (A)--O -0.44619 1.37391
- 47 (A)--O -0.43423 1.38351
- 48 (A)--O -0.43211 1.10714
- 49 (A)--O -0.42355 1.25733
- 50 (A)--O -0.41403 1.15974
- 51 (A)--O -0.40599 1.29947
- 52 (A)--O -0.40257 1.26429
- 53 (A)--O -0.39928 1.46413
- 54 (A)--O -0.39574 1.34412
- 55 (A)--O -0.38949 1.34044
- 56 (A)--O -0.38167 1.55830
- -- (1) 0 0.30107 1.33030
- 57 (A)--O -0.37874 1.49653
- 58 (A)--O -0.37175 1.29307
- 59 (A)--O -0.36249 1.36612
- 60 (A)--O -0.35850 1.45025
- 61 (A)--O -0.34898 1.53749
- 62 (A)--O -0.34366 1.34653
- 63 (A)--O -0.34212 1.45914
- 64 (A)--O -0.33764 1.26371
- 65 (A)--O -0.33129 1.44632
- 66 (A)--O -0.32298 1.46356
- 67 (A)--O -0.31469 1.41012
- 68 (A)--O -0.30291 1.45306
- 69 (A)--O -0.29751 1.47310
- 70 (A)--O -0.28710 1.47220
- 71 (A)--O -0.23972 1.16113
- 72 (A)--O -0.23258 2.16130
- 73 (A)--O -0.21128 1.51128
- 74 (A)--V -0.01481 1.83246
- 75 (A)--V -0.00098 1.32035
- 76 (A)--V 0.01682 1.54228
- 77 (A)--V 0.07185 1.24385
- 78 (A)--V 0.07658 0.94978
- 79 (A)--V 0.08285 0.88177

80 (A)--V 0.09968 0.99628 81 (A)--V 0.10139 1.03677 82 (A)--V 0.10683 1.15611 83 (A)--V 0.12649 1.08419 84 (A)--V 0.13267 1.08791 85 (A)--V 0.13776 0.98481 86 (A)--V 0.14574 1.02335 87 (A)--V 0.14725 1.21310 88 (A)--V 0.14955 1.13714 89 (A)--V 0.15751 1.20783 90 (A)--V 0.16299 1.25424 91 (A)--V 0.16387 1.26663 92 (A)--V 0.17295 1.44188 93 (A)--V 0.17621 1.23505 94 (A)--V 0.18887 1.30912 95 (A)--V 0.19153 1.39881 96 (A)--V 0.19192 1.28593 97 (A)--V 0.19561 1.21074 98 (A)--V 0.20252 1.62794 99 (A)--V 0.20823 1.29511 100 (A)--V 0.21574 1.52954 101 (A)--V 0.22502 1.53841 102 (A)--V 0.22625 1.32706 103 (A)--V 0.23999 1.32237 104 (A)--V 0.24545 1.91401 105 (A)--V 0.24627 1.69960 106 (A)--V 0.25211 1.54374 107 (A)--V 0.25495 1.66393 108 (A)--V 0.26284 1.81692 109 (A)--V 0.27054 1.87850 110 (A)--V 0.28546 1.78573 111 (A)--V 0.29759 1.79833 112 (A)--V 0.30082 1.72403 113 (A)--V 0.32042 1.89782 114 (A)--V 0.34040 1.89969 115 (A)--V 0.34477 1.82538 116 (A)--V 0.35599 1.73691 117 (A)--V 0.36372 2.01359 118 (A)--V 0.37035 2.02464 119 (A)--V 0.38993 2.18610 120 (A)--V 0.40346 2.07995 121 (A)--V 0.48152 1.78896 122 (A)--V 0.49274 2.04923 123 (A)--V 0.50987 2.00693 124 (A)--V 0.51364 1.88167 125 (A)--V 0.51728 1.99296 126 (A)--V 0.52248 1.99542 127 (A)--V 0.53219 2.16485 128 (A)--V 0.54273 1.93830 129 (A)--V 0.54861 1.96599 130 (A)--V 0.55775 2.01199 131 (A)--V 0.55886 2.14422 132 (A)--V 0.57351 2.19723 133 (A)--V 0.57523 2.05275 134 (A)--V 0.58851 2.22883 135 (A)--V 0.59480 2.32924 136 (A)--V 0.59833 2.24796 137 (A)--V 0.60921 2.19048 138 (A)--V 0.61040 2.45112 139 (A)--V 0.61679 2.45123 140 (A)--V 0.62713 2.37933 141 (A)--V 0.63012 2.23986 142 (A)--V 0.63398 2.52449 143 (A)--V 0.63832 2.32017 144 (A)--V 0.65600 2.32249 145 (A)--V 0.66067 2.34389 146 (A)--V 0.66386 2.43729 147 (A)--V 0.67945 2.54688 148 (A)--V 0.68386 2.80088 149 (A)--V 0.69839 2.54753 150 (A)--V 0.70216 2.43342 151 (A)--V 0.71304 2.57812 152 (A)--V 0.72647 2.39331 153 (A)--V 0.72981 2.38796 154 (A)--V 0.73965 2.28644 155 (A)--V 0.74484 2.66693 156 (A)--V 0.75324 2.37392 157 (A)--V 0.75820 2.34024 158 (A)--V 0.76789 2.41420 159 (A)--V 0.78612 2.39867 160 (A)--V 0.79781 2.30466 161 (A)--V 0.79968 2.44269 162 (A)--V 0.80356 2.50322 163 (A)--V 0.81041 2.63820 164 (A)--V 0.81993 2.51969 165 (A)--V 0.82252 2.48095 166 (A)--V 0.83130 2.39665 167 (A)--V 0.84025 2.46069 168 (A)--V 0.84327 2.43528 169 (A)--V 0.84635 2.55040 170 (A)--V 0.85215 2.46400 171 (A)--V 0.85840 2.42595 172 (A)--V 0.86752 2.52093 173 (A)--V 0.87017 2.60678 174 (A)--V 0.88181 2.37951 175 (A)--V 0.88576 2.31625 176 (A)--V 0.89191 2.46086 177 (A)--V 0.90402 2.42356 178 (A)--V 0.90667 2.42584 179 (A)--V 0.91282 2.43727 180 (A)--V 0.91484 2.36395 0.92144 2.46551 181 (A)--V 182 (A)--V 0.92827 2.46962 183 (A)--V 0.93074 2.44607 0.94278 2.47057 184 (A)--V 185 (A)--V 0.95281 2.89090 186 (A)--V 0.96415 2.67408 187 (A)--V 0.97451 2.53776 188 (A)--V 0.97596 2.57479 189 (A)--V 0.97935 2.51502 190 (A)--V 0.99629 2.34999 191 (A)--V 1.00345 2.50081 192 (A)--V 1.00635 2.57668 193 (A)--V 1.02224 2.67674 194 (A)--V 1.04632 2.50025 195 (A)--V 1.06526 2.72629 196 (A)--V 1.07079 2.51143 197 (A)--V 1.10367 2.54806 198 (A)--V 1.10839 2.50996 199 (A)--V 1.11839 2.84062 200 (A)--V 1.12627 2.49244 201 (A)--V 1.14858 2.46369 202 (A)--V 1.15734 2.34993 203 (A)--V 1.18101 2.39806 204 (A)--V 1.19130 2.40304 205 (A)--V 1.20319 2.44813 206 (A)--V 1.21585 2.59073 207 (A)--V 1.24401 2.42436 208 (A)--V 1.24817 2.40136 209 (A)--V 1.27798 2.43269 210 (A)--V 1.28774 2.59958 211 (A)--V 1.30440 2.57877 212 (A)--V 1.31407 2.49559 213 (A)--V 1.34029 2.47450 214 (A)--V 1.34434 2.46873 215 (A)--V 1.38966 2.51212 216 (A)--V 1.39572 2.55839 217 (A)--V 1.40862 2.53985 218 (A)--V 1.41177 2.54481 219 (A)--V 1.43273 2.55207 220 (A)--V 1.44227 2.59055 221 (A)--V 1.46392 2.57322 222 (A)--V 1.47317 2.64340 223 (A)--V 1.51251 2.62851 224 (A)--V 1.52023 2.73058 225 (A)--V 1.52976 2.67475 226 (A)--V 1.57307 2.68107 1.58396 2.72155 227 (A)--V 228 (A)--V 1.59324 2.61482 229 (A)--V 1.60878 2.76207 230 (A)--V 1.62995 2.72004 231 (A)--V 1.64512 2.75545 232 (A)--V 1.66276 2.81254 233 (A)--V 1.66495 2.82336 234 (A)--V 1.68908 2.82685 235 (A)--V 1.69882 2.90030 236 (A)--V 1.72452 2.91324 237 (A)--V 1.72970 3.14530 238 (A)--V 1.73725 2.93160 239 (A)--V 1.74530 2.96182 240 (A)--V 1.75834 2.97436 241 (A)--V 1.76362 3.07135 242 (A)--V 1.76868 3.04799 243 (A)--V 1.77636 3.09742 244 (A)--V 1.79121 2.97832 245 (A)--V 1.79755 3.01829 246 (A)--V 1.80395 3.12972 247 (A)--V 1.81970 3.03476 248 (A)--V 1.83036 3.05119 249 (A)--V 1.83625 3.07569 250 (A)--V 1.84822 3.10483 251 (A)--V 1.85608 3.18355 252 (A)--V 1.85851 3.18712 253 (A)--V 1.87180 3.27880 254 (A)--V 1.88053 3.18055 255 (A)--V 1.88876 3.22952 256 (A)--V 1.88986 3.18468 257 (A)--V 1.90833 3.19460 258 (A)--V 1.91628 3.19455 259 (A)--V 1.92768 3.26805 260 (A)--V 1.93161 3.08016 261 (A)--V 1.93620 3.21674 262 (A)--V 1.93950 3.25771 263 (A)--V 1.94536 3.26103 264 (A)--V 1.96169 3.20082 265 (A)--V 1.98006 3.28919 266 (A)--V 1.98805 3.29575 267 (A)--V 1.99280 3.23893 268 (A)--V 1.99962 3.21609 269 (A)--V 2.00791 3.14958 2.01235 3.26228 270 (A)--V 271 (A)--V 2.03438 3.29970 272 (A)--V 2.04453 3.30331 273 (A)--V 2.05716 3.29364 274 (A)--V 2.06131 3.33917 275 (A)--V 2.06402 3.08650 276 (A)--V 2.08699 3.41346 277 (A)--V 2.09556 3.34936 278 (A)--V 2.10402 3.35838 279 (A)--V 2.10838 3.32238 280 (A)--V 2.12009 3.34004 281 (A)--V 2.13020 3.35882 282 (A)--V 2.13756 3.35336 283 (A)--V 2.14582 3.37699 284 (A)--V 2.17297 3.33612 285 (A)--V 2.19418 3.40761 286 (A)--V 2.20702 3.45228 287 (A)--V 2.21583 3.46230 288 (A)--V 2.22510 3.41451 289 (A)--V 2.24104 3.30999 290 (A)--V 2.25418 3.40332 291 (A)--V 2.26205 3.31328 292 (A)--V 2.26327 3.35690 293 (A)--V 2.26898 3.43664 294 (A)--V 2.27729 3.46444

(A)V	2.29316	3.52927
(A)V	2.30047	3.41651
(A)V	2.31080	3.51688
(A)V	2.32400	3.51128
(A)V	2.33839	3.59930
(A)V	2.35023	3.58985
(A)V	2.36520	3.50162
(A)V	2.36999	3.50947
(A)V	2.37715	3.56447
(A)V	2.37982	3.56139
(A)V	2.39033	3.45694
(A)V	2.40388	3.59991
(A)V	2.41115	3.63607
(A)V	2.43035	3.63175
(A)V	2.43379	3.55090
(A)V	2.44895	3.68638
(A)V	2.45103	3.60305
(A)V	2.47757	3.76750
(A)V	2.48714	3.72862
(A)V	2.50323	3.59799
(A)V	2.50906	3.70798
(A)V	2.52160	3.75088
(A)V	2.52616	3.69495
(A)V	2.54476	3.81648
(A)V	2.56180	3.81823
(A)V	2.56310	3.77987
(A)V	2.56919	3.67507
(A)V	2.57867	3.81549
(A)V	2.58952	3.74570
(A)V	2.59423	3.72691
(A)V	2.60242	3.77291
(A)V	2.62122	3.73613
(A)V	2.64115	3.81921
(A)V	2.64830	3.79420
(A)V	2.65871	3.88205
(A)V	2.66649	3.80496
(A)V	2.67966	3.75964
(A)V	2.70092	3.89561
(A)V	2.71246	3.90608
(A)V	2.71421	3.91859
(A)V	2.72128	3.87675
(A)V	2.73709	4.05981
(A)V	2.74466	3.86917
	(A)V	(A)V2.30047(A)V2.31080(A)V2.32400(A)V2.35023(A)V2.35023(A)V2.36520(A)V2.37715(A)V2.37982(A)V2.39033(A)V2.40388(A)V2.43035(A)V2.43379(A)V2.44895(A)V2.45103(A)V2.48714(A)V2.50323(A)V2.50323(A)V2.52616(A)V2.56180(A)V2.56180(A)V2.56919(A)V2.56919(A)V2.56919(A)V2.58952(A)V2.62122(A)V2.64830(A)V2.64830(A)V2.67966(A)V2.67966(A)V2.71246(A)V2.771246(A)V2.771246(A)V2.771228(A)V2.771228(A)V2.771228(A)V2.771228(A)V2.771228(A)V2.771228(A)V2.771228

338	(A)V	2.75251	3.94384
339	(A)V	2.75958	3.98703
340	(A)V	2.76524	3.99259
341	(A)V	2.77329	3.97922
342	(A)V	2.78331	3.98932
343	(A)V	2.78955	4.00464
344	(A)V	2.80575	4.05486
345	(A)V	2.80924	4.01404
346	(A)V	2.81916	4.16094
347	(A)V	2.83807	4.01097
348	(A)V	2.84105	4.02002
349	(A)V	2.85561	3.98565
350	(A)V	2.86316	4.07471
351	(A)V	2.88062	4.04927
352	(A)V	2.89037	4.10247
353	(A)V	2.89742	4.08093
354	(A)V	2.91526	4.23372
355	(A)V	2.93641	4.06612
356	(A)V	2.93875	4.37791
357	(A)V	2.95962	4.21149
358	(A)V	2.96724	4.34301
359	(A)V	2.97874	4.23301
360	(A)V	3.00352	4.24945
361	(A)V	3.02642	4.47412
362	(A)V	3.04563	4.84365
363	(A)V	3.05013	4.35551
364	(A)V	3.06944	4.44395
365	(A)V	3.10601	4.65813
366	(A)V	3.13930	4.59906
367	(A)V	3.20568	4.93107
368	(A)V	3.21293	4.94288
369	(A)V	3.24115	4.91881
370	(A)V	3.24730	4.94299
	(A)V	3.28109	5.01086
372	(A)V	3.29960	5.00997
373	(A)V	3.30797	5.05148
	(A)V	3.32295	4.99936
375	(A)V	3.34205	5.00200
	(A)V		5.02073
	(A)V	3.37483	5.06493
	(A)V	3.42184	5.59367
		3.42944	
380	(A)V	3.44789	5.07503

```
381 (A)--V
             3.45766 5.15805
382 (A)--V
             3.46637 5.30773
383 (A)--V
             3.47835 5.20575
384 (A)--V
             3.48938 5.31086
385 (A)--V
             3.50299 5.09584
386 (A)--V
             3.50585 5.15234
387 (A)--V
             3.51802 5.12273
             3.53769 5.16745
388 (A)--V
389 (A)--V
             3.56766 5.19178
390 (A)--V
             3.78521 5.67285
391 (A)--V
             4.06040 10.02492
392 (A)--V
             4.14593 10.16418
393 (A)--V
             4.16478 10.18705
394 (A)--V
             4.16994 10.25959
395 (A)--V
             4.24807 10.26373
396 (A)--V
             4.30512 10.33259
397 (A)--V
             4.37180 10.19670
398 (A)--V
             4.38373 10.16349
             4.41779 10.30050
399 (A)--V
400 (A)--V
             4.44854 10.16036
401 (A)--V
             4.50972 10.56646
402 (A)--V
             4.52135 10.24473
403 (A)--V
             4.58020 10.41390
404 (A)--V
             4.62809 10.41954
405 (A)--V
             4.69075 10.53628
406 (A)--V
             4.72712 10.49885
407 (A)--V
             4.79960 10.87775
408 (A)--V
             4.84015 10.83684
409 (A)--V
             4.87686 10.79196
             5.02877 11.46615
410 (A)--V
```

Total kinetic energy from orbitals= 8.416414537699D+02

No NMR shielding tensors so no spin-rotation constants.

Leave Link 601 at Thu Sep 29 22:54:55 2011, MaxMem= 1207959552 cpu: 28.3

(Enter /usr/local/packages/g03/l9999.exe)

This type of calculation cannot be archived.

Job cpu time: 0 days 0 hours 2 minutes 17.8 seconds.

File lengths (MBytes): RWF= 29 Int= 0 D2E= 0 Chk= 22 Scr= 1

Normal termination of Gaussian 03 at Thu Sep 29 22:55:08 2011.

APPENDIX E

ESTROGENIC POTENTIAL ANALYSIS

This section contains the visual interpretation of the tabular analysis done for estrogenic potential

in section 3.4

Figure 18: Estrogenic Potential: Direct Metabolites

Figure 19: Estrogenic Potential: 2OH-EE2 pathway

Figure 20: Estrogenic Potential: 6HCYC-EE2 pathway

Table 4: Estrogenic Potential analysis: Steroidal Estrogens and Sulfate Conjugates

Estrogenicity analysis: EE2 -to- ETDC

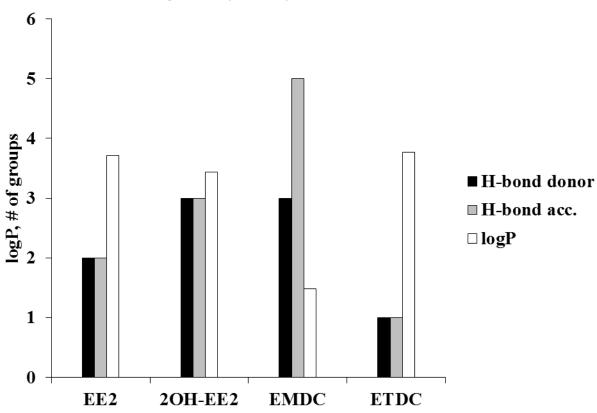


Figure 18. Estrogenic Potential: Direct Metabolites

Estrogenicity analysis: EE2 -to- ETDC

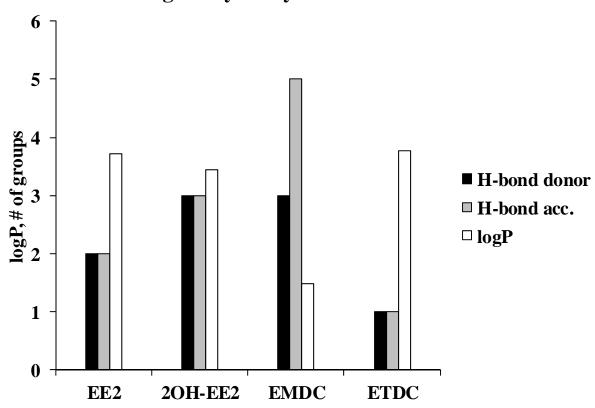


Figure 19. Estrogenic Potential: 2OH-EE₂ pathway

Estrogenicity analysis: EE2 -to- EDMC

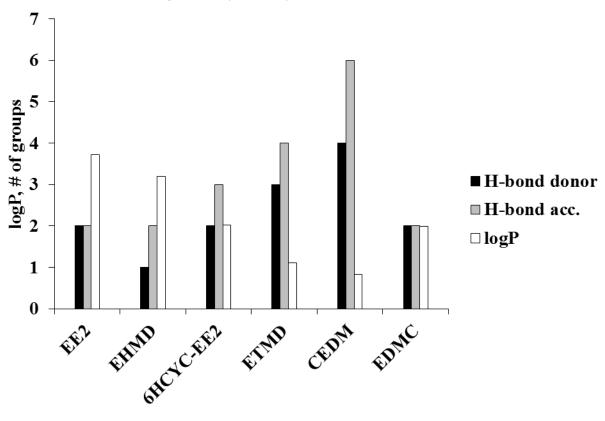


Figure 20. Estrogenic Potential: 6HCYC-EE2 pathway

The following table is an estrogenic potential analysis for the natural steroidal estrogens and their sulfate conjugates.

Table 4. Estrogenic potential analysis of steroidal estrogens and sulfate conjugates

Compound	H-bond donors	H-bond acceptors	logP	Change in potential
E ₁	1	2	4.54	Slight decrease
SE ₁	1	5	3.78	Slightly more water soluble
E ₂	2	2	3.71	Decrease
SE ₂	2	5	2.95	More water soluble
EE ₂	2	2	3.72	Decrease
SEE ₂	2	5	2.96	More water soluble
E ₃	3	3	2.64	Substantial decrease
SE ₃	3	6	1.88	More water soluble

This table shows the consistency in the decrease in estrogenic potential with the occurrence of sulfonation. The order for estrogenic potential based on these results would be $EE_2 \ge E_2 > E_1 > E_3$. EE_2 has a higher hydrophobicity than E_2 because of the ethinyl group on ring D. E_2 has more hydrogen bond donor groups than E_1 . E_3 has an extremely low hydrophobicity making it significantly easier to excrete than the other steroidal estrogens and thus less active. The estrogenic potential of each metabolite and parent compound has been analyzed and compared to known processes for removing estrogenicity to determine the potential remaining in each metabolite to exert estrogenic activity.

APPENDIX F

COMPLETE BIOLOGICAL METABOLITE TABLE

This table contains all metabolites analyzed during this study for FED analysis. It includes

IUPAC names as they appear in Chemoffice software, molecular formulas, weights and

abbreviations.

Table 5: 2OH-EE₂ pathway

Table 6: 6HCYC-EE₂ pathway

Table 7: SO₄-EE₂

79

Table 5. 2OH-EE₂ pathway information

ABBR.	FIGURE	IUPAC	MW
EE ₂	OH //	17-ETHYNYL-13-METHYL-	296.40
		7,8,9,11,12,13,14,15,16,17-	
		DECAHYDRO-6H-	
	но	CYCLOPENTA[A]PHENANTH	
		RENE-3,17-DIOL	
2OH-EE ₂	OH ///	17-ETHYNYL-13-METHYL-	312.40
		7,8,9,11,12,13,14,15,16,17-	
	но	DECAHYDRO-6H-	
		CYCLOPENTA[A]PHENANTH	
		RENE-2,3,17-TRIOL	
EMDC	он <i>///</i>	2,2'-(3-ETHYNYL-3-	346.42
		HYDROXY-3A-METHYL-	
	HOOC	2,3,3A,4,5,5A,8,9,9A,9B-	
		DECAHYDRO-1H-	
		CYCLOPENTA[A]NAPHTHAL	
		ENE-6,7-DIYL)DIACETIC	
		ACID	
ETDC	OH ///	3-ETHYNYL-3A,6,7-	258.40
		TRIMETHYL-	
		2,3,3A,4,5,5A,8,9,9A,9B-	
		DECAHYDRO-1H-	
		CYCLOPENTA[A]NAPHTHAL	
		EN-3-OL	
<u> </u>		1	

Table 6. 6HCYC-EE₂ pathway information

ABBR.	FIGURE	IUPAC	MW
EHMD	OH //	17-ETHYNYL-17-HYDROXY-13-METHYL- 6,7,8,9,10,11,12,13,14,15,16,17-DODECAHYDRO-3H- CYCLOPENTA[A]PHENANTHREN-3-ONE	296.40
6НСҮС-	OH J	17-ETHYNYL-10,17-DIHYDROXY-13-METHYL-	312.40
EE ₂	OH OH	6,7,8,9,10,11,12,13,14,15,16,17-DODECAHYDRO-3H-	
		CYCLOPENTA[A]PHENANTHREN-3-ONE	
ETMD	OH	17-ETHYNYL-2,10,17-TRIHYDROXY-13-METHYL-	328.40
	ОН	6,7,8,9,10,11,12,13,14,15,16,17-DODECAHYDRO-3H-	
	но	CYCLOPENTA[A]PHENANTHREN-3-ONE	
CEDM	OH OH	(Z)-2-(6-(CARBOXYMETHYL)-3-ETHYNYL-3,6-	362.42
	ОН	DIHYDROXY-3A-METHYLOCTAHYDRO-1H-	
	ноос	CYCLOPENTA[A]NAPHTHALEN-7(2H,8H,9BH)-	
	ноос	YLIDENE)ACETIC ACID	
EDMC	OH	3-ETHYNYL-3A,6-DIMETHYL-7-	274.40
	ОН	METHYLENEDODECAHYDRO-1H-	
		CYCLOPENTA[A]NAPHTHALENE-3,6-DIOL	

Table 7. SO_4 - EE_2 pathway information

ABBR.	FIGURE	IUPAC	MW
SO ₄ -EE ₂	OH	17-ETHYNYL-17-HYDROXY-13-METHYL-	376.47
		7,8,9,11,12,13,14,15,16,17-DECAHYDRO-6H-	
		CYCLOPENTA[A]PHENANTHREN-3-YL	
	HO S	HYDROGEN SULFATE	

BIBLIOGRAPHY

- Aldercreutz, H.; Fotsis, T.; Bannwart, C.; Hkmklkinen, E.; Bloigu, S.; Ollus, A. Urinary Estrogen Profile Determination in Young Finnish Vegetarian and Omnivorous Women. Journal of Steroidal Biochemistry. 2006, 24 (1), 289-296
- Andersen, H.; Siegrist, H.; Halling-Sorensen, B. Ternes, T. A.; Fate of Estrogens in Municipal sewate treatment plant. Environ. Sci. and Technol., 2003,37, 18, 4021-4026
- Baronti, C.; Curini, R.; D'Ascenzo, G.; Corcia, A. D.; Gentili, A.; Samperi, R. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river. Environ Sci. and Technol. 2000, 34, 5059-5066
- Brzostowicz, P. C.; Walters D. M.; Jackson, R. E.; Halsey, K. H.; Ni H.; Rouviere, P. E. Proposed involvement of soluble methane monooxygenase homologue in the cyclohexane dependent growth of a new Brachymonas species. Environ. Microbiol. 2005, 7, 179
- Buikema jr., A. L.; Mcginniss, M. J.; Cairns Jr., J. Phenolics in aquatic ecosystems: A selected review of recent literature. Marine Environment Research. 1979, 2, 2, 87-181
- Casellas, M.; Grifoll M.; Bayona, J. M.; Solanas, A. M. New metabolites in the degradation of fluorine by Arthrobacter sp. Strain F101, Appl. Environ, Microbiol. 1997, 63, 819
- Cramers, C. J. Essentials of Computational Chemistry: Theories and Models. John Wiley & Sons. 2002
- Dean-Ross, D.; Moody, J. D.; Freeman, J. P.; Doerge, D. R.; Cerniglia, C. E. Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett. 2001, 204, 205
- Della-Greca, M.; Pinto, B.; Pistillo, P. Pollio, A.; Previtera, L.; Temussi, F. Biotransformation of ethinylestradiol by microalgae. Chemosphere. 2008, 70, 2047-2053

- Dytczak, M.A.; Londry, K.L.; Oleszkiewwicz, J.A. Transformation of estrogens in nitrifying sludge under aerobic and alternating anoxic/aerobic conditions. 79th Annual Water Environment Federation Technical Exposition and Conference, Dallas, TX, October 2006.
- Fang, H.; Tong, W.; Shi, L. M.; Blair, R.; Perkins, R.; Branham, W.; Hass, B. S.; Xie, Q.; Dial, S. L.; Moland, C. L.; Sheehan D. M. Structure-Activity Relationships for a Large Diverse Set of Natural, Synthetic, and Environmental Estrogens. Chem. Res. Toxicol, 2001, 14, 280-294
- Fukui, K.; Yonezawa, T.; Shingu, H. A molecular orbital theory of reactivity in aromatic hydrocarbons. J. Chem. Phys., 1952, 20, 4, 722-725
- Gaulke, L. S.; Strand, S.E.; Kalhorn, T.F.; Stensel, H.D. 17α-ethinylestradiol Transformation via Abiotic Nitration in the Presence of Ammonia Oxidizing Bacteria. Environ. Sci. and Technol. 2008, 42(20), 7622-7627.
- Gentili, A.; Perret, D.; Marchese, S.; Mastropasqua, R.; Curini, R.; Di Corcia, A. Analysis of free estrogens and their conjugates in sewage and river waters by solid-phase extraction then liquid chromatography-electrospray-tandem mass spectrometry. Chromatogr. 2002, 56, 25-32.
- Gibson, R.; Tyler, C. R.; Hill, E. M. Analytical methodology for the identification of estrogenic contaminants in fish bile. Journal of Chromatography A (2005) 1066, 33-40
- Gusseme, B. D.; Pycke, B.; Hennebel, T.l Marcoen, A.; Vlaeminck, S. E.; Noppe, H.; Boon, N.l Verstraete, W. Biological removal of 17α -ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Research. 2009, 43, 2493-2503
- Haiyan, R.; Shulan, J.; Naeem ud din Ahmad, Dao, W. and Chengwu, C. Degradation characteristics and metabolic pathway of 17α -ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere. 2007, 66(2), 340-346.
- Hay, A. G.; Focht D. D. Cometabolism of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene by Pseudomonas acidovorans M3GY grown on biphenyl. Appl. Environ, Microbiol. 1998, 64, 2141
- Huang, C. H. and Sedlak, D. L. Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosrbent assay and gas chromatography/tandem mass spectrometry. Environmental Toxicology and Chemistry, 2001, 20, 1, 133-139
- Hutchins, S. R.; White, M. V.; Hudson, F. M.; Fine, D. D. Analysis of Lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates. Environ Sci. and Technol. 2007, 41, 738-744

- Kamath A. V.; Vaidyanathan C. S. New pathway for the biodegradation of indole by Aspergillus niger. Appl. Environ, Microbiol. 1990, 56, 275
- Khunjar, W.O.; Mackintosh S.; Skotnicka-Pitak, J.; Baik S.; Aga, D.; and Love, N.G. Elucidating the Role of Ammonia Oxidizing Bacteria versus Heterotrophic Bacteria during the Biotransformation of 17α-ethinylestradiol and Trimethoprim. Environmental Science and Technol. 2011. 45, 3605-3612
- Kolpin, D.; Furlong, E.; Meyer, M.; Thurman, E.; Zaugg, S.; Barber, L.; Buxton, H. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ. Sci. and Technol. 2002, 36(6), 1202-1211
- Kotov, A.; Falany, J. L.; Wang, J.; Falany, C. N. Regulation of estrogen activity by sulfation in human Ishikawak endometrial adenocarcinoma cells. Journal of Steroidal Biochemistry. 1999 68 (3-4), 137-144
- Kuch, H. M. and Ballschmiter, K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the pictogram per liter range. Environ Sci. and Technol. 2001, 35, 3201-3206
- Lee, B.-D.; Iso, M.; Hosomi, M. Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density. Chemosphere. 2001, 42, 431-435.
- Lee, Y.; Escher, B. I.; Von Gunten, U. Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. Environ. Sci. and Technol. 2008, 42, 17, 6333-6339
- Lehninger, A.; Nelson, D.; Cox, M. Principles of Biochemistry. 2nd Ed., Worth Publishers, New York, N.Y. 1999
- Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 2001, 46, 3-26
- Liu, G.; Li, X.; Zhao, J.; Horikoshi, S.; Hidaka, H. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination. Journal of Molecular Catalysis A: Chemical. 2000, 153, 221-229
- Marvin 5.2, 2009, ChemAxon (http://www.chemaxon.com)
- Nagy, P. I.; Fabian W. M. F. Theoretical study of the enol imine enaminone tautomeric equilibrium in organic solvents. J. Phys Chem B. 2006, 110, 25026-25032.

- Nakazawa, T.; Hayashi E. Phthalate and 4-hydroxyphthalate metabolism in Pseudomonas testosterone: Purification and properties of 4,5 dihydroxyphthalate decarboxylase. Appl. Environ, Microbiol. 1978, 36, 264
- Nishikawa, J.; Salto, K.; Goto, J.; Dakeyama, F.; Matsuo, M.; Nishihara, T. New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicology and Applied Pharmacology, 1999, 154, 76-83
- Nosova, T.; Jousimies-Summer, H.; Kaihovaara, P.; Jokelainen, K.; Heine, R.; Salaspuro, M. Characteristics of alcohol dehydrogenases of certain aerobic bacteria representing human colonic flora. Alcohol Clin. Exp. Res. 1997, 21, 489
- Ohko, Y.; Iuchi, K.I.; Niwa, C.; Tatsuma, T.; Nakashima, T.; Iguchi, T.; Kubota, Y.; Fujishima, A. 17β-estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity. Environ. Sci. and Technol. 2002, 36(19):4175-4181.
- Ohura, T.; Amagai, T.; Sugiyama, T.; Fusaya, M.; Matsushita, H. Occurrence, profiles, and photostabilities of chlorinated polycyclic aromatic hydrocarbons associated with particulates in urban Air. Environ. Sci. and Technol. 2005, 39(1):2045-2054.
- Olsen, R. H.; Kukor, J. J.; Kaphammer, B. A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PK01. J. Bacteriol., 1994, 176, 3749
- Parkkonen, J.; Larsson, D.; Adolfsson-Erici, M.; Pettersson, M.; Berg, A.; Olsson, P.; Förlin, L. . Contraceptive pill residues in sewage effluent are estrogenic to fish. Marine Environmental Research. 2000, 50(1-5), 198.
- Pawlowski, S.; Aerle, R. V.; Tyler, C. R.; Braunbeck, T. Effects of 17α-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay. Ecotox. and Environ. Safety. 2004, 57, 330-345
- Poirier, R.; Kari, R.
- Purdom, C.E.; Hardiman, P. A.; Bye, V. J.; Eno, N. C.; Tyler C. R.; Sumpter J.P. Estrogenic effects of effluents from sewage treatment works. Chemical Ecol. 1994, 8, 275-285
- Routledge, E. J.; Sheahan, D.; Desbrow, C.; Brighty, G. C.; Waldock, M.; Sumpter, J. P. Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ. Sci. Technol. 1998, 32, 1559-1565.
- Routledge, E. J. and Sumpter, J. P. Estrogenic activity of Surfactants and some of their degradation products assesses using a recombinant yeast screen. Environmental Toxicology and Chemistry. 1996 15, 3, 241-248

- Saliner, A. G.; Amat, L.; Carbo-Dorca, R.; Schultz, T. W.; Cronin, M. T. D. Molecular quantum similarity analysis of estrogenic activity, J. of Chemical Information Science,, 2003, 43, 1166-1176
- Schultz, T. W.; Sinks, G. D.; Cronin M. T. D. Structure-Activity Relationships for gene activation Oestrogenicity: Evaluation of a diverse set of aromatic chemicals. Environ. Toxicol. 2002, 17, 14-23
- Shi, J.; Fujisawa, S.; Nakai, S.; and Hosomi, M. Biodegradation of natural and synthetic estrogen by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Research. 2004, 38(9), 2323-2330.
- Shilling, A. D. and Williams, D. E. Determining Relative Estrogenicity by quantifying vitellogenin induction in ranbow trout liver slices. Toxicology and Applied Pharmacology, 2000, 164, 330-335
- Steffan, R. J.; McClay, K.; Vainberg, S.; Condee, C. W.; Zhang, D. Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl. Environ, Microbiol. 1997, 61, 4216
- Waller, C. L.; Oprea, T. I.; Chae, K.; Park, H. K.; Korach, K. S.; Laws, S.C.; Wiese, T. E.; Kelce, W.R.; Gray, L. E. Ligand-based identification of environmental estrogens. Chem Res Toxicol. 1996, 9, 1240–1248.
- Wang, G.; Xue, X.; Li, H.; Wu, F.; Deng N. β -Cyclodextrin-enhanced photo degradation of bis(4-hydroxyphenyl)ethane under UV irradiation. J. Molecular Catalysis A: Chemical, 2007, 276, 143-149
- Yi, T.; Harper Jr. W.F. The Link between Nitrification and Biotransformation of 17α -Ethinylestradiol. Environ. Sci. Technol. 2007, 41, 4311-4316
- Zamek-Gliszczynski, M. J.; Hoffmaster, K. A.; Nezasa, K.; Taliman, M. N.; Brower, K. L. Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate glucoronide and glutathione metabolites. European Journal of Pharmaceutical Science 2006, 27 (5), 447-86