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CHARACTERIZATION OF BIOLOGICAL FUNCTION OF INTERACTION BETWEEN 

TLR4 AND PLIC-1 
 

Nabanita Biswas, MS 
 

University of Pittsburgh, 2006

Toll-like receptors (TLRs) are key innate immune receptors that recognize non-self pathogens 

and trigger host responses. Activation of these receptors results in the release of antimicrobial 

peptides, inflammatory cytokines, and co stimulatory molecules that initiate adaptive immunity. 

For infections with gram-negative bacteria, lipopolysaccharide is the main source of 

inflammation, and toll-like receptor 4 (TLR4) is crucial in mediating its effects. TLR4 is 

expressed on cardiomyocytes, macrophages, airway epithelia, endothelial, smooth-muscle cells 

and in small amounts in most other tissue. But, uncontrolled activation of TLR signaling 

molecules may cause auto immune diseases, sepsis, and tissue damage so the activation of TLR4 

should be under control. Ubiquitin–dependent receptor degradation as well as stabilization was 

recently suggested as a novel regulatory mechanism in controlling several TLR activations. We 

have recently found that an ubiquitin-like protein named protein linking integrin associated 

protein to cytoskeleton 1 (PLIC-1) interacts with the cytoplasmic domain of TLR4. The 

interaction between TLR4 and PLIC-1 was verified by western blot and immunoprecipitation. 

Further mapping of the interacting domain was done and we observed that the N terminal 

fragment of PLIC-1 is interacting with TLR4. PLIC-1 has been reported to stabilize proteins by 

interfering with proteosomal degradation.  Consistent with this finding, we observed that over 

expression of PLIC-1 accumulated ubiquitinated TLR4. By flow cytometric analysis we 

observed that over expression of PLIC-1 is stabilizing TLR4. Reporter studies show that PLIC-1 
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inhibits the TRIF-dependent IFN-β pathway. When endogenous PLIC-1 was knocked down by 

RNAi, the activation of TRIF-dependent IFN-β luc was further increased. The same effect was 

observed in J774 mouse macrophages. Taken together our results suggest that PLIC-1 is a 

negative regulator of TLR pathway. This knowledge may be applied in immunotherapy as a 

means to modulate TLR activation in diseases such as septic shock, thus provides benefit for 

public health. 
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                                                      1.0  INTRODUCTION 

1.1 Toll Like Receptors:  

The immune system of vertebrates can be divided into two categories: the innate immune system 

and the adaptive immune system. The innate immune system exists to provide early defense 

against pathogen attack and to alert the adaptive immune system to the fact that pathogen 

invasion has begun. Toll like receptors (TLRs) are critical innate immune receptors that 

recognize microbial pathogen and trigger the first line of host defense [1-5]. The name Toll 

appeared in the literature in the early 1980s and was given to one of the mutants found in a 

Drosophila genetic screen. It was first described as an essential molecule involved in fly 

development. It was shown by Lemaitre et al that mutant Drosophila carrying loss-of-function 

mutation in the Toll receptor results in high susceptibility to fungal infection [6]. To date 10 

different TLRs have been identified in humans and 13 in mice [7]. Toll like receptors are critical 

innate immune receptors that recognize microbial pathogens and trigger the first line of host 

defense. They are mainly expressed on antigen-presenting cells, such as macrophages or 

dendritic cells, and their signaling activates antigen-presenting cells to provoke innate immunity 

and to establish adaptive immunity [8]. Different Toll like receptors recognize different 

molecular patterns in pathogen, showing that they have different ligands.  TLR1, TLR2 and 

TLR6 recognize various bacterial components like peptidoglycan, lipopeptide, and lipoprotein of 

Gram positive bacteria [9-13]. During replication in the host many viruses produce double 
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stranded RNA which is recognized by TLR3 [14]. LPS of Gram negative bacteria are recognized 

by TLR4 [15]. TLR5 recognizes bacterial flagellin [16] and TLR7 recognizes synthetic 

imidazoquinoline-like molecules, guanosine analogs such as loxoribine, and single stranded 

RNA (ssRNA) derived from human immunodeficiency virus type-1 (HIV-1) [17-19]. TLR9 

functions as a receptor for bacterial DNA containing CpG motifs [20-21]. 
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1.2 Toll Like Receptor 4 (TLR4): 

Toll Like receptor (TLR4) is well known for its sensitivity to Bacterial Lipopolysaccharide 

(LPS). LPS is found in Gram negative bacteria and is a potent activator of the innate immune 

response in humans. Bacterial LPS is a cell-wall component of gram-negative bacteria that has 

the ability to induce a dramatic systemic reaction known as septic shock. LPS-binding protein 
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Fig 1: Ligands of different Toll Like Receptors (TLRs) 
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(LBP), and the receptor protein CD14, binds to LBP-bound LPS. Both LBP and CD14 carry 

leucine-rich repeat motifs [22]. When TLR4 binds to CD14 complexed with its LBP:LPS ligand, 

recognition of LPS occurs largely by the mammalian LPS receptor — the TLR4−MD2−CD14 

complex — which is present on many cell types including macrophages and dendritic cells [23-

24]. CD14 concentrates LPS for binding to the TLR4−MD2 complex. TLR4 recruits some 

adapter protein molecules in the cytoplasm, which eventually activates the transcription factor 

NFκB and inflammatory cytokines like IFN-β in the nucleus. 
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Fig 2: Schematic diagram of Toll Like Receptor4 (TLR4) 
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1.3 TLR4 signaling pathway:   

MyD88-dependent pathway: 

Toll like receptors recognize pathogen and initiate immune response to eliminate invading 

pathogens. A key structural motif which is involved in the signal transduction is the Toll/IL-1 

receptor (TIR) domain [25]. The extra cellular domain of the Toll Like Receptor structure, rich 

in leucine residues is termed the leucine-rich repeat and is involved in ligand recognition [26]. 

The intracellular region contains a structure common to TLR and IL-1 receptor family members, 

called the Toll/IL-1 receptor homologous (TIR) domain, which is essential for signal 

transduction. The proximal events of TLR-mediated intracellular signaling are initiated by TIR-

domain-dependent heterophilic interactions with TIR-domain-containing cytosolic adapters such 

as myeloid differentiation primary response protein 88 (MyD88). MyD88 was first found to be 

critical for TLR signaling [27]. MyD88 has death and TIR domains at its N- and C-terminal 

portions, respectively. The TIR domain is involved in interaction with TLRs, and the death 

domain recruits IL-1 receptor– associated kinase (IRAK) family members [28]. The association 

of TLRs and MyD88 recruits members of the interleukin-1 receptor-associated kinase (IRAK) 

family. So far, four IRAKs are identified: IRAK1, IRAK2, IRAK4 and IRAK-M. IRAK1 and 

IRAK4 possess intrinsic serine/threonine protein kinase activities, but IRAK2 and IRAK-M lack 

this activity, IRAK-M deficient cells consistently show hyperproduction of inflammatory 

cytokines in response to various TLR ligands [29]. MyD88 activates the serine/threonine IRAK 

kinases IRAK1 and IRAK4. The IRAKs then enable the recruitment and activation of tumor 

necrosis factor receptor-associated factor 6 (TRAF-6), a RING-domain ubiquitin ligase that 

activates the TAK1 kinase through polyubiquitination [30]. TAK1 in turn activates the IKK 

complex, which phosphorylates IκBs (NF-κB inhibitors) and targets them for ubiquitination and 
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subsequent degradation. This releases NF-κB, which moves to the nucleus and regulates its 

target genes, including those that encode proinflammatory cytokines [31]. 

 

MyD88-independent pathway: 

The MyD88-independent pathway was first revealed by the retained response of MyD88-

deficient mice to LPS. TLR4 signaling can activate NF-κB and MAPKs in MyD88-deficient 

cells [32]. These delayed responses fail to induce gene expression of inflammatory cytokines but 

are sufficient for DC maturation, or expression of IFN-β and IFN-inducible genes. IFN-β gene 

expression requires IRF-3 activation, which is detected in LPS activated MyD88-deficient 

macrophages. TLR4 requires another adapter protein which is  TRIF related adapter molecule 

and  also known as TICAM-2, for the association with TRIF. TRIF can interact with the IκB 

kinases IKKe and TANK-binding kinase 1 (TBK1). IRF-3 is phosphorylated by these kinases, 

translocates to the nucleus, and induces several target genes, including IFN-β. TRIF can also lead 

to NF-κB activation through TRAF6 [33]. Furthermore, TRIF can also interact with receptor-

interacting protein (RIP) 1 through an RIP homotypic interaction motif. This interaction is also 

critical for NF-κB activation. NF-κB activation leads to the expression of IFN-β and 

inflammatory cytokines.  
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1.4 Why Toll Like Receptors are important: 

Studies of people with specific polymorphisms in genes encoding TLRs or their downstream 

signaling molecules can elucidate relationships between TLR signaling and human disease. Until 

now the best-studied TLR polymorphism is an amino acid substitution, from aspartic acid to 

glycine at position 299 (D299G), in TLR4 [34]. This polymorphism causes decreased airway 

response to inhaled bacterial lipopolysaccharide (LPS) in humans and a corresponding decreased 

signaling response to LPS. Sepsis and its most severe form, septic shock, represent a syndrome 

associated with bacterial infection caused by Gram negative bacteria. Because TLR4 is required 

for the innate immune response to Gram-negative LPS in mice, several groups have studied the 

effect of the D299G polymorphism on humans at risk for sepsis. This also causes Gram-negative 

infections [35] and systemic inflammatory syndrome [36]. Polymorphisms in IRAK-4 are also 

associated with impaired responses to bacterial infection. These polymorphisms include single-

nucleotide changes that encode stop codons at amino acid positions 287 and 293 of IRAK-4. 

Children homozygous for these polymorphisms have recurrent infections, caused mostly by the 

Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus [37]. Mutations in 

the gene encoding NEMO give rise to anhidrotic extodermal dysplasia with immunodeficiency. 

Patients with this disease present with sparse hair, anhidrosis and severe bacterial infections [38]. 

It was also observed by Kiechl et al that polymorphisms in human TLR4 might facilitate these 

genetic approaches, particularly for cardiovascular disease. Thus, the D299G polymorphism is 

associated with a reduced risk for carotid artery atherosclerosis [39]. 
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Fig 4: Association of polymorphisms of TLR signalling molecules with human 
diseases. 

 

Schwartz, et.al Nature Immunol. 5, 975-979 (2004) 

1.5 Negative regulation of Toll signaling: 

Several regulatory mechanisms that seem to control TLR signaling have been described. It was 

shown that IRAK-M prevents the dissociation of IRAK4 and IRAK1 from MyD88. In response 

to stimuli, IRAK4 and IRAK1 are sequentially phosphorylated, which results in activation of 

tumor necrosis factor receptor-associated factor 6 (TRAF6) [40]. TRAF6 activates transforming 

growth factor-β-activated protein kinase 1 (TAK1), a member of the MAP kinase kinase kinase 

(MAP3K) family, in a ubiquitin-dependent manner. TAK1 activates the IKK complex that leads 
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to NF-κB activation. Thus IRAKM here functions as a negative regulator of the Toll signal 

pathway. Production of inflammatory cytokines in response to various TLR ligands is ablated in 

IRAK4-deficient mice. Recently it was found that Triad3A, an E3 ubiquitin-protein ligase 

enhances ubiquitination and proteolytic degradation of some TLRs [41]. The soluble form of 

orphan receptor ST2 (also known as T1) binds directly to myeloid lineage cells and 

downregulates expression of TLR1 and TLR4 [42]. 

 

1.6 Protein Linking Integrin associated protein to Cytoskeleton 1 (PLIC-1): 

PLIC-1 is a type 2 Ubl (Ubiquitin like) protein  which has a wide variety of cellular functions. It 

inhibits the cell cycle to stabilize plasma membrane proteins and also to rearrange the 

cytoskeleton [43]. There are four members of PLIC-1 in mouse and human. The PLIC proteins 

belong to a family of proteins that contain an ubiquitin-like (ubl) domain as an integral part of 

their open reading frame [44]. As reported by Tanaka, et al in 1998, ubiquitin-like (ubl) proteins 

can be subdivided into two general classes; small-sized type 1 ubl proteins that are covalently 

linked to target proteins in a fashion similar to ubiquitin, and type 2 ubl proteins that are not 

ligated to other proteins and whose functions are not yet well understood [45]. hPLIC-1 and 

hPLIC-2 are examples of type 2 ubl proteins. Functional data suggest a role for the hPLIC 

proteins in the in vivo degradation of several proteins known to be ubiquitination-dependent 

substrates of the proteasome [46]. 

 

1.7 General  biology of ubiquitin and ubiquitin like proteins: 

Ubiquitin is a 76 amino acid globular protein that is nearly identical throughout eukaryotes [47]. 

Ubiquitination, the process of conjugating ubiquitins to other proteins is fundamental for 

degradation of protein whose level is regulated either constitutively or in response with external 
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stimuli [48]. The enzymes involved in ubiquitination have been extensively studied and 

reviewed. Ubiquitin is first activated by ubiquitin activating enzyme known as enzyme 1 or E1 

and then transferred to a ubiquitin conjugated enzyme, Ubc or E2 that together with a ubiquitin 

protein ligase E3, covalently attaches ubiquitin to the target protein at the amino acid group of a 

lysine residue [49]. The polyubiquitin chain is elongated by E2 and E3, sometimes with the help 

of accessory factor E4. By forming peptide bonds between the C-terminal glycine of ubiquitin 

and the lysyl amino group of the ubiquitin that has previously been added to the chain, 

polyubiquitination signals the 26S proteosome to degrade the ubiquitylated proteins[50]. It was 

reported that PLIC-1 inhibits the degradation of ubiquitinated protein and from the experiments 

we performed it was clear that PLIC-1 is accumulate more ubiquitinated protein including TLR4. 

 

 

 

 

 

 

 

 

 

 

 

                                                     

Fig 5: Polyubiquitination mediated proteolysis 
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                                                   2.0 MATERIALS AND METHODS 

2.1 Cell Lines and reagents: 

The 293T cell line ATCC CRL-11268 was cultured in DMEM (Invitrogen Life Technologies) 

supplemented with 10% FBS (HyClone), 1% penicillin, and 10 µg/ml streptomycin. The mouse  

macrophage cell line J774 was a generous gift from Dr David Hackam (University of Pittsburgh 

School Of Medicine, Department Of Surgery, Pittsburgh PA).  

 

2.2 Plasmids:   

PLIC-1 N terminal and PLIC-2 full length plasmid was a kind gift from the Howley lab 

(Boston). The IFN NF-κB LUC plasmid was obtained from Drs. J. Pomerantz and M. Boldin 

(Caltech, Pasadena, CA).YFP-TLR4, Flag-TLR4, HA-PLIC-1, YFP-PLIC-1, Flag PLIC-1, Fc-

TLR4 and MIR-DFT-empty plasmid, YFP TRIF, Flag TRIF plasmids were constructed in the 

lab. Myc Triad3A and YFP Triad3A plasmids were a kind gift from Dr. Ulevitch lab, Scripps 

Research Institute, San Diego. pCL-10A1 which is a retrovirus packaging vector was obtained 

from IMGENEX. RNAi constructs targeting human endogenous PLIC-1, 1602, 733, 819 and 

LMP PLIC-1 and  RNAi targeting mouse endogenous PLIC-1, m LMP were constructed in the 

lab previously. 

 

2.3 293T Transient transfection: 

Transfection was done with Lipofectamine 2000 (Invitrogen Life Technologies) transfecting 

reagent and the amount of plasmid indicated. Plasmids and media (amount depending on the size 

of the well) was mixed together, and lipofectamine 2000 (double the amount of plasmid) was 

mixed with media in a separate tube. Then media containing plasmid and media containing 
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lipofectamine was mixed together, allowed to sit for 15-20 minutes at room temperature, and  

added slowly to the well. After 16-18 hours the media was replaced with fresh media. 

 

2.4 J774 Cell Transfection: 

J774 macrophages were transfected according to AfCS (Alliance for Cellular Signaling gateway) 

protocol of Transfection of  Raw Cells. 1 x 105 cells/ml were plated the day before transfection 

was performed. Most of the reporter assay with J774 cells was done in 24 well plates. For each 

transfection, 1μl Lipofectamine 2000 was added to 25 μl Opti-MEM in a 1.8-ml Eppendorf tube. 

In another tube the required amount of plasmid was added, mixed, and allowed to sit for 5 min at 

room temperature. Then, 25 μl DNA mixtures was added to the 25 μl Lipofectamine 2000 

mixture and mixed by tapping or pipetting. This mixture was incubated for 20 min at room 

temperature. RAWGM1 was added to each well to cover the surface and the 

plasmid/lipofectamine media was then added. After 3 hours the media was changed and replaced 

with fresh RAWGM1 media. 

RAWGM1 media composition: for 500 ml 

   DMEM 435 ml  Final concentration 0.87X 

   FBS  50ml  Final concentration 10% 

                                   HEPES 10ml  Final concentration 20mM 

   L-Glutamine 5ml  Final concentration 2mM 

 

2.5 Immunoprecipitation and Western Blot: 

Unless indicated otherwise, we typically transfected 6–10 million 293T cells with the plasmids 

indicated, using the Lipofectamine 2000 method. Forty-eight hours after transfection, cells were 
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lysed using a lysis buffer. A quantity of 50–100 µg of total soluble extract was incubated with an 

appropriate amount of beads conjugated with the specified antibody for 2 h at 4°C. Alternatively, 

the antibody used for IP was added and kept in a rotating condition for 3-4 hrs and then Agarose 

A beads were added and incubated overnight. Next day, after washing, the bound proteins were 

eluted and then separated using SDS-PAGE. The proteins were then transferred to a 

nitrocellulose membrane (Biorad) and incubated with the specified primary antibody followed by 

incubation with a secondary antibody conjugated with horseradish peroxidase. The ECL 

substrate was then added and the blot was developed. 

Lysis Buffer: 5mM p Nitrophenyl phosphate, 1% NP-40, 1mM Sodium orthovanadate, 20mM β-

glycerophosphate, 1.5mM MgCl2, 150mM NaCl, 50 mM HEPES pH-7.9. 

 

2.6 Generation of stable 293T cells expressing  Flag tagged TLR4: 

Ten million 293T cells were transfected with 3μg pCL-10A1 and 3μg pMIR-DFT-TLR4 with 

Lipofectamine 2000. pCl-10A1 is a packaging vector which is used to maximize recombinant 

retrovirus titers in experimental systems. 48 hrs after transfection virus was collected from the 

filtered supernatant and spin infection was performed in 293T cells for 90 minutes in presence of 

8mg/ml polybrene and  1mM HEPES pH 7.55. The medium was changed after every 2 days and 

puromycine 1μg/ml was added to select the stable cells. After 2 weeks cells were transfected 

with required DNA to perform Western Blot and Immunoprecipitation. 

2.7 Reporter assay:  

For the luciferase reporter assay, 0.25 million 293T cells/well were seeded on 24-well plates. The 

next day, cells were transfected with Lipofectamine 2000 (Invitrogen Life Technologies) 

according to the manufacturer’s instructions. A prespecified amount of DNA was added into each 
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transfection and pcDNA3 DFT empty plasmid was used as filler DNA. When indicated, cells 

were treated with various stimuli for the specified time. Cells were harvested between 24 and 48 

hrs after transfection and luciferase activity was measured using the Luciferase Assay System 

(Promega). Cells were plated in 24-well plates and transfected with 0.1 µg of IFN-β luc, 0.1 µg 

κβ –luc and 0.05 µg Renilla luciferase as internal control. Twenty-four hours later, the cells were 

treated with 0.2 µg/ml LPS, or 40 μg/ml Poly I:C, for 12-16 hrs. The cells were lysed, and 

luciferase activities were determined using reagent from Promega. The data presented are the 

mean ± the  standard deviation (SD). 

2.8 Antibody used: 

Antibody to Flag (anti-FLAG) and anti flag beads for IP, anti-HA and anti-β-actin were 

purchased from Sigma. Anti GFP and Poly(I:C) were purchased from Invitrogen. MG-132 was 

purchased from Sigma.

2.9 Flow Analysis: 

Cells were transfected with YFP-TLR4 and YFP-TRIF plasmid, and also with different 

concentrations of PLIC-1 and TRIAD 3A plasmid, before the expression of TLR4 and TRIF was 

observed by flow cytometry. 48 hours after transfection, cells were washed twice with cold PBS 

and fixed with 10% paraformaldehyde. Flow analysis was done in Epics-XL (Beckman Coulter, 

Miami, FL) and the data was analyzed with FlowJo software. 
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                RESULTS 

We hypothesized that the PLIC-1 may have a role in the TLR4 signaling pathway. To prove this 

hypothesis, our objectives were : 

AIM 1: Biochemical study of the interaction of TLR4 with PLIC-1.  

AIM 2: Biological function of the interaction of TLR4 with PLIC-1 in an over 

expression system.  

AIM 3: Biological function of the interaction of TLR4 with PLIC-1 in loss of 

function study. 
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                                                         3.1 Aim 1 Results 

The results are presented in three sections. Section I describes the biochemical study of the 

interaction of TLR4 and PLIC-1. 

3.1.1 Biochemical study of the interaction of TLR4 and PLIC-1:  

Since the interaction of PLIC-1 with the intracellular part of TLR4 has already been confirmed 

by Yeast Two-hybrid methods, the validation of this interaction was performed by co-

immunoprecipitation. As the expression of TLR4 in transient transfection tends to form 

aggregates and the expression level is also low, a stable cell line based on the cell line 293T was 

generated expressing Flag-TLR4. To generate this stable cell line 293T cells were transfected 

with retroviral construct pLC-10A1 and cells were further selected in presence of the antibiotic 

puromycine. 293T cells stably expressing Flag-TLR4 were transfected with increased 

concentrations of PLIC-1. The stable line was transfected with 1μg and 5μg of HA-PLIC-1, and 

IP was subsequently done against anti Flag to pull down Flag-TLR4 and western blot was 

conducted against Flag antibody (Sigma, 1:500 dilution) to detect pulled-down Flag -TLR4 .The 

same blot was stripped and probed against HA antibody to detect the expression of PLIC-1. Fig 

1A shows the IP to pull down TLR4, and Fig 1B shows HA PLIC-1 co-precipitated with TLR4, 

indicating an interaction between TLR4 and PLIC-1 
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Fig 6: Interaction of TLR4 with PLIC-1.  As the expression of TLR4 in transient 
transfection tends to form aggregates, a stable cell line based on 293T was generated 
expressing Flag-TLR4. This was transfected with increasing amounts of the HA-
PLIC-1 construct. IP was done to pull down TLR4, and western blots were 
conducted to detect pulled-down TLR4 (A) or PLIC-1(B). 
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3.1.2 Structure of PLIC-1: 
 
All members of PLIC-1 have an amino terminal Ubiquitin-like domain (Ubl) and carboxy 

terminal ubiquitin associated domain (Uba) as well as two internal repeats of ~85 amino acids 

that contain Sti I motifs. PLIC-1 is known to bind to membrane proteins including presenilins 

and GABA receptors. PLIC-1 showed a predominantly cytoplasmic localization. The Uba 

domain of PLIC-1 was reported to bind with ubiquitylated proteins while the Ubl domains bind 

ubiquitin ligases like E6AP and βTRCP, and proteosome subunits. These interactions are  

thought to interfere with normal targeting of  proteins for proteosome-dependent-degradation, 

resulting in enhanced stability potential affecting the signaling pathways in which these proteins 

are involved 

. 
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Fig 7: Schematic diagram of PLIC-1 All members of the PLIC-1 has 
amino terminal ubiquitin like domain (Ubl) and carboxy terminal 
ubiquitin associated domain (Uba) and two internal motifs that contain 
Sti 1 motifs. The Ubl domain of PLIC-1 binds to ubiquitin ligases and 
proteosome subunits. These interactions are  thought to interfere with 
normal targeting of protein for proteosome dependent degradation. 

 18 



 

3.1.3 Domain mapping study: 

A domain mapping experiment was performed to determine which domain of PLIC-1 is 

interacting with TLR4. 293T cells were transfected with 5μg YFP-TLR4 and 5μg of N terminal 

PLIC-1 (4459), full length PLIC-2 (4456) construct, and with full length Flag-PLIC-1 and YFP-

TLR4. The expression of flag construct was observed in the input against Flag antibody (Fig A). 

The pulled-down YFP-TLR4 was observed but when the same blot was stripped against Flag it 

shows that (Fig C) N terminal of PLIC-1 interacts with TLR4. 
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Figure 8: Domain mapping study. A. Expression of the Flag-tagged N-terminal 
domain of PLIC-1 prior to immunoprecipitation. B. Pull down of YFP-TLR4. C. 
the same blot from B was stripped and blotted with Flag antibody. The N terminal 
domain of PLIC-1 interacts with TLR4 
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3.1.4 The effect of ubiquitination of overexpression of PLIC-1 on the ubiquitination of 
TLR4: 
To analyze whether PLIC-1 modulates the expression of TLR4, cells were transfected with hFc 

TLR4, HA tagged ubiquitin and with YFP-PLIC-1. HA ubiquitin will be eventually incorporated 

in all ubiquitinated protein including TLR4. 50μM MG132 was added after 40 hrs of transfection 

and kept for 6 hrs. MG132 is an inhibitor of proteoseome dependent degradation of proteins 

which block degradation of polyubiquitinated protein. So in presence of polyubiquitinated 

protein MG132 will accumulate more ubiquitinated protein which will be easily detectectable by 

Western blot method against anti HA antibody. After 6 hrs, cells were lysed and western blot 

was performed against HA antibody with the total cell lysate. It was observed that 

overexpression of PLIC-1 accumulated more ubiquitinated protein including TLR4. Lane 1 and 2 

shows that where HA-UB is absent, no ubiquitinated band was observed.  Lane 3 was compared 

with lane 5. In lane 5  more accumulation of ubiquitinated protein was observed due to the 

presence of PLIC-1. Lane 4 was compared with lane 6 where the same phenomenon was 

observed in presence of MG132 that overexpression of PLIC-1 accumulating more ubiquitinated 

protein including TLR4. 

 

 

 

 

 

 

 

 

1   2  3  4  5  6  7  8  9 10       1   2  3  4  5  6  7  8  9 10       

hFc TLR4    +    +    +    +    +   +   +    +    - -
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MG132        - +     - +    - +     - +    - +
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hFc TLR4    +    +    +    +    +   +   +    +    - -
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Fig 9: The effect of ubiquitination on overexpression of PLIC-1 on TLR4
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3.1.5 The effect of overexpression of PLIC-1 on the ubiquitination of TLR4: 

To analyze the effect of overexpression of PLIC-1 on the ubiquitination of TLR4, 293T cells 

were transfected with YFP-TLR4, HA tagged ubiquitin and FLAG tagged PLIC-1. MG132 was 

added after 40 hrs of transfection and kept for 6 hrs. After 6 hrs cells were lysed and IP was 

performed against GFP, and western blot was done against HA antibody. Western blot was done 

against the IP product as well as total cell lysate. IP was done against the samples where MG132 

was added as MG132 will accumulate more ubiquitinated protein which will be easily 

detectectable by Western blot method against anti HA antibody. But in case of whole cell lysate 

Western Blot was performed against sample where MG132 is present as well as well as absent. 

In case of IP (left figure) lane 1 was compared with lane 2 where it was observed that 

overexpression of PLIC-1 accumulated more ubiquitinated TLR4. TRIAD3A is a positive 

control and it is known that overexpression of TRIAD3A accumulates more ubiquitinated TLR4. 

In case of total cell lysate (right figure) lane 3 was compared with lane 5, and lane 4 with lane 6. 

In each case it was observed that overexpression of PLIC-1 accumulated more ubiquitinated 

protein. 

1  2  3   4   5 10  9  8  7  6  5  4  3  2  1       1  2  3   4   5 10  9  8  7  6  5  4  3  2  1        
YFP TLR4          +    +   +     +     +    
HAUB                 - +   +     +    +
FLAG PLIC-1     - - +     +    -
FlagTRIAD 3A   - - - - +
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Fig 10: The effect of ubiquitination on overexpression of  PLIC-1 on TLR4.  
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3.1.6 The effect of PLIC-1 on TLR4 by flow analysis: 

Flow analysis was performed to analyze the effect of overexpression of PLIC-1 on TLR4. 293T 

cells were transfected with 0.5ug YFP-TLR4 and 0.1, 0.2, 0.4, or 0.8μg of PLIC-1. 293T cells 

without any transfected DNA was used as negative control. It was observed that in presence of 

increasing amounts of PLIC-1 the expression of TLR4 was also increased. So overexpression of 

PLIC-1 is stabilizing TLR4. 
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Fig11: The effect of PLIC-1 on TLR4. Cells were transfected with 1μg of YFP 
TLR4 and different concentrations of PLIC-1. Flow analysis was done to 
determine the expression of YFP TLR4 in presence of PLIC-1. 
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                                           3.2 Aim 2 Results 

 

AIM 1: Biochemical study of the interaction of TLR4 with PLIC-1.   

AIM 2: Biological function of the interaction of TLR4 with PLIC-1 in an over 

expression system. 

AIM 3: Biological function of the interaction of TLR4 with PLIC-1 in loss of 

function study. 
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3.2.1. Effect of NS3/4A, PLIC-1 and Sars 3C protease in TRIF dependent signaling 
pathways:  
 
Akira et al (2001) reported that TLRs activate the transcription factors NF-κB and AP1, leading 

to production of inflammatory cytokines such as tumor necrosis factor (TNF-α) and up-

regulation of the co-stimulatory molecules CD80 and CD86 on dendritic cells (DCs)[48]. 

Yamamoto (2002)[51] identified a novel TIR domain-containing molecule, named TIR domain-

containing adapter (TRIF), and also showed that, like MyD88 and TIRAP, overexpression of 

TRIF activated the NF-κβ-dependent promoter. Several reporter assays were performed to find 

out the function of PLIC-1 on TRIF dependent signaling. In the first experiment 293T cells were 

transfected with 0.1μg of IFN-β luc reporter construct and 0.5μg of renilla luciferse as internal 

control. Then cells were also transfected with 0.1μg and 0.2μg NS3/4A (HCV protease), Sars 3C 

protease and PLIC-1. After 24 hrs of transfection, cells were again transfected with 0.5μg of 

TRIF. After 48 hrs cells were lysed and a reporter assay was performed. It was observed that 

NS3/4A, which is known to degrade TRIF, inhibited TRIF dependent IFN-β activation in a dose 

dependent manner. The same result was observed in case of PLIC-1 and Sars 3C protein (Fig 12 

A). To rule out the possibility of promoter interference and squelching effects of between IFN-β 

and PLIC-1, construct cells were transfected with different concentrations of PLIC-1 plasmid 

and 0.1μg of IFN-β luc reporter plasmid. After 48 hrs the cells were lysed and a reporter assay 

was performed. We observed that that in absence of TRIF only PLIC-1 is able to enhance IFN-β 

luc production (Figure 12B) which rules out the possibility that the  inhibition of TRIF 

dependent IFN-β activation in presence of PLIC-1 is not due to promoter interference or 

squelching effects. 
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3.2.2 Over expression of PLIC-1 on the TRIF  dependent IFN-β pathway:  

 To observe the effect of over expression of PLIC-1 in TRIF dependent on IFN-β pathway, cells 

were transfected with 0.1μg of IFN-β luc reporter construct and 0.5μg of Renilla luciferase  as 

internal control and 0.2, 0.4, 0.6, 0.8 μg of HA-PLIC1 (Figure  13A), YFP-PLIC-1 (Figure 13B) 

and  Flag-PLIC-1 (Figure  13C) and the production of IFN-β luc was measured by reporter assay. 

Cells were transfected with each construct in the same day and after 24 hrs of transfection the 

cells were again transfected with 0.5μg of TRIF. After 48 hrs cells were lysed and the reporter 
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Fig 12: Effect of NS3/4A, PLIC-1 and Sars 3C protease in TRIF 
dependent signaling pathways  
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assay was performed. It was observed in all three individual cases that the presence of high 

concentrations of PLIC-1 inhibits IFN-β luc. In the case of HA-PLIC-1 with the highest 

concentration (0.8μg of HA-PLIC-1) of HA- PLIC-1 5 fold inhibition in the production of IFN- 

β, in case of YFP-PLIC-1, 8 fold and in case of Flag PLIC-1 5 fold inhibition was observed. Data 

was normalized by using renilla luciferase as an internal control. 
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Fig 13: Overexpression of PLIC-1 on the TRIF dependent IFN-β pathway A. 
cells were transfected with TRIF and different concentrations of PLIC-1 and their 
effect on IFN-β-luc was observed. Cells were first transfected with PLIC-1, and 
on the second day were transfected with TRIF. TRIF activates IFN-β luc but in the 
presence of high concentration of PLIC-1 IFN-β luc is inhibited. Data was 
normalized by using renilla luciferase as an internal control. PLIC-1 has a negative 
effect on the TRIF dependent signaling pathway. 
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3.2.3 The effect of overexpression of PLIC-1 on the TRIF dependent κB activation:  

As Yamamoto (2002) showed, like MyD88 and TIRAP, over expression of TRIF activates the 

NF- B-dependent promoter. To observe the effect of over expression of PLIC-1 on the TRIF 

dependent NF-κB pathway, cells were transfected with 0.1μg of κB luc reporter construct, with 

0.5μg of Renilla luciferase as an internal control, and 0.2, 0.4, 0.6, or 0.8μg of YFP-PLIC. Cells 

were first transfected with PLIC-1 and on the second day were transfected with TRIF. After 48 

hrs cells were lysed and the reporter assay was performed. TRIF activates κB-luc but it was 

observed that, in the presence of high concentration of PLIC-1, TRIF dependent activated κB-luc 

is inhibited. 
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Fig 14: Overexpression of PLIC-1 on TRIF dependent κB activation. Cells 
were transfected with TRIF, and with different concentrations of PLIC-1 and 
the effect on κB luc  was observed. TRIF activates κB-luc but in the presence 
of high concentrations of PLIC-1 it inhibit TRIF dependent activated κB-luc  
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3.2.4 Effect of PLIC-1 on TRIF by Flow analysis:  

Flow analysis was performed to further support the notion that PLIC-1 is degrading TRIF, and 

eventually inhibiting the production of IFN-β. 293T cells were transfected with 1μg of YFP-

TRIF and with 0.5μg, 1μg, 1.5μg or 2μg of HA PLIC-1, and the expression of TRIF was 

observed by flow analysis. TRIAD3A, which is known to degrade TRIF, was used as a positive 

control.  293T cells were transfected with 1ug of YFP-TRIF and 0.5μg, 1μg, 1.5μg or 2μg of 

myc tagged TRIAD3A, and the expression of TRIF was observed by flow analysis. It was 

observed that increased amount of PLIC-1 decreased TRIF protein.  
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Fig 15 A: The effect of PLIC-1 on TRIF. Cells were transfected with1ug of YFP 
TRIF and different concentration of PLIC-1 and flow analysis was done to 
determine the expression of YFP TRIF in presence of PLIC-1. 
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Fig 15 B: The effect of TRIAD3A on TRIF. Cells were transfected with 
1ug of YFP-TRIF, and different concentrations of PLIC-1, and flow 
analysis was used to determine the expression of YFP TRIF in presence 
of TRIAD3A. 
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3.3  Aim 3 Results 

AIM 1: Biochemical study of the interaction of TLR4 with PLIC-1   

AIM 2: Biological function of the interaction of TLR4 with PLIC-1 in an over 

expression system 

AIM 3: Biological function of the interaction of TLR4 with PLIC-1 in loss of 

function study. 
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3.3.1 RNAi vector and sequence: 

RNA interference (RNAi), also known as post transcriptional gene silencing, is mediated by 

either small interfering RNA (siRNA) or by micro RNA (miRNA). Here, we used different 

vector based RNAi. In these experiments, RNAi was used to knock down endogenous expression 

of PLIC-1. The vector backbone of the RNAi, and the position in PLIC-1 it targets, are shown 

below. The vector has a chloramphenicol selection marker as well as a GFP tag which helps to 

select the transfected cells and is useful for making stables. Four human RNAi, targeting the 

positions 1602 and 733, and 819, hLMP and one mouse RNAi targeting endogenous PLIC-1 

were tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLIC-1  (1602)     GCACAGATGATGCTGAATAAT  

PLIC-1  (733)       GCAATGTTACTACATCATCAA   

PLIC-1 (819)        gcgcatgtacacagatattca  

Fig 16: RNAi vector and sequence: The sequences in the red are the targeting 
sequence.  
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3.3.2 Working RNAi against human PLIC-1 and the working dose of RNAi required:  

Western blot analysis was performed to find out which RNAi is working best among the four  

RNAi against endogenous human PLIC-1, and to determine the minimum concentration of RNAi 

that is able to knock down endogenous PLIC-1. Cells were transfected with 0.1μg of HA tagged 

human PLIC-1 and either 0.1μg or 2μg of RNAi 1602, 733, 819, and another RNAi against 

human PLIC-1, hLMP. After 48 hours cells were lysed and the western blot was performed 

against anti HA monoclonal antibody. (Fig 17A). RNA I again endogenous mouse PLIC-1 was 

used as a negative control where 293T cells were transfected with 0.1μg of PLIC-1 and different 

concentration, (0.1μg, 1μg, 2μg, 3μg, 4μg, and 5μg) of mouse RNAi against endogenous PLIC-

1. It was observed that RNAi 819 worked best although 1602 also worked equally well.  In the 

case of 1602, 2ug of the RNAi was able to completely knock down endogenous PLIC-1. Here, 

mLMP RNAi against endogenous mouse PLIC-1 was used as a negative control and no effect 

was observed in that case as the PLIC-1 was against human PLIC-1. Data was normalized with 

endogenous actin to show the loading was equal for each sample. 
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Fig 17: Working RNAi against PLIC-1 and the working dose required. To 
find out the best RNAi against PLIC-1, and the working dose, cells were 
transfected with 0.1μg of HA-PLIC1 and then transfected with different 
concentrations of RNAi. It was observed that RNAi 1602 worked better although 
819 worked best and, in these two cases, the RNAi effect was observed even in 
lower doses. The specificity was determined by transfecting the cells with 
mLMP PLIC-1 which is specific for mouse. Inhibition was not observed in this 
case. 
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3.3.3 Effect due to the knockdown of endogenous PLIC-1 in TRIF dependent signaling 
pathways: 
 
After identifying the optimal RNAi construct and working dose, the effect of knockdown of 

endogenous PLIC-1 on the TRIF-dependent signaling pathways was determined. 293T cells were 

transfected with 0.1μg of IFN-β luc reporter construct and 0.5μg of Renilla luciferase  as internal 

control, as well as with 0.2, 0.4, and 0.6μg of HA-PLIC1 and 1602 RNAi. Cells were transfected 

with all of the constructs on the same day. After 24 hrs of transfection the cells were again 

transfected with 0.1μg of TRIF. After 48 hrs, the cells were lysed and the reporter assay was 

performed. It was observed that overexpression of PLIC-1 inhibits activation of TRIF dependent 

IFN-β luc, but due to the knock down of endogenous PLIC-1 with RNAi, TRIF-dependent IFN β 

luc was further induced. 
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Fig 18: Effect due to knockdown of endogenous PLIC-1 in TRIF dependent 
signaling pathways. Cells were transfected with differing concentrations of HA-
PLIC1 and RNA-I 1602 against PLIC-1. It was observed that overexpression of 
PLIC-1 inhibits activation of TRIF dependent IFN-β luc, but due to the knock down 
of endogenous PLIC-1 with RNAi, TRIF-dependent IFN β luc was further induced. 
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3.3.4 Effect of PLIC-1 in TRIF-dependent TLR3 signaling pathways: 

As TLR3 signaling is TRIF-dependent a reporter assay was performed to determine whether 

PLIC-1 inhibits TRIF dependent IFN- β production and also to show whether it has any effect on 

TLR3-associated pathways. 293T cells were transfected with 0.1μg of IFN-β luc reporter 

construct and 0.5μg of Renilla luciferase as internal control, as well as with 0.1μg TLR3 plasmid 

and RNAi 1602. After 24 hours, cells were stimulated with 40 μg/ml Poly I: C for 16 hours and 

after 48 hours cells were lysed and reporter assay was performed. It was observed that due to the 

knock down of endogenous PLIC-1 with RNAi, TRIF-dependent IFN β luc was further induced. 
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Fig 19: Effect of PLIC-1 in TRIF dependent TLR3 signaling pathways.  
A. cells were transfected with TLR3  and RNAi against human endogenous 
PLIC-1 and IFN-β luc production was measured. As TLR3 signaling is 
TRIF-dependent, depletion of PLIC-1 induces TRIF-dependent IFN-β luc. 
Poly I:C was used to stimulate the cells as it is a ligand of TLR3.  Data were 
normalized by using renilla luciferase as an internal control.  
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3.3.5 The effect of overexpression of PLIC-1 on the TRIF-dependent IFN-β pathway in 
macrophages:  
 
To observe the effect of PLIC-1 in macrophages, the mouse macrophage J774 was transfected 

with PLIC-1 and the production of IFN-β was analyzed by reporter assay. Cells were transfected 

with 0.5μg of IFN-β luc reporter construct and 0.5μg of Renilla luciferase as internal control, as 

well as with and 0.2, 0.4, 0.6, and 0.8μg of YFP PLIC-1. After 24 hours cells,  were stimulated 

with poly I:C (40 μg/ml), which is used to stimulate the production of interferon by the immune 

system. After 48 hrs cells were lysed in 100μl of lysis buffer and reporter assay was performed.  

All transfections were done in 24 well plates. It was observed that overexpression of PLIC-1 

inhibits activation of TRIF dependent IFN-β luc.   

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7

+ .1 ug
++ .2 ug
+++ .6ug
++++ .8 ug

IFN βluc +         +         +      +       +       +        +
HA-PLIC-1         - +         - +      + +     +++   ++++
Poly IC               - - +       +       +        +        +

 

Fig 20: Overexpression of PLIC-1PLIC-1 in macrophages and its effect on the 
IFNβ-luc pathway.  Something is missing here PLIC-1 and the effect on IFN-β-luc 
was observed. After 24 hrs cells were stimulated with Poly I:C. PLIC-1 activates IFN-
β luc overexpression of PLIC-1 inhibits activation of TRIF dependent IFN-β luc. Data 
was normalized by using renilla luciferase as an internal control.  
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4.0 DISCUSSION 

The PLIC proteins belong to a family of proteins that contain a ubiquitin-like (ubl) domain as an 

integral part of their open reading frame. Ubiquitin-like (ubl) proteins can be subdivided into two 

general classes; small-sized type 1 ubl proteins that are covalently linked to target proteins in a 

fashion similar to ubiquitin, and type 2 ubl proteins that are not ligated to other proteins and 

whose functions are not yet well understood [52]. This protein is a member of a group of related 

proteins like PLIC-2. Protein degradation plays an important role in a wide array of cellular 

events. Eukaryotic cells have evolved two machineries to execute many of the controlled 

proteolytic events: the ubiquitination machinery and the proteasome. The ubiquitination 

machinery recognizes and tags specific proteins that are to be destroyed, whereas the proteasome 

degrades the ubiquitinated substrates. According to Hershko, et al the collaborative action of 

these two machineries is crucial for a variety of diverse processes including cell cycle 

progression, development, apoptosis, signal transduction, and antigen presentation [53]. Toll like 

receptors (TLRs) are critical innate immune receptors that recognize microbial pathogen and 

trigger the first line of host defense. Several regulatory mechanisms that seem to control TLR 

signaling have been described, and one of them uses proteins linked to the negative regulation of 

TLR signaling including IL-1R-associated kinase M (IRAK-M) and the suppression of cytokine 

signaling [54]. Also, Triad3A acts as an E3 ubiquitin-protein ligase and enhances ubiquitination 

and proteolytic degradation of some TLRs [55]. Here we used Wedtern blot and 
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immunoprecipitation to identify PLIC-1 interactions with the  cytoplasmic domain of TLR4. 

After a domain mapping experiment we determined that TLR4 is interacting with the N terminal 

domain of PLIC-1. Although PLIC-1 has been reported to be involved in protein degradation 

[56-58], overexpression of PLIC-1 accumulating more ubiquitinated protein including TLR4 and 

inhibits TLR4 from undergoing proteosomal degradation. As a result flow analysis showed that 

PLIC-1 stabilizes TLR4. TRIF is the TLR adaptor that characteristically induces IFN-  

transcription [59-60]. TRIF is a TIR domain-containing adapter protein that is essential for all 

signaling by TLR3 and some signaling by TLR4. It was also shown that TRIF was the only one 

that efficiently induced apoptosis when over expressed in 293T cells [61]. It was observed that 

overexpression of PLIC-1 inhibits activation of TRIF dependent IFN-β luc as well as NF-κB luc. 

It was already reported by RING finger protein Triad3A acts as an E3 

ubiquitin-protein ligase, and enhances ubiquitination and proteolytic degradation of some TLRs. 

Triad3A negatively regulates TLR activation [62]. Our use of a reporter assay with a different 

PLIC-1 construct confirms that overexpression of PLIC-1 inhibits activation of TRIF dependent 

IFN-β luc. By flow analysis it was observed increased amount of PLIC-1 decreased TRIF 

protein. In this experiment TRIAD3A was used as a positive control known to degrade TRIF 

[62]. From the flow data it was confirmed that PLIC-1 degrades TRIF and eventually inhibits 

IFN-β as well as NF-κB production. RNAi constructs were made, and the optimal RNAi and 

amounts required were determined by western blot. RNAi against position 819 and 1602 worked 

best compared to the others.  When the RNAi was used to deplete endogenous PLIC-1, a reporter 

assay showed that due to the knock down of endogenous PLIC-1 with RNAi, TRIF-dependent 

IFN β luc was further induced.  The same experiment was performed on the mouse macrophage 

Tsung-Hsien el al that the 
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cell line J774. The same inhibition of TRIF-dependent IFN-   was observed. Taken together, 

these preliminary data suggest that PLIC-1 is a negative regulator of TRIF-mediated pathways. 
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       5.0  FUTURE WORK 

 The following works could be performed in the future : 

1. Mouse RNAi will be used to make retrovirus and to transduce J774 macrophage cells to knock 

down endogenous PLIC-1, so that the production of IFN-β could be monitored by ELISA  

2. A Phagocytosis assay will be performed to show whether there is any effect in phagocytosis 

due to the interaction of these two proteins. 

3. IP and western blot will be performed to know whether TRIF interacts with PLIC-1. 

4. An immunofluorescence study will be performed to show the co-localization of these two 

proteins. 
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